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A new efficient technique has been developed to interpret self-potential data from different
mineralized sources (horizontal cylinder, vertical cylinder, sphere, and 2-D inclined sheet).
This technique is based on the first horizontal gradient filter and particle swarm optimization
algorithm. This suggested method can be used for single-source and multiple-source inter-
pretation. In this study, the developed technique was applied to five different synthetic
examples (vertical cylinder model, horizontal cylinder model, sphere model, 2-D inclined
sheet model, and multi-source model), using a real case from Canada—the multi-source field
example—and two real cases from India. The results obtained from the synthetic and real
data show that the method is fast, accurate, and effective in removing the regional back-
ground and does not require information regarding body shape. The results of the real data
cases match well with the results obtained from other published methods.
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INTRODUCTION

The self-potential or spontaneous polarization
technique is one of the most passive geophysical
methods, measuring the natural potential difference
(DV) in the subsurface that results from electro-
chemical, thermoelectric, and electrokinetic fields
within the earth�s interior (Biswas 2017; Essa 2020).
There are many geophysical problems that can be
solved by using the self-potential method, such as
groundwater exploration, mining, geothermal
investigation, archeology, paleo-shear zone detec-
tion, and cavity detection (Corwin and Hoover 1979;
Wynn and Sherwood 1984; Sundararajan et al. 1998;
Vichabian and Morgan 2002; Drahor 2004; Minsley
et al. 2008; Fernandez-Martinez et al. 2010; Meha-

nee 2014, 2015; Essa and Elhussein 2017; Essa 2019,
2020). Since non-unique and ill-posed problems are
encountered in the interpretation of self-potential
anomalies caused by different mineralized sources,
different inversion modeling techniques have been
developed to handle these problems (Zhdanov 2002;
Tarantola 2005; Biswas 2013; Biswas and Sharma
2014b; Mehanee and Essa 2015; Wang 2016; Essa
2020). Inversion modeling techniques have been
based upon the approximation of the different geo-
electric sources with simple geometric structures
(horizontal cylinder, vertical cylinder, sphere, and 2-
D inclined sheet) to determine the structure
parameters (Stoll et al. 1995; El-Kaliouby and Al-
Garni 2009; Essa 2011, 2019; Dmitriev 2012; Sharma
and Biswas 2013; Roudsari and Beitollahi 2013;
Mehanee 2014; Essa and Elhussein 2017; Kawada
and Kasaya 2018). These techniques include the use
of nomograms and the characteristic point method
(Paul 1965; Bhattacharya and Roy 1981; Murthy and
Haricharan 1985; Sundararajan et al. 1990; Fedi and
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Abbas 2013), window curves method (Abdelrahman
et al. 2006b, 2009a; Essa 2007), linear inversion
modeling (Asfahani and Tlas 2016), non-linear
inversion modeling (Asfahani and Tlas 2005;
Abdelrahman et al. 2006a; Essa et al. 2008), hori-
zontal gradient method (Abdelrahman et al. 2009b;
Essa and Elhussein 2017), and neural networks (El-
Kaliouby and Al-Garni 2009). Many of the previous
methods require a priori information about the
model�s parameters and a suitable range for
searching for the best solution for each parameter.
The most recent techniques include simulated
annealing (Göktürkler and Balkaya 2012), very fast
simulated annealing (Sharma and Biswas 2013; Bis-
was and Sharma 2015; Biswas 2016), genetic algo-
rithm (Göktürkler and Balkaya 2012), and particle
swarm optimization (PSO) (Santos 2010; Göktürkler
and Balkaya 2012; Essa 2019, 2020; Essa and
Elhussein 2020).

In this study, a new technique based upon glo-
bal PSO was developed to invert self-potential da-
tasets for different mineralized sources (horizontal
cylinder, vertical cylinder, sphere, and 2-D inclined
sheet) to calculate the different models parameters,
namely, amplitude coefficient (Ac), depth (h),
polarization angle (a), inclination angle (b), half-
width (d), shape factor (Sf), and source origin (w).
The technique used here applies PSO to the first
horizontal gradient anomalies of the self-potential
data to remove the effect of the regional back-
ground. The proposed method was applied to five
different synthetic models with and without 15%
random noise and to three real cases from Canada
and India.

METHODOLOGY

The measured self-potential anomaly is com-
posed of the residual anomaly due to different
mineralized sources (horizontal cylinder, vertical
cylinder, sphere, and 2-D inclined sheet) and the
unwanted regional anomaly, which is the measured
anomaly (Essa 2020), thus:

DV xið Þ ¼ Vres xi; h; að Þ þ Z xið Þ; ð1Þ
where DV xið Þ is the total measured self-poten-

tial anomaly, Vres xi; h; að Þ is the residual anomaly
caused by different sources, and Z xið Þ is the regional
anomaly. In this study, the PSO algorithm was ap-
plied to invert the residual anomalies, which were

separated from the total anomalies using the first
horizontal gradient.

Forward Modeling of Different Structures
and the First Horizontal Gradient

The self-potential anomaly ( VresÞ for different
simple geometric structures (Figs. 1a, b, c) at any
point ( xi) is given by (Bhattacharya and Roy 1981;
Essa 2019):

Vres xi; h; að Þ ¼ Ac
xi � wð Þ cos a� h sin a

xi � wð Þ2 þ h2
� �Sf

; i

¼ 0; 1; 2; 3; . . . ;M ð2Þ

where M is number of data points, Sf is shape
factor (dimensionless), h is depth of structure (m),

Ac is the amplitude coefficient, ðmV m2Sf�1Þ, w is
position of source body (m), and a is polarization
angle (degree). The Sf is dependent on the shape of
the structure and is equal to 1.5 for a sphere-like
structure, 1 for a horizontal cylinder-like structure,
and 0.5 for a semi-infinite vertical cylinder.

The self-potential anomaly ( VresÞ caused by a
2-D inclined sheet (Fig. 1d) at any location ðxiÞ on a
profile perpendicular to the strike of this sheet is
defined as (Murthy and Haricharan 1985; Sun-
dararajan et al. 1998; Sharma and Biswas 2013; Essa
2020):

Vres xi; h; b;dð Þ ¼ Acln
xi � wð Þ � d cos bð Þ2 þ h� d sin bð Þ2

xi � wð Þ þ d cos bð Þ2 þ hþ d sin bð Þ2

" #
;

i ¼ 0; 1; 2; 3; . . . ;M

ð3Þ
where Ac is the amplitude coefficient, ðmVÞ, d is

half-width, and b is sheet inclination angle.
To remove regional background, the first hori-

zontal gradient was applied to Eq. (1) by using two
different observation locations ðxi þ s and xi � sÞ
along the anomaly profile. The first horizontal gra-
dient anomaly can be defined as follows:

DVx xi; sð Þ ¼ DV xi þ sð Þ � DV xi � sð Þ
2s

; ð4Þ

where s = 1, 2, 3, …, N spacing units and is
called window length or graticule spacing. The
inversion algorithm was then applied to Eq. (4) to
estimate the different source parameters.
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Inversion Algorithm

The inversion algorithm applied in this study is
based on the global PSO technique, which was
proposed by Eberhart and Kennedy (1995). The
method was developed for utilization in the solution
of different geophysical problems (Sen and Stoffa
2013; Singh and Biswas 2016; Essa and Elhussein
2018, 2020; Essa 2019). The PSO technique is
stochastic and, in this context, it can be used to
represent a group of birds or school of fish looking
for food. In this study, the models or particles rep-
resent the birds. Each model has a position and
velocity vector, with the position vector representing
the parameter value. A swarm is initiated with ran-
dom models using the ranges of different variables,
followed by updating the location and velocity of the
different particles using the following formulas:

xkþ1
i ¼ xki þ Vkþ1

i ; ð5Þ

where xki is the ith particle position at the kth

iteration, and Vk
i is the ith particle velocity at kth

iteration and is obtained as follows:

Vkþ1
i ¼ c3V

k
i þ c1rand1 Tbest � xkþ1

i

� �
þ c2rand2 Jbest � xkþ1

i

� �
; ð6Þ

where rand1 and rand2 are any two random
values in the range [0,1], c1 and c2 are cognitive and
social coefficients, c3 is the inertial factor that con-
trols the velocity of the model and takes on a value
of< 1, Tbest is the best position reached by an
individual model, and Jbest is the global best position
achieved by any model in the swarm. The c1 and c2
are usually equal to two (Parsopoulos and Vrahatis
2002; Singh and Biswas 2016; Essa 2019; Essa and
Elhussein 2020). Then, the best solution reached by
each individual model ðTbestÞ and the global best
solution reached ðJbestÞ are stored in memory, and
the location and velocity of the models are updated
during the iteration process. The iteration process
terminates when convergence is reached (Venter
and Sobieski 2002; Essa and Elhussein 2020).

The global best solution ðJbestÞ is reached when
the following objective function ðwobjÞ is optimized:

wobj ¼
1

M

XM

i¼1

½VO
resi xið Þ � Vc

resi xið Þ�2; ð7Þ

where M is number of data points, VO
resi is the

observed self-potential anomaly, and Vc
resi is the

calculated self-potential anomaly.
The different source parameters Ac; h; a;ð

b; d; Sf; and wÞ were estimated by minimizing

w

h

Ac
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Fig. 1. Geometric structures for different simple bodies: a vertical cylinder, b horizontal cylinder, c sphere, and d

2-D inclined sheet.
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Eq. (7) for the different s (window length) values
used in Eq. (4). Then, the average value ( E) of the
estimated parameters for the different s values was
calculated. Finally, the root-mean-square (RMS)
error was calculated as follows:

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

i¼1

½VO
resi xið Þ � Vc

resi xið Þ�2
vuut : ð8Þ

(a)

Fig. 2. a Synthetic noise-free self-potential anomaly from the vertical cylinder model with

the following parameters: Ac = 250 mV, h = 10 m, a = 55�, Sf = 0.5, w = 0 m, and profile

length = 120 m. The estimated anomaly is also presented. b First horizontal gradient

anomalies of the self-potential anomaly in a. c Self-potential anomaly in a with 15%

random noise and the estimated anomaly. d First horizontal gradient anomalies of the noisy

self-potential anomaly in c.
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(c)

(b)

Fig. 2. continued.
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Table 1. Numerical results of the global PSO inversion algorithm applied to first horizontal gradient anomalies from the vertical cylinder

model (Ac = 250 mV, h = 10 m, a = 55�, Sf = 0.5, w = 0 m, profile length = 120 m), with and without 15% random noise

Parameters Used

range

s = 2 m s = 3 m s = 4 m s = 5 m s = 6 m s = 7 m E Error

(%)

RMS error

(mV)

Results (without noise)

Ac (mV) 50–700 250 250 250 250 250 250 250 ± 0 0 0

h (m) 3–30 10 10 10 10 10 10 10 ± 0 0

a (degree) 20–80 55 55 55 55 55 55 55 ± 0 0

Sf (dimension-

less)

0.2–2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ± 0 0

w (m) � 10–10 0 0 0 0 0 0 0 ± 0 –

Results (using 15% random noise)

Ac (mV) 50–700 255.40 253.80 257.00 247.70 258.90 261.30 255.68 ± 4.71 2.27 5.82

h (m) 3–30 10.30 10.00 10.30 9.90 10.00 10.30 10.13 ± 0.19 1.30

a (degree) 20–80 58.22 57.00 54.00 56.06 55.13 54.09 55.75 ± 1.67 1.36

Sf (dimension-

less)

0.2–2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 ± 0.00 0.00

w (m) � 10–10 � 0.41 � 0.34 0.07 � 0.36 � 0.06 0.10 � 0.17 ± 0.23 –

(d)

Fig. 2. continued.
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SYNTHETIC MODELS

In these models, the proposed method was ap-
plied to five synthetic examples representing differ-

ent sources (semi-infinite vertical cylinder,
horizontal cylinder, sphere, and 2-D inclined sheet)
contaminated with and without 15% random noise.
One of these examples includes a regional back-
ground to determine the effect of the background on
the proposed method.

(a)

Fig. 3. a Synthetic noise-free self-potential anomaly from the horizontal cylinder model

with the following parameters: Ac =1800 mVÆm, h = 7 m, a = 45�, Sf = 1, w = 0 m, and

profile length = 120 m. The estimated anomaly is also presented. b First horizontal gradient

anomalies of the self-potential anomaly in a. c Self-potential anomaly in a with 15%

random noise and the estimated anomaly. d First horizontal gradient anomalies of the noisy

self-potential anomaly in c.
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(b)

(c)

Fig. 3. continued.
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Table 2. Numerical results of the global PSO inversion algorithm applied to first horizontal gradient anomalies from the horizontal cylinder

model (Ac = 1800 mV m, h = 7 m, a = 45�, Sf = 1, w = 0 m, profile length = 120 m), with and without 15% random noise

Parameters Used

range

s = 2 m s = 3 m s = 4 m s = 5 m s = 6 m s = 7 m E Error

(%)

RMS error

(mV)

Results (without noise)

Ac (mV.m) 800–2800 1800 1800 1800 1800 1800 1800 1800 ± 0 0 0

h (m) 3–30 7 7 7 7 7 7 7 ± 0 0

a (degree) 20–80 45 45 45 45 45 45 45 ± 0 0

Sf (dimen-

sionless)

0.2–2 1 1 1 1 1 1 1 ± 0 0

w (m) � 10–10 0 0 0 0 0 0 0 ± 0 –

Results (with 15% random noise)

Ac (mV.m) 800–2800 1762.30 1685.70 1858.20 1784.90 1697.50 1770.60 1759.87 ± 62.94 2.23 2.85

h (m) 3–30 7.10 7.00 6.80 7.00 7.00 6.90 6.97 ± 0.10 0.43

a (degree) 20–80 45.50 44.15 45.30 45.26 44.57 45.53 45.05 ± 0.56 0.11

Sf (dimension-

less)

0.2–2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ± 0.00 0.00

w (m) � 10–10 � 0.06 0.09 0.05 � 0.03 0.00 � 0.04 0.00 ± 0.06 –

(d)

Fig. 3. continued.
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Semi-Infinite Vertical Cylinder Example

A pure self-potential anomaly from a semi-in-
finite vertical cylinder was calculated using profile
length = 120 m, Ac = 250 mV, h = 10 m, a = 55�, Sf

= 0.5, and w = 0 m (Fig. 2a). The first horizontal
gradient was then applied to the self-potential
anomaly profile using different s values (s = 2, 3, 4,
5, 6, and 7 m) (Fig. 2b), and the global PSO tech-
nique was applied to these gradient anomalies to
estimate the vertical cylinder model parameters

(a)

Fig. 4. a Synthetic noise-free self-potential anomaly from the sphere model with the

following parameters: Ac = 2500 mVÆm2, h = 5 m, a = 35�, Sf = 1.5, w = 0 m, and profile

length = 120 m. The estimated anomaly is also presented. b First horizontal gradient

anomalies of the self-potential anomaly in a. c Self-potential anomaly mentioned in a with

15% random noise and the estimated anomaly. d First horizontal gradient anomalies of the

noisy self-potential anomaly in c.
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(b)

(c)

Fig. 4. continued.
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(d)

Fig. 4. continued.

Table 3. Numerical results of the global PSO inversion algorithm applied to first horizontal gradient anomalies from the sphere model

(Ac = 2500 mV m2, h = 5 m, a = 35�, Sf = 1.5, w = 0 m, profile length = 120 m), with and without 15% random noise

Parameters Used

range

s = 2 m s = 3 m s = 4 m s = 5 m s = 6 m s = 7 m E Error

(%)

RMS error

(mV)

Results (without noise)

Ac (mV m2) 1000–

3500

2500 2500 2500 2500 2500 2500 2500 ± 0 0 0

h (m) 2–30 5 5 5 5 5 5 5 ± 0 0

a (degree) 20–70 35 35 35 35 35 35 35 ± 0 0

Sf (dimen-

sionless)

0.2–2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ± 0 0

w (m) � 10–10 0 0 0 0 0 0 0 ± 0 –

Results (with 15% random noise)

Ac (mV m2) 1000–

3500

2578.00 2486.40 2525.70 2545.90 2497.10 2537.00 2528.35 ± 33.44 1.13 2.19

h (m) 2–30 4.80 5.10 5.50 5.00 5.20 5.10 5.12 ± 0.23 2.40

a (degree) 20–70 35.05 35.50 33.70 35.28 34.80 33.40 34.62 ± 0.87 1.09

Sf (dimen-

sionless)

0.2–2 1.40 1.50 1.50 1.50 1.60 1.50 1.50 ± 0.06 0.00

w (m) � 10–10 � 0.04 � 0.01 0.08 � 0.02 � 0.12 � 0.06 � 0.03 ± 0.07 –
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using different ranges per parameter (Table 1). Ta-
ble 1 shows the estimated parameters
Ac; h; a; Sf; and wð Þ, where the errors of
Ac; h; a; and Sf were 0% and the RMS error was
0 mV. The correlation between the noise-free
anomaly and estimated anomaly is shown in Fig. 2a.

To test the efficiency of the proposed method in
the case of noisy data, the previous synthetic model
was contaminated with 15% random noise (Fig. 2c).
The first horizontal gradient anomalies were calcu-
lated using the same previous window lengths (s = 2,
3, 4, 5, 6, and 7 m) (Fig. 2d); then, by applying thePSO

(a)

Fig. 5. a Noise-free composite synthetic self-potential anomaly of a 2-D inclined sheet

model with the following parameters; Ac = 200 mV, h = 12 m, b = 50�, d = 6 m, w = 10 m,

profile length = 120 m, and deep-seated first-order regional anomaly ð3xi � 30Þ. The

estimated anomaly is also presented. b First horizontal gradient anomalies of the composite

self-potential anomaly in a. c Composite self-potential anomaly mentioned in a with 15%

random noise and the estimated anomaly. d First horizontal gradient anomalies of the noisy

composite self-potential anomaly in c.
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(b)

(c)

Fig. 5. continued.
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method to the gradient anomalies, the different
parameters were estimated (Table 1). Table 1 shows
the estimated parameters ( Ac ¼ 255:68� 4:71 mV;

h ¼ 10:13� 0:19 m; a ¼ 55:75� 1:67�; Sf ¼ 0:5� 0;

and w ¼ � 0:17� 0:23 mÞ, where the errors of
Ac; h; a; and Sf were 2.27%, 1.30%, 1.36%, and 0%

(d)

Fig. 5. continued.

Table 4. Numerical results of the global PSO inversion algorithm applied to first horizontal gradient anomalies from the composite

anomaly of 2-D inclined sheet (Ac = 200 mV, h = 12 m, b = 50�, d = 6 m, w = 10 m, profile length = 120 m) and deep-seated first-order

regional anomaly ð3xi � 30Þ, with and without 15% random noise

Parameters Used

range

s = 2 m s = 3 m s = 4 m s = 5 m s = 6 m s = 7 m E Error

(%)

RMS error

(mV)

Results (without noise)

Ac (mV) 50–750 200 200 200 200 200 200 200 ± 0 0 0

h (m) 2–30 12 12 12 12 12 12 12 ± 0 0

b (degree) 20–80 50 50 50 50 50 50 50 ± 0 0

d (m) 2–20 6 6 6 6 6 6 6 ± 0 0

w (m) � 10–30 10 10 10 10 10 10 10 ± 0 0

Results (with 15% random noise)

Ac (mV) 50–750 218.55 198.96 173.82 202.21 213.20 205.93 202.11 ± 15.61 1.06 6.13

h (m) 2–30 11.80 12.20 12.00 12.10 12.00 12.10 12.03 ± 0.14 0.25

b (degree) 20–80 50.51 48.07 46.41 49.87 50.50 50.49 49.31 ± 1.70 1.38

d (m) 2–20 5.40 6.20 7.00 6.00 5.70 5.90 6.03 ± 0.55 0.50

w (m) � 10–30 10.35 9.78 9.17 9.86 10.17 10.08 9.90 ± 0.41 1.00
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(a)

Fig. 6. a Noise-free composite multi-model anomaly of the sphere (Ac = 4500 mVÆm2,

h = 3 m, a = 60�, Sf = 1.5 m, and w = 0 m). and horizontal cylinder (Ac = 3000 mVÆm,

h = 9 m, a = 30�, Sf = 1 m, and w = 30 m). using a profile length of 120 m. The estimated

anomaly is also presented. b First horizontal gradient anomalies of the composite self-

potential anomaly in a. c Composite self-potential anomaly mentioned in a with 15%

random noise and the estimated anomaly. d First horizontal gradient anomalies of the noisy

composite self-potential anomaly in c.
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(b)

(c)

Fig. 6. continued.
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respectively, and the RMS error was 5.82 mV. Fig-
ure 2c compares the noisy and calculated anomalies.

Horizontal Cylinder Example

A noise-free self-potential anomaly from a
horizontal cylinder was calculated using: profile
length = 120 m, Ac = 1800 mV m, h = 7 m, a = 45�,
Sf = 1, and w = 0 m (Fig. 3a). The first horizontal
gradient was then applied to the self-potential
anomaly profile using different s values (s = 2, 3, 4,
5, 6, and 7 m) (Fig. 3b); then, the global PSO tech-
nique was applied to these gradient anomalies to
estimate the horizontal cylinder model parameters
using different ranges per parameter (Table 2). Ta-
ble 2 shows the estimated parameters Ac; h; a;ð
Sf; and wÞ, where the errors of Ac; h; a; and Sf were
0% and the RMS error was 0 mV.

To apply the proposed method to noisy data, as
most real data include noise, the previous synthetic

model was contaminated with 15% random noise
(Fig. 3c). The first horizontal gradient anomalies
were calculated using the same previous window
lengths (s = 2, 3, 4, 5, 6, and 7 m) (Fig. 3d); then, by
applying the PSO method to the gradient anomalies,
the different parameters were estimated (Table 2).
Table 2 shows the estimated parameters ( Ac ¼
1759:87� 62:94 mV m; h ¼ 6:97� 0:10 m; a ¼
45:05� 0:56�; Sf ¼ 1� 0; and w ¼ 0:00� 0:06 mÞ,
where the errors of Ac; h; a; and Sf were 2.23%,

0.43%, 0.11%, and 0%, respectively, and the RMS
error was 2.85 mV. Figure 3c compares the noisy
and calculated anomalies.

Sphere Example

A pure self-potential anomaly from a sphere
was calculated using: profile length = 120 m, Ac =
2500 mV m2, h = 5 m, a = 35�, Sf = 1.5, and
w = 0 m (Fig. 4a). The first horizontal gradient was

(d)

Fig. 6. continued.
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then applied to the self-potential anomaly profile
using different s values (s = 2, 3, 4, 5, 6, and 7 m)
(Fig. 4b); then, the global PSO technique was ap-
plied to these gradient anomalies to estimate the
sphere model parameters using different ranges per
parameter (Table 3). Table 3 shows the estimated
parameters Ac; h; a; Sf; and wð Þ, where the errors of
Ac; h; a; and Sf were 0% and the RMS error was
0 mV.

To examine the effect of noisy data on the
proposed method, the previous synthetic model was
contaminated with 15% random noise (Fig. 4c). The
first horizontal gradient anomalies were calculated
using the same previous window lengths (s = 2, 3, 4,
5, 6, and 7 m) (Fig. 4d); then, by applying the PSO
method to the gradient anomalies, the different

parameters were estimated (Table 3). Table 3 shows

the estimated parameters ( Ac ¼ 2528:35�
33:44 mV m2; h ¼ 5:12� 0:23 m; a ¼ 34:62�
0:87o; Sf ¼ 1:5� 0:06; and w ¼ �0:03� 0:07 mÞ,
where the errors of Ac; h; a; and Sf were 1.13%,
2.4%, 1.09%, and 0%, respectively, and the RMS
error was 2.19 mV. Figure 4c compared the noisy
and calculated anomalies.

2-D Inclined Sheet Example with Regional
Background

The efficiency of our method in the presence of
a regional background was tested. To do so, a noise-
free self-potential anomaly from a 2-D inclined

Table 5. Results of the global PSO inversion algorithm applied to first horizontal gradient anomalies from the composite multi-model

anomaly of sphere (Ac = 4500 mVÆm2, h = 3 m, a = 60�, Sf = 1.5 m, w = 0 m, profile length = 120 m) and horizontal cylinder

(Ac = 3000 mV m, h = 9 m, a = 30�, Sf = 1 m, w = 30 m, profile length = 120 m), with and without 15% random noise

Model Parameters Used

ranges

s = 2 m s = 3 m s = 4 m s = 5 m s = 6 m s = 7 m E Error

(%)

RMS er-

ror (mV)

Results (without noise)

Sphere Ac (mV m2) 2000–

6000

4550.50 4500.00 4482.20 4565.80 4530.70 4510.00 4523.20 ± 31.65 0.52 14.43

h (m) 1–25 3.10 3.00 2.90 3.00 3.10 3.00 3.02 ± 0.08 0.67

a (�) 20–80 59.00 59.06 60.00 58.52 60.00 59.61 59.37 ± 0.60 1.05

Sf (dimension-

less)

0.2–2 1.50 1.60 1.50 1.50 1.60 1.50 1.53 ± 0.05 2.00

w (m) � 10–

10

0.04 0.01 � 0.02 0.03 0.00 0.02 0.013 ± 0.02 –

Horizontal

cylinder

Ac (mV m) 1500–

5000

3020.40 2979.90 3000.00 3025.70 3000.00 3050.40 3012.73 ± 24.69 0.42

h (m) 1–25 9.00 9.00 9.20 9.00 9.30 9.00 9.08 ± 0.13 0.8

a (�) 20–80 30.07 30.00 30.09 30.00 30.00 31.00 30.19 ± 0.40 0.63

Sf (dimension-

less)

0.2–2 1.00 1.00 1.00 1.10 1.00 1.00 1.02 ± 0.04 2.00

w (m) 10–50 30.00 30.00 30.05 30.00 30.00 30.06 30.02 ± 0.03 0.07

Results (with 15% random noise)

Sphere Ac (mV m2) 2000–

6000

4474.20 4495.80 4550.10 4573.40 4509.60 4599.30 4533.73 ± 48.39 0.75 17.85

h (m) 1–25 2.90 3.00 3.30 3.00 3.10 2.80 3.02 ± 0.17 0.67

a (�) 20–80 57.28 62.90 58.94 60.00 62.02 63.23 60.73 ± 2.38 1.22

Sf (dimension-

less)

0.2–2 1.50 1.60 1.40 1.50 1.50 1.60 1.52 ± 0.08 1.33

w (m) � 10–

10

� 0.01 � 0.27 0.08 0.29 � 0.21 � 0.12 � 0.04 ± 0.21 –

Horizontal

cylinder

Ac (mV m) 1500–

5000

3010.40 2975.60 2991.30 3079.20 3091.40 3037.80 3030.95 ± 47.09 1.03

h (m) 1–25 8.90 8.60 8.80 9.20 8.90 9.30 8.95 ± 0.26 0.56

a (�) 20–80 28.90 32.15 29.40 28.79 31.17 27.91 29.72 ± 1.61 0.93

Sf (dimension-

less)

0.2–2 1.10 0.90 1.10 1.00 1.00 1.10 1.03 ± 0.08 3.00

w (m) 10–50 30.24 29.58 30.15 30.35 30.33 30.17 30.14 ± 0.28 0.47
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sheet (Ac = 200 mV, h = 12 m, b = 50�, d = 6 m, and
w = 10 m) was added to a deep-seated first-order
regional anomaly ð3xi � 30Þ (Fig. 5a) with a profile
length of 120 m. The composite anomaly was ob-
tained as follows:

DV xi; h; b; dð Þ

¼ 200 ln
xi � 10ð Þ � 6 cos 50�ð Þ2 þ 12� 6 sin 50�ð Þ2

xi � 10ð Þ þ 6 cosbð Þ2 þ 12þ 6 sin 50�ð Þ2

" #

þ 3xi � 30ð Þ; i ¼ 0; 1; 2; 3; . . . ;M

ð9Þ

(a)

Fig. 7. Senneterre, Quebec, Canada: a Observed and the estimated self-potential anomaly

profile for the multi-source field example of sulfide deposit, and the geometric structure of

the three different sources. b First horizontal gradient anomalies of the observed self-

potential anomaly in a.
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Table 6. Results of the global PSO inversion algorithm applied to first horizontal gradient anomalies for the multi- source self-potential

anomaly of sulfide deposit, Senneterre, Quebec, Canada

Model Parameters Used

ranges

s = 2 m s = 3 m s = 4 m s = 5 m s = 6 m s = 7 m E RMS error

(mV)

First body

(anomaly)

Ac (mV) 100–

1500

205.70 201.40 195.10 197.00 210.80 203.90 202.32 ± 5.78 24.01

h (m) 0.5–80 8.10 7.80 8.00 7.30 8.40 8.20 7.97 ± 0.38

a (�) 0–180 67.00 63.00 67.00 61.00 65.00 62.00 64.17 ± 2.56

Sf (dimension-

less)

0.1–2 0.60 0.50 0.50 0.40 0.60 0.50 0.52 ± 0.08

w (m) 110–180 155.31 149.57 150.46 156.57 148.91 152.32 152.19 ± 3.15

Second body

(anomaly)

Ac (mV) 100–

1500

581.30 576.40 580.70 578.10 582.50 572.80 578.63 ± 3.62

h (m) 0.5–80 3.20 3.40 3.60 2.90 3.80 3.50 3.40 ± 0.32

a (�) 15–180 95.24 96.51 92.71 98.12 94.82 106.36 97.29 ± 4.79

Sf (dimension-

less)

0.1–2 0.40 0.50 0.50 0.60 0.50 0.50 0.50 ± 0.06

w (m) 135–215 173.54 175.82 179.41 171.93 174.32 177.65 175.45 ± 2.76

Third body

(anomaly)

Ac (mV m) 100–

4000

2335.60 2315.70 2289.30 2342.80 2297.10 2307.60 2314.68 ± 21.13

h (m) 0.5–40 7.40 7.80 8.40 7.60 7.90 7.70 7.80 ± 0.34

a (�) 0–180 149.17 141.73 143.25 137.41 147.80 151.30 145.11 ± 5.22

Sf (dimension-

less)

0.1–2 0.70 0.90 0.80 1.00 1.00 1.10 0.92 ± 0.15

w (m) 210–265 245.21 247.37 243.81 248.54 241.21 246.19 245.39 ± 2.63

(b)

Fig. 7. continued.
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The first horizontal gradient was then applied to
the self-potential composite anomaly profile using
different s values (window lengths) (s = 2, 3, 4, 5, 6,
and 7 m) (Fig. 5b); then, the global PSO technique
was applied to these gradient anomalies to estimate
the sheet model parameters using different ranges
per parameter (Table 4). Table 4 shows the esti-
mated parameters Ac; h; b; d; and wð Þ, where the er-
rors of Ac; h; b; d; and w were 0% and the RMS error
was 0 mV. Table 4 shows that the proposed tech-
nique gives the best results of the model parameters,
even if the model was contaminated with regional
background.

To apply the proposed method to noisy data,
15% random noise was added to the previous syn-
thetic model (Fig. 5c). The first horizontal gradient
anomalies were calculated using the same previous
window lengths (s = 2, 3, 4, 5, 6, and 7 m) (Fig. 5d);
then, by applying the PSO method to the gradient
anomalies, the different parameters were estimated
(Table 4). Table 4 shows the estimated parameters (
Ac ¼ 202:11� 15:61 mV; h ¼ 12:03� 0:14 m; b ¼
49:31 � 1:70�; d ¼ 6:03� 0:55 m; and w ¼ 9:90 �
0:41 mÞ, where the errors of Ac; h; b; d; and w were
1.06%, 0.25%, 1.38%, 0.5%and 1%, respectively, and

the RMS error was 6.13 mV. Figure 5c compares the
noisy and calculated anomalies.

Multi-model

The applicability and the efficiency of the used
technique in estimating the multiple model param-
eters were tested. To do so, the method was applied
to a composite anomaly composed of a sphere
model with the following parameters: Sf = 1.5,
Ac = 4500 mV m2, h = 3 m, a = 60�, and
w = 0 m—and a horizontal cylinder model with the
following parameters: Sf = 1, Ac = 3000 mV m,
h = 9 m, a = 30�, and w = 30 m (Fig. 6a). The profile
length was 120 m, and the composite anomaly was
obtained as:

Vcomp xi; h; að Þ ¼ 4500
xi cos 60

� � 3 sin 60�

xi2 þ 9ð Þ1:5

þ 3000
xi � 30ð Þ cos 30� � 9 sin 30�

xi � 30ð Þ2 þ 81
� � ; i

¼ 0; 1; 2; 3; . . . ;M

ð10Þ

Table 7. Comparison of results obtained from different methods for the self-potential anomaly of sulfide deposit, Senneterre, Quebec,

Canada

Model Methods

Parameters Santos (2010) and Göktürkler and Balkaya

(2012) PSO method

Mehanee (2014)

method

Biswas (2017)

method

Present method

First body

(anomaly)

Ac (mV) 454.94 219 to 224 189.5 ± 0.9 202.32 ± 5.78

h (m) 5.6 9.7 to 10.2 7.6 ± 0.1 7.97 ± 0.38

a (�) 78.32 � 114 to � 117 61.0 ± 0.2 64.17 ± 2.56

Sf (dimension-

less)

0.48 0.5 0.50 0.52 ± 0.08

w (m) 167.53 – 145.5 ± 0.1 152.19 ± 3.15

Second body

(anomaly)

Ac (mV) 2378.74 556 586.6 ± 1.8 578.63 ± 3.62

h (m) 8.21 4 2.9 ± 0.0 3.40 ± 0.32

a (�) 150.51 � 83 93.8 ± 0.1 97.29 ± 4.79

Sf (dimension-

less)

1.1 0.5 0.50 0.50 ± 0.06

w (m) 248.67 – 170.5 ± 0.0 175.45 ± 2.76

Third body

(anomaly)

Ac (mV m) – – 2574.8 ± 10.2 2314.68 ± 21.13

h (m) – – 8.75 ± 0.0 7.80 ± 0.34

a (�) – – 146.9 ± 0.3 145.11 ± 5.22

Sf (dimension-

less)

– – 1.0 0.92 ± 0.15

w (m) – – 241.6 ± 0.1 245.39 ± 2.63
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The first horizontal gradient was then applied to
the composite anomaly profile using different s val-
ues (s = 2, 3, 4, 5, 6, and 7 m) (Fig. 6b); then, the
global PSO technique was applied to these gradient
anomalies to estimate the multiple model parame-
ters using different ranges for each parameter (Ta-
ble 5). Table 5 shows the estimated parameters: (

Ac ¼ 4523:2� 31:65 mV m2; h ¼ 3:02� 0:08 m; a ¼

59:37 �0:60�; Sf ¼ 1:53� 0:05; and w ¼ 0:013�
0:02 mÞ for the sphere model and Ac ¼ 3012:73�
24:69 mV m; h ¼ 9:08� 0:13 m; a ¼ 30:19�
0:40�; Sf ¼ 1:02� 0:04; and w ¼ 30:02� 0:03 m for
the horizontal cylinder model. The errors of
Ac; h; a; and Sf were 0.52%, 0.67%, 1.05%, and 2%,
respectively, for the sphere model, whereas for the
horizontal cylinder model, the errors of

(a)

Fig. 8. Cuddapah basin, India: a Geological map (modified after Plumb 1981; Saha and

Tripathy 2012). b Observed and estimated self-potential anomaly profile for the Kalava

fault. c First horizontal gradient anomalies of the observed self-potential anomaly in b.
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(b)

Fig. 8. continued.
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(c)

Fig. 8. continued.

Table 8. Results of the global PSO inversion algorithm applied to first horizontal gradient anomalies for the self-potential anomaly of

Kalava fault, Cuddapah zone, India

Parameters Used ranges s = 0.5 m s = 0.75 m s = 1 m s = 1.25 m s = 1.5 m s = 1.75 m E RMS error (mV)

Ac (mV) 10–500 78.20 82.30 72.51 74.32 80.49 73.15 76.83 ± 4.09 4.14

h (m) 0.5–80 8.70 8.20 8.00 8.50 8.30 8.80 8.42 ± 0.31

b (�) 15–180 96.79 94.36 99.84 102.24 98.87 105.17 99.55 ± 3.85

d (m) 0.5–35 4.70 4.20 4.90 4.50 4.10 4.30 4.45 ± 0.31

w (m) � 10–10 0.50 0.70 0.40 0.67 0.92 0.84 0.67 ± 0.20

Table 9. Comparison of results obtained from different methods for the self-potential anomaly of Kalava fault, Cuddapah zone, India

Parameters Methods

Murthy

et al. (2005)

method

Mehanee

et al.

(2011)

El-Kaliouby and

Al-Garani (2009)

method

Using Santos (2010) and

Göktürkler and Balkaya

(2012) PSO method

Mehanee

(2014)

method

Using Biswas and

Sharma (2014a)

method

Present

method

Ac (mV) – – 68.29 67 617 65.84 76.83 ± 4.09

h (m) 9.38 3.65 7.2 7.9 5 7.14 8.42 ± 0.31

b (�) 80.76 – 78.72 83.02 � 98 86.21 99.55 ± 3.85

d (m) 3.96 2.13 3.15 4.1 – 4.18 4.45 ± 0.31

w (m) � 0.4 – � 0.9 � 0.81 – � 0.76 0.67 ± 0.20
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Ac; h; a; Sf; andw were 0.42%, 0.8%, 0.63%, 2%, and
0.07%, respectively, and the RMS error of the
multiple model anomaly was 14.43 mV. Figure 6a
shows the correlation between the multiple model
anomaly and the estimated anomaly.

To apply the proposed method to noisy data,
15% random noise was added to the previous com-
posite model (Fig. 6c). The first horizontal gradient
anomalies were calculated using the same previous
window lengths (s = 2, 3, 4, 5, 6, and 7 m) (Fig. 6d);

then, by applying the PSO method to the gradient
anomalies, the different parameters were estimated
(Table 5). Table 5 shows the estimated parameters:

(Ac ¼ 4533:73� 48:39 mVm2;h¼ 3:02� 0:17 m;a¼
60:73� 2:38�; Sf ¼ 1:52� 0:08;and w¼�0:04�
0:21 mÞ for the sphere model and Ac ¼ 3030:95�
47:09 mVm;h¼ 8:95� 0:26 m; a¼ 29:72� 1:61�;
Sf ¼ 1:03� 0:08;andw¼ 30:14� 0:28 mÞ for the
horizontal cylinder model. The errors of
Ac;h;a;and Sf were 0.75%, 0.67%, 1.22%, and

(a)

Fig. 9. Surda zone, India: a Observed and estimated self-potential anomaly profile for the

copper sulfide deposit. b First horizontal gradient anomalies of the observed self-potential

anomaly in a.
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(b)

Fig. 9. continued.

Table 10. Results of the global PSO inversion algorithm applied to first horizontal gradient anomalies for the self-potential anomaly of

copper sulfide deposit, Surda zone, India

Parameters Used ranges s = 2 m s = 3 m s = 4 m s = 5 m s = 6 m s = 7 m E RMS error (mV)

Ac (mV) 10–600 94.38 98.14 103.25 96.51 97.20 95.18 97.44 ± 3.15 5.86

h (m) 2–80 31.84 32.02 31.67 32.21 32.74 32.56 32.17 ± 0.41

b (�) 10–180 48.97 48.84 49.24 49.45 49.68 49.79 49.33 ± 0.38

d (m) 5–45 29.12 28.94 28.87 28.73 28.82 29.35 28.97 ± 0.23

w (m) 150–185 152.32 152.56 153.01 153.10 153.18 153.45 152.94 ± 0.42

Table 11. Comparison of results obtained from different methods for the self-potential anomaly of copper sulfide Deposit, Surda Zone,

India

Parameters Methods

Murthy et al. (2005)

method

El-Kaliouby and Al-Garani

(2009) method

Santos (2010)

method

Biswas and Sharma (2014a)

method

Present

method

Ac (mV) – 130.86 98.38 107.8 ± 3.3 97.44 ± 3.15

h (m) 26.52 27.78 31.40 31.1 ± 0.2 32.17 ± 0.41

b (�) 57.63 50.96 45.98 47.5 ± 0.4 49.33 ± 0.38

d (m) 19.81 19.51 28.8 26.1 ± 0.8 28.97 ± 0.23

w (m) 165.84 5.86 � 3.87 � 1.2 ± 0.5 152.94 ± 0.42
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1.33%, respectively, for the sphere model, whereas
for the horizontal cylinder model, the errors of
Ac;h;a;Sf;and w were 1.03%, 0.56%, 0.93%, 3%,
and 0.47%, respectively, and the RMS error of the
multiple model anomaly was 17.85 mV. Figure 6c
compares the multiple model noisy anomaly and the
estimated anomaly.

From the results shown above, the proposed
method can be used to determine the multi-source
parameters efficiently and accurately.

FIELD EXAMPLES

To examine the applicability and accuracy of
the proposed algorithm in mining, the proposed
technique was applied to three real field examples:
one from Canada, which is the multi-source exam-
ple, and two examples from India.

Self-potential Anomaly of Sulfide Deposit,
Senneterre, Quebec, Canada (Multi-source)

Senneterre in Quebec is rich in minerals, in
which pyrite and pyrrhotite account for approxi-
mately 30% of the entire zone, and the mineralized
rocks that host pyrite and pyrrhotite are meta-sedi-
mentary breccias and tuffs that are interbedded with
lava flows (Telford et al. 1990; Biswas 2017). A self-
potential anomaly profile was taken above the
massive sulfide deposits (Telford et al. 1990; Biswas
2017). The profile length was 209 m, sampled at 1 m
intervals (Fig. 7a). Figure 7a reveals that there were
three anomalies. The self-potential profile was then
filtered by the first horizontal gradient using differ-
ent s values (s = 2, 3, 4, 5, 6, and 7 m) (Fig. 7b).
Then, the global PSO technique was applied to the
first horizontal gradient anomalies to estimate the
different parameters ðAc; h; a; Sf; and wÞ of the three
anomalies using different ranges (Table 6); the cal-
culated parameters were: Ac ¼ 202:32�
5:78 mV; h ¼ 7:97� 0:38 m; a ¼ 64:17� 2:56�; Sf ¼
0:52� 0:08; and w ¼ 152:19� 3:15 m for the first
anomaly; Ac ¼ 578:63� 3:62 mV; h ¼ 3:4�
0:32 m; a ¼ 97:29 �4:79�; Sf ¼ 0:5� 0:06; and w ¼
175:45� 2:76 m for the second anomaly; and Ac ¼
2314:68� 21:13 mV m; h ¼ 7:8� 0:34 m; a ¼
145:11� 5:22�; Sf ¼ 0:92� 0:15; and w ¼ 245:39�
2:63 m, for the third anomaly. The RMS error for
the calculated self-potential field was 24.01 mV.

From the results shown in Table 6, we can conclude
that the first and second bodies were vertical cylin-
ders, whereas the third body was a horizontal
cylinder. The correlation between the observed and
calculated anomalies is shown in Fig. 7a. Table 7
compares the estimated parameters of the present
method and those from other methods in the liter-
ature.

Kalava Fault, Cuddapah Zone, India

Cuddapah basin covers an area of approxi-
mately 35,000 km2, with a maximum basin thickness
at any point of approximately 6 km. It overlies the
Archean basement (Plumb 1981). The Cuddapah
basin comprises the following units (Plumb 1981;
Saha and Tripathy 2012) (Fig. 8a). The Cuddapah
Supergroup consists of the Papaghni, Chitravati, and
Nallamalai Groups. The Papaghni Group is com-
posed of fluviatile sandstone, conglomerate, flaggy
buff dolomite, red to brown sandstone, and red
siltstone. The Chitravati Group, which overlies dis-
conformably the Papaghni Group, comprises Puli-
vendla quartzite, gray to green shale, flaggy
sandstone, stromatolitic limestone (including thick
dolerite sills), and Gandikota quartzite. The Nalla-
malai Group, which overlies unconformably the
Chitravati Group, is composed of Bairenkonda
quartzite, shale, phyllite, dolomite, and quartzite.
The Cuddapah Supergroup is overlain uncon-
formably by the Kurnool Group. The latter is com-
posed of Banganapalle quartzite, Narji limestone,
Auk shale, Paniam quartzite, Koilkuntla limestone,
and Nandyal shale.

A self-potential anomaly profile was taken
across the Kalava fault area, Cuddapah basin, India
(Rao et al. 1982; Tlas and Asfahani 2008; El-Ka-
liouby and Al-Garani 2009) (Fig. 8b). The profile
length was 40 m, which was sampled at 0.25 m. The
self-potential profile was then filtered by the first
horizontal gradient using different s values (s = 0.5,
0.75, 1, 1.25, 1.5, and 1.75 m) (Fig. 8c). Then, the
global PSO technique was applied to the horizontal
gradient anomalies to estimate the different
parameters ðAc; h; b;d; and wÞ using different ranges
(Table 8), with the calculated parameters as
follows: Ac ¼ 76:83� 4:09 mV; h ¼ 8:42� 0:31
m; b ¼ 99:55� 3:85�;d ¼ 4:45� 0:31 m; and w ¼
0:67� 0:20 m, and the RMS error was 4.14 mV. The
correlation between the observed and calculated
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anomalies is shown in Fig. 8b. Table 9 compares the
estimated parameters of the present method and
those from other methods in the literature.

Self-potential Anomaly of the Copper Sulfide
Deposit, Surda Zone, India

The Surda area of the Rakha mines is endowed
with copper sulfide deposits. These are located
within the Singhbhum shear zone (Singhbhum cop-
per belt), which extends to approximately 200 km
from Duarparam in the western part to Baharagora
in the southeastern part (Mishra et al. 2003).

A self-potential anomaly profile was taken
above the copper sulfide deposits in Surda area,
India (Murthy et al. 2005; Santos 2010; Biswas and
Sharma 2014a) (Fig. 9a). The profile length was
243 m, and it was digitized at 1 m intervals. The first
horizontal gradient filter was then applied to the
self-potential anomaly profile using different s val-
ues (s = 2, 3, 4, 5, 6, and 7 m) (Fig. 9b). Then, the
global PSO technique was applied to the first hori-
zontal gradient anomalies to estimate the different
parameters ðAc; h; b; d; and wÞ of the sheet using
different ranges (Table 10). The calculated param-
eters were as follows: Ac ¼ 97:44� 3:15 mV; h ¼
32:17� 0:41 m; b ¼ 49:33 �0:38�; d ¼ 28:97�
0:23 m; and w ¼ 152:94� 0:42 m; and the RMS er-
ror was 5.86 mV. The correlation between the ob-
served and calculated anomalies is shown in Fig. 9a.
Table 11 compares the estimated parameters of the
present method and those from other methods in the
literature.

CONCLUSIONS

The applicability and the efficiency of the pro-
posed technique (global PSO method applied to the
first horizontal gradient) was explained and
demonstrated for synthetic datasets and for real self-
potential datasets from Canada and India. The
method proposed here can be applied in mineral
resource development, as it can be utilized to
determine the different parameters (amplitude
coefficient (Ac), depth (h), polarization angle (a),
inclination angle (b), half-width (d), shape factor
(Sf), and source origin (w)) of mineralized sources
with different shapes (horizontal cylinder, vertical
cylinder, sphere, and 2-D inclined sheet). A major

advantage of this method is that it removes regional
background from the observed data such that the
residual anomaly parameters are determined effec-
tively. The global PSO provides fast convergence
and does not require information regarding the
source shape. However, the time needed to reach
the global best solution increases when the number
of models used in inversion increases, which can be
considered a minor disadvantage of the method. The
results obtained from the synthetic and real datasets
show that the method is effective in interpreting self-
potential data, even if there are multiple sources,
and it can determine the parameters of the multiple
sources. Finally, the results of the real field data are
strongly comparable with those from other methods
in the literature.
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