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Vitor Ribeiro deSá,1 Katsuaki Koike ,1,9 Tada-nori Goto,2 Tatsuo Nozaki,3,4,5,6 Yutaro
Takaya,3,6,7 and Toru Yamasaki8

Received 30 November 2019; accepted 16 May 2020
Published online: 29 May 2020

Seafloor massive sulfide (SMS) deposits are typical of submarine mineral resources and
generally rich in base metals (Cu, Pb, Zn); however, their distribution, configuration, and
formation mechanism, especially sub-seafloor mineralization, remain poorly understood
because of scant drilling and geophysical data. To address this problem, this study aims to
identify and characterize mineralized zones in seafloor hydrothermal areas using limited
metal content data from sparse drilling sites. We use principal component analysis to de-
crease the dimensionality of the content data. High metal content zones are delineated using
principal component values by three geostatistical methods: (1) spatial estimation using
ordinary kriging; (2) turning bands simulations (TBSIM); and (3) sequential Gaussian
simulations. We selected an active seafloor vent area at 1570 m below sea level in the
Okinawa Trough, southwest Japan, as a case study. Results from the three methods show
two types of high metal content zones: One is around a sulfide mound, and the other is
layered in association with lateral flow of hydrothermal fluids from the bottom of the mound.
TBSIM is the most effective under scarce data conditions because the model yields the
smallest cross-validation error, decreases the smoothing effect, and corresponds well to a
conceptual deposit model that shows a stockwork below the sulfide mound. The results
contribute to better understanding the formation mechanism of SMS deposits as well as
constraining submarine metal reserves and mining.

KEY WORDS: Metal content, Principal components analysis, Ordinary kriging, Turning bands
simulation, Sequential Gaussian simulation, Okinawa Trough.

1Department of Urban Management, Graduate School of Engi-

neering, Kyoto University, Kyoto 615-8540, Japan.
2Graduate School of Life Science, University of Hyogo,

Himeji, Hyogo 671-2280, Japan.
3Submarine Resources Research Center, Research Institute for

Marine Resources Utilization, Japan Agency for Marine-Earth

Science and Technology (JAMSTEC), Yokosuka, Kanagawa

237-0061, Japan.
4Frontier Research Center for Energy and Resources (FRCER),

School of Engineering, The University of Tokyo, Tokyo 113-

8656, Japan.

5Department of Planetology, Graduate School of Science, Kobe

University, Kobe, Hyogo 657-8501, Japan.
6Ocean Resources Research Center for Next Generation, Chiba

Institute of Technology, Narashino, Chiba 275-0016, Japan.
7Faculty of Science and Engineering, Waseda University, To-

kyo 169-8555, Japan.
8Research Institute of Geology and Geoinformation, Geological

Survey of Japan (AIST), Tsukuba, Ibaraki 305-8560, Japan.
9To whom correspondence should be addressed; e-mail:

koike.katsuaki.5x@kyoto-u.ac.jp

2875

1520-7439/21/0800-2875/0 � 2020 International Association for Mathematical Geosciences

Natural Resources Research, Vol. 30, No. 4, August 2021 (� 2020)

https://doi.org/10.1007/s11053-020-09705-4

http://orcid.org/0000-0003-2195-1369
http://crossmark.crossref.org/dialog/?doi=10.1007/s11053-020-09705-4&amp;domain=pdf


INTRODUCTION

Spatial modeling of geologic phenomena is
challenging and involves the evaluation of uncer-
tainties innate to any estimation or simulation
method (e.g., Bowen 2010; Koike et al. 2015; Bat-
talgazy and Madani 2019). Uncertainty is often
represented by a variable degree of a probability
distribution (Pyrcz and Deutsch 2014), which origi-
nates from sparsity of sampled data and/or hetero-
geneity of geologic properties. Such spatial
uncertainty can be modeled and quantified by geo-
statistical methods (Delfiner and Chilès 2012) using
estimation and stochastic conditional simulations for
unsampled locations. The uncertainty measures in-
clude estimate error variance (Calder and Cressie
2009) and the variability of multiple equiprobable
simulated realizations (Pyrcz and Deutsch 2014).

Ordinary kriging (OK) is an optimal linear
unbiased estimator that has been widely used in
earth science (e.g., Isaaks and Srivastava 1989;
Shahbeik et al. 2014; Ilyas et al. 2016; Pugliese et al.
2016). However, OK also brings inevitable problems
common to any other estimators, particularly a
smoothing effect that makes OK estimations much
smoother than actual heterogeneities. Simulations
are then required to reproduce the heterogeneity by
considering stochastic properties. The most popular
simulation method is the sequential Gaussian simu-
lation (SGSIM) based on a Gaussian random field
(Deutsch and Journel 1998; Chilès and Lantuéjoul
2005; Emery 2007). SGSIM is a straightforward
method to obtain sequential values at each new
simulation point from a conditional distribution as-
signed to the data and previously simulated values
(Delfiner and Chilès 2012). Another typical simula-
tion method is the turning bands simulation
(TBSIM) that also relies on a Gaussian random field
(Matheron 1973; Ren 2005; Emery and Lantuéjoul
2006). TBSIM generates Rn simulations from mul-

tiple independent, unconditional R1 simulations

along lines that can be rotated in R3 space. This
unconditional simulation is then corrected to be
conditional by kriging so that the simulated values
are equal to sample values at the data locations.
However, SGSIM is not useful for reproducing
short-scale continuities (Lantuéjoul 1994), which
causes numerical instability if the data covariance is
constant over a short distance, and artifact discon-
tinuities tend to appear in TBSIM results (Lantuéjou
1994; Olea 1999) when the number of lines is few

(Gneiting 1999; Emery and Lantuéjoul 2006; Eze
et al. 2018).

Although many studies have compared geosta-
tistical methods (e.g., Iskandar et al. 2012; Par-
avarzar et al. 2015; Lu et al. 2016), there are only a
few that specifically address situations under se-
verely limited access to data. This situation is com-
mon in submarine resource exploration because of
the technical difficulty and high costs associated with
deep drilling of the seafloor. However, submarine
resources have attracted considerable attention with
the increasing demand for mineral resources. Sea-
floor massive sulfide (SMS) deposits are a seafloor
mineral resource that are generally rich in base
metals (Cu, Pb, Zn), but their distribution, configu-
ration, and formation mechanism, especially sub-
seafloor mineralization, remain poorly understood
because considerably less survey data are available
from drilling and geophysical prospecting compared
with on-land areas.

Framed by the background presented above,
this study aims to clarify the metal content distri-
bution and locate mineralized zones using a limited
amount of metal content data from a few drilling
sites. We use principal component analysis (PCA)
and three geostatistical methods (OK, SGSIM, and
TBSIM) to evaluate the best method for the sparse
data scenario. To address global necessity, the
method selection must be useful for reserve assess-
ment and deposit modeling. An active seafloor vent
area in the Okinawa Trough, southwest Japan, was
selected as a case study. The deposits in the sub-
duction-related back-arc setting (Pirajno 2009) are
regarded as a modern analog of Kuroko-type vol-
canogenic massive sulfide (VMS) deposits on land
(Halbach et al. 1989; Ishibashi et al. 2015).

MATERIALS AND METHODS

Geologic Setting

The study area is a part of a caldera floor in the
middle Okinawa Trough (Fig. 1) formed by resur-
gent rhyolite domes and covered by up to 30-m-thick
unconsolidated sediments including hemipelagic,
silty Holocene clays, sulfide-bearing layers, tuff
breccias, and pumice (Glasby and Notsu 2003; Ishi-
bashi et al. 2015; Nozaki et al. 2018). Several normal
faults are present in this area along the rifting axis of
the Okinawa Trough and trend E–W or ENE–WSW
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(Kato et al. 1989; Kato 1990; Halbach et al. 1993).
The faults act as pathways for hydrothermal fluid
flow (Pirajno 2009).

An area covering 700-m E–W 9 130-m N–S at a
depth of 1570 m below sea level (mbsl) (Fig. 1a) was
chosen for geostatistical modeling, in which six drill
sites (I–VI) are distributed nearly E–W. This area is
termed the Hakurei Site, Izena Hole (Ishibashi et al.
2015; Totsuka et al. 2019). The westernmost drill
hole (I) is located at a massive sulfide mound with a
complex chimney structure. Based on the drill core
observations, excluding the westmost sulfide mound,
the top layer consists of poorly sorted primary and
reworked underwater debris flow sediments with
variable grain sizes mixed with volcaniclastic and
hemipelagic sediments. The deeper portions consist
of hydrothermal altered clay and altered volcani-
clastic rocks (Nozaki et al. 2018). The basement
presumably consists of intra-caldera ignimbrite with

a dacitic–rhyolitic composition with pervasive
hydrothermal alteration (Nozaki et al. 2018; Yama-
saki 2018).

The geologic structure underneath the seafloor
was imaged from a seismic profile by Asakawa and
Lee (2018) that covered a part of the study area
from drill sites III to VI (Fig. 1b). The profile out-
lines two major structures: a stratabound layer with
a high-velocity anomaly and fault development be-
tween drill sites V and VI from the basement toward
the seafloor. The layered structure is interpreted as a
concentration zone of polymetallic sulfides and
hydrothermal alteration (Asakawa and Lee 2018;
Nozaki et al. 2018). Such zones are characterized by
high permeability and sulfide precipitation in the
diffusive flow and cooling of hydrothermal fluids
(Rona et al. 1993; Nozaki et al. 2018). The inferred
fault may have been generated during the caldera
formation (Halbach et al. 1993; Yamasaki 2018).

Figure 1. (a) Seafloor topography of the study area (Hakurei Site, Izena Hole in the middle Okinawa Trough) overlain with

locations of six drill sites (I–VI). The target region for geostatistical modeling is shown in the red rectangle. (b) A seismic

profile along the red line in (a) with interpreted lithotypes, mineralized zone, and fault distribution by Asakawa and Lee

(2018). The black line in (a) is the location of the cross section of the geostatistical results presented in Figure 6. The three

stars in (a) represent the active chimney locations.
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Sample Data

Element contents in the vertical drill cores
(ppm or wt%) were measured by inductively cou-
pled plasma quadrupole mass spectrometry (ICP-
QMS) following the HF–HNO3–HClO4 acid diges-
tion method (Takaya et al. 2018). In total, 448
samples with six elements (Zn, Pb, Cu, Ba, Ag, and
Cd) were selected for geostatistical modeling. These
are major elements of the dominant constituent
sulfide/sulfate minerals of SMS deposits in the Oki-
nawa Trough (Halbach et al. 1989, 1993; Ishibashi
et al. 2015; Nozaki et al. 2016). The sample sizes
collected onboard were typically 10 to 20 cm3.
Approximately 50 mg of powder of each sample was
used for the ICP-QMS analyses.

Analytical Flow of Spatial Modeling

Mineralized zones were identified in the study
area using 448 geochemical sample data points from
the drill cores, implemented by four steps: pre-pro-
cessing, PCA, normal score transformation, and
spatial modeling by geostatistical estimation and
simulations, as shown in the flowchart in Figure 2.
The data at each sample point are multivariate and
compositional. Because the content magnitude and
variance differ substantially between the elements,
we perform pre-processing to avoid generating
spurious correlations between two elements by
decreasing the bias of the content distribution. The
centered log-ratio (clr) transformation by Aitchison
(1986) was selected for this purpose because its
suitability has been demonstrated in several previ-
ous case studies (e.g., Aitchison 2002; Pawlowsky-
Glahn and Olea 2004; Pawlowsky-Glahn et al. 2011).
In this method, the content data of a certain ele-
ment, xi, is divided by the geometric mean (gm) and
then log-transformed as:

clr xið Þ ¼ ln
xi
gm

for gm ¼
Ym

j¼1

xj

 !1=m

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 . . . xmm

p

ð1Þ

where m is the number of data points for the target
element. The content data after the clr transforma-
tion are expressed by adding *, e.g., Zn* for the
original Zn data.

Because correlations generally exist between
element contents in metal deposits, PCA was ap-
plied to decrease the dimensionality of the content
data by linearly combining the correlated elements
to yield lower-dimensional variables and principal
components (PCs). The PCs were used for subse-
quent geostatistical analyses. PCA simplifies the
geostatistical calculations by changing multivariate
to univariate and facilitates the specification of
mineralized zones. Each PC was then transformed
into a normal score that follows a standard normal
distribution with a mean of 0 and variance of 1.
Because a dataset following a normal distribution is
suitable to geostatistical analyses, this normal
transformation is indispensable for the case that the
data distribution is biased and far from a normal
distribution.

For the actual geostatistical steps, the variog-
raphy and principles, equations, and calculation
procedure of OK, SGSIM, and TBSIM have been
described in detail in several references (e.g., Isaaks
and Srivastava 1989; Armstrong 1998; Deutsch 1998;
Delfiner and Chilès 2012; Pyrcz and Deutsch 2014).
TBSIM uses 1000 turning bands to avoid possible
artifacts, as proposed by Emery (2008). By averaging
100 realizations for both SGSIM and TBSIM, e-type
models of these simulation methods were produced.
The estimated and simulated results obtained from
the three methods were linearly back-transformed
into the original data scale.

Grid Setting

For the geostatistical modeling, the study area
was gridded by voxels of a unit size of 10 m along
the X-axis (E–W), 10 m along Y-axis (N–S), and
0.4 m along the depth direction, Z-axis. These sizes
were determined by considering the average inter-
vals of neighboring drill sites in the horizontal
direction and neighboring sample points along the
drill site in the vertical direction. A small vertical
size was chosen to reveal small content changes. The
bottom location of the longest borehole III was used
to set the bottom boundary of the modeling domain.
The estimation and simulation were point based, i.e.,
the calculations were implemented at the grid
points.
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RESULTS

Descriptive Statistics of the Content Data and PCs

The basic statistical features of the six selected
elements are indicated by descriptive statistics (Ta-
ble 1) and a correlation matrix between two ele-

ments (Table 2). Based on the median values, Zn,
Pb, and Ba are the main enriched elements in the
study area. Linear correlation coefficients (Rs) in the
correlation matrix reveal that four metals: Zn*, Pb*,
Cu*, and Cd*, are correlated with one another with
the strongest correlation between Zn* and Pb*
(R = 0.94). Ba* is not strongly correlated with the

Figure 2. Flowchart for clarification of mineralized zones using geochemical sample data from drill cores. The procedure consists of pre-

processing, PCA, normal score transformation, and spatial modeling by geostatistical estimation and simulation.
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other five elements, and Ag* has moderate correla-
tions with the above four metals with R = 0.64 to
0.75. The existence of those moderate and high
correlations among the target elements demon-
strates the effectiveness of using PCA, as noted by
Swan and Sandilands (1995).

The correlations cause particularly large eigen-
value for the first PC (PC1) in which 74.7% of the
total variance is included (Fig. 3). PC2�s variance is
much smaller (12.6%), and the sum of PC3 to PC6

variances is 12.7%. This means that the higher PC1
value corresponds to a higher sum of the six element
contents and high-PC1 zones can be indicative of
sulfide mineralization zones. Consequently, a set of
only the PC1 values was used for the subsequent
geostatistical analyses. A histogram of the PC1 val-
ues shows two peaks in the low and high values
(Fig. 4a). The lower peak in the high value suggests
the formation of mineralized zones. This bimodality
is also observed in the main base metals: Zn*, Pb*,
and Cu*. The histogram in Figure 4b verifies the
correct transformation of PC1 into a standard nor-
mal distribution.

Validation of Semi-variogram Model and Data
Search Size

Because the six drill sites are distributed along
an E–W line, it was impossible to detect anisotropic
behavior of the semi-variogram in the horizontal
direction. Accordingly, two experimental semi-vari-
ograms for the omnidirectional horizontal and ver-
tical directions were produced and the spherical
model was fitted to both the directions (Fig. 5a). The
resulting semi-variogram models show geometrical
anisotropy and derive ranges of 115 m and 79 m
along the horizontal and vertical directions, respec-
tively. Considering the ranges, the neighborhood
search area for the three geostatistical methods was
set to be an ellipse shape with sizes of 150 m in the
horizontal direction and 100 m in the vertical
direction. This search area was set to encompass at
least the closest four data, following Isaaks and
Srivastava (1989).

To check the suitability of the semi-variogram
models and size of the neighborhood search, cross-
validation was implemented using OK. The results

Table 1. Descriptive statistics of content data of six elements after the centered log-ratio transformation

Statistical parameters Zn* Pb* Cu* Ba* Ag* Cd*

Number of data 448 448 448 448 448 448

Mean 7.34 6.06 5.43 7.44 0.54 1.61

Variance 9.38 9.24 10.18 3.91 24.87 15.99

Minimum 2.91 1.16 � 22.91 1.63 � 24.05 � 22.49

Lower quartile 5.05 3.79 3.48 6.15 � 1.77 � 1.11

Median 6.11 4.93 4.16 6.97 0.36 0.42

Upper quartile 8.83 8.04 7.76 8.55 3.19 3.94

Maximum 17.24 16.73 14.94 13.31 10.95 12.17

Table 2. Correlation matrix of content data after the centered

log-ratio transformation with correlation coefficients between two

elements

Zn* Pb* Cu* Ba* Ag* Cd*

Zn* 1.00 – – – – –

Pb* 0.94 1.00 – – – –

Cu* 0.85 0.84 1.00 – – –

Ba* 0.59 0.59 0.42 1.00 – –

Ag* 0.65 0.74 0.64 0.32 1.00 –

Cd* 0.84 0.86 0.77 0.41 0.75 1.00

Figure 3. Eigenvalues of six principle components, PC1 to

PC6 (red line), and percentage of each eigenvalue for the total

variance (blue bars).
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show a cross-plot between the true and predicted
PC1 values at each sample data point, indicating
adequate prediction accuracy with R = 0.87
(Fig. 5b), which demonstrates its suitability.

Comparison of Spatial Models

Three PC1 spatial models generated through
the OK and e-type of SGSIM and TBSIM are
compared using the same color scale in Figure 6

from three viewpoints: the distribution on the sea-
floor, perspective view from the southeast, and ver-
tical E–W cross section along the black line in
Figure 1a. The three models are similar and have
common features with high-content (i.e., high-PC1)
zones that extend around the sulfide mound and
likely horizontal stratabound mineralization, con-
sistent with the seismic profile interpretation in
Figure 1b. The former shape appears as an upside-
down ring and is likely a stockwork feature (Fig. 6d).
However, smoothing effects appear in the OK

Figure 4. Comparison of two histograms of (a) original and (b) normal score transformed PC1 values.

Figure 5. (a) Experimental semi-variograms along omnidirectional horizontal (circles) and vertical

(squares) directions and their fitting to the spherical model as shown by the curves. (b) Cross-plot between

the true and predicted PC1 normal scores by ordinary kriging, showing the accuracy of the kriging

calculation.
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Figure 6. Comparison of spatial models of PC1 values using the same color scale from three views: distribution of the seafloor,

perspective view from the southeast, and vertical cross section along the black line in Figure 1a. The models were produced by the

geostatistical estimation method (a) OK and two simulation methods, (b) SGSIM, and (c) TBSIM. The average of 100 realizations is used

as an e-type model of the two simulations. A schematic model of a seafloor massive sulfide system accompanying the sulfide mound is

shown in (d) to illustrate the development of a stockwork under the sulfide mound and fluid flows (arrows) by compiling data from

previous studies (Lydon 1988; Herzig and Hannington 1995; Ohmoto 1996; Tornos et al. 2015).
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model for which the value range is much narrower
than those from the SGSIM and TBSIM models.
The mineralization zones are difficult to be specified
in the OK model. In addition, the high-content zone
is narrow and the stockwork feature is not entirely
clear in the SGSIM model. One remarkable feature
in the TBSIM model is that the stratabound miner-
alization is disconnected at the inferred fault (da-
shed line). This suggests that the fault acts as a path
of downward recharge flow of seawater from the
seafloor or upward discharge flow of hydrothermal
fluids.

The simulation result quality is checked by
comparing semi-variograms of each location with
the semi-variogram model for both the horizontal
and vertical directions (Fig. 7), as proposed by
Jewbali and Dimitrakopoulo (2011). We use the
normal score transformed PC1 data for this com-
parison. Ideally, the average of 100 semi-variograms
should coincide with the semi-variogram model for
both the directions, which proves an unbiased sim-
ulation result (Eze et al. 2018). Common to both the
methods and directions, the variability of semi-var-
iograms increases with separation distance. Owing
to the paucity of sampled data particularly in the
horizontal direction, the horizontal semi-variograms
are largely variable at each realization and their
averages are far from the semi-variogram models in
both the SGSIM and TBSIM results (Fig. 7a, c). On
the contrary, the average semi-variogram of the
TBSIM results along the vertical direction ap-
proaches the semi-variogram model because of the
substantially closer data intervals than in the hori-
zontal direction. The TBSIM results show a more
similar trend of the average semi-variogram to the
model than the SGSIM results (Fig. 7b, d).

To check the calculation accuracy, R and the
standard error of the three models are compared
between the true and predicted PC1 values (Ta-
ble 3). Although differences are small among the
three models, TBSIM has the highest R and smallest
standard error.

DISCUSSION

Seafloor hydrothermal systems are comprised
of a heat source (underlying magma chamber), re-
charge zone, circulation cell, and discharge zone that
emits white and black smoke (Robb 2004). Because
the heat source and circulation cells are located at 2–
8 km depth underneath the seafloor (Pirajno 2009),

these features do not appear in geostatistical models
constructed using the drill site data with a 180-m
depth maximum. Instead, the models highlight
mineralization features of a stockwork around the
sulfide mound and of a stratabound feature on the
eastern side of the mound.

The most plausible mechanism of this mineral-
ization is mixing of hydrothermal fluids with cold
ambient seawater in pore spaces in permeable strata
(Shanks and Thurston 2012). Mineralization at two
separated zones with different configurations and
massive and stratified shape at several tens of meters
below the seafloor was recently confirmed by a
resistivity distribution from a deep-tow marine
electric sounding at the Iheya North, middle Oki-
nawa Trough (Ishizu et al. 2019). The geostatistical
models are therefore geologically appropriate, and
the combination of PCA, normal score transforma-
tion, and geostatistics for clarifying the mineraliza-
tion features is effective.

As a comparison of the three geostatistical
models, the mineralization shapes at the bottom of
the sulfide mound and layer by OK are much
smoother than those by SGSIM and TBSIM
(Fig. 6a–c). This smoothing effect is revealed quan-
titatively by a comparison of the value range of the
PC1 data, � 4.26 (minimum) to 6.73 (maximum).
The ranges of the resultant three PC1 models are
OK: � 2.95 to 1.88, SGSIM: � 2.54 to 4.95, and
TBSIM: � 3.73 to 5.29. Accordingly, the TBSIM
best follows the variability of the sample values even
under sparse data conditions in the horizontal
direction, whereas OK induces a strong smoothing
effect.

The three models are compared in Figure 8 by
selecting PC1 zones> 1 and focusing on the stock-
work structure beneath the sulfide mound. The high-
PC1 zones> 3 colored by orange and red show the
suggested mineralization zones. The stockwork
structure does not appear in the OK model (Fig. 8a),
and the high-PC1 zones are limited around the
mound and near the seafloor and not vertically
continuous in the SGSIM model. In contrast, the
TBSIM model is best fitted to the stockwork con-
ceptual model (Fig. 6d) and low-resistivity distribu-
tion (Ishizu et al. 2019).

The superiority of TBSIM over SGSIM under
these conditions can be explained by the difference
in neighboring data used for the kriging calculation
at a certain voxel. SGSIM is a sequential algorithm
that adds simulated values to the sample dataset for
subsequent calculations, which reduces the distance
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to nearest neighbor data with and consequently in-
duces a smoothing effect owing to the decrease in
kriging variance (Delfiner and Chilès 2012). In
contrast, TBSIM can preserve the variability of
sample by using the sample data only for the simu-
lation and setting many turning lines (Gneiting 1999;
Emery 2008).

The upward shift of semi-variograms of all
TBSIM realizations along the horizontal direction

(Fig. 7c) is caused by the particular sparsity of the
data locations. In particular, large increases of the
ranges from 115 m of the semi-variogram model to
300 m of the averaged semi-variogram seem inap-
propriate. This increase is owing to the layer struc-
ture of mineralization having such extent, whose
plausibility is supported by the seismic profile in
Figure 1d. The mismatch therefore does not neces-

Fig. 7. Semi-variograms of realizations along the omnidirectional horizontal and vertical directions by

SGSIM ((a) and (b)) and TBSIM ((c) and (d)) shown as black curves. Red and yellow curves represent the

spherical models in Figure 5a and semi-variogram averages, respectively.

Table 3. Cross-validation results showing correlation coefficient (R) and standard error between true and predicted PC1 values by OK and

e-types of SGSIM and TBSIM

OK SGSIM TBSIM

R Standard error R Standard error R Standard error

0.87 1.03 0.88 1.00 0.89 0.99
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sarily signify a defect of TBSIM, as suggested by
Emery (2004).

CONCLUSIONS

The aims of this study were to clarify the min-
eralization structure in an active seafloor vent area
1570 mbsl in the middle Okinawa Trough using 448
content data from only six drill sites. Under these

particularly sparse data conditions along the hori-
zontal direction, three geostatistical methods (one
estimation, OK, and two simulations, SGSIM and
TBSIM) were compared by selecting the content
data of six elements: Zn, Pb, Cu, Ba, Ag, and Cd, as
typical elements of seafloor massive sulfide (SMS)
deposits. Because these elements are strongly cor-
related, PCA was adopted to decrease the data
dimensionality and the content information was
consequently found to be condensed in the first

Figure 8. Comparison of PC1 zones> 1.0 by (a) OK, (b) SGSIM, and (c) TBSIM using the same color scale to highlight the stockwork

structure underneath the sulfide mound. These are parts of the 3D models in Figure 6.
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principal component (PC1). Through cross-valida-
tion between the true and predicted PC1 values by
the three methods, TBSIM was identified as the best
method for these data conditions by reducing the
smoothing effect and reproducing the semi-vari-
ogram of the sampled data along the more densely
data-distributed, vertical direction.

The most significant result obtained by the e-type
of TBSIM was clarification of two mineralization
zones with different configurations: a massive shape in
the seafloor vicinity and a stratified shape at several
tens of meters below the seafloor. These shapes are
concordant with the resistivity distribution obtained
by a deep-tow marine electric sounding. The massive
shape similar to an upside-down ring is likely a
stockwork. In addition, the stratabound mineraliza-
tion feature also appears in the seismic profile. The
most plausible mechanism of this mineralization is
mixing of hydrothermal fluids with cold ambient sea-
water in pore spaces in permeable strata. Conse-
quently, PCA and geostatistical simulations
contribute to the interpretation and formation mech-
anism of SMS deposits and reserve assessment.

Our next step is geologic modeling using core
description data and geostatistical simulations in
combination with the content model to specify min-
eralized zones and their geologic features in more
detail to determine their formation mechanism.
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Chilès, J.-P., & Lantuéjoul, C. (2005). Prediction by conditional
simulation: Models and algorithms. In M. Bilodeau, F.
Meyer, & M. Schmitt (Eds.), Space, structure and random-
ness: Contributions in honor of Georges Matheron in the field
of geostatistics, random sets and mathematical morphology
(pp. 39–68). New York: Springer. https://doi.org/10.1007/0-3
87-29115-6.

Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical
software library and user�s guide. New York: Oxford
University Press.

Egozcue, J. J., & Pawlowsky-Glahn, V. (2011). Basic concepts and
procedures. In V. Pawlowsky-Glahn & A. Buccianti (Eds.),
Compositional data analysis: Theory and applications (pp. 12–
28). Chichester: Wiley.

Emery, X. (2004). Testing the correctness of the sequential
algorithm for simulating Gaussian random fields. Stochastic
Environmental Research and Risk Assessment, 18(6), 401–
413.

Emery, X. (2007). Conditioning simulations of Gaussian random
fields by ordinary kriging. Mathematical Geology, 39(6), 607–
623.

Emery, X. (2008). A turning bands program for conditional co-
simulation of cross-correlated Gaussian random fields.
Computers & Geosciences, 34(12), 1850–1862.
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