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Estimation and Minimization of Ground Vibration Induced
by Blasting in a Mine
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It is of a high importance to introduce intelligent systems for estimation and optimization of
blasting-induced ground vibration because it is one the most unwanted phenomena of
blasting and it can damage surrounding structures. Hence, in this paper, estimation and
minimization of blast-induced peak particle velocity (PPV) were conducted in two separate
phases, namely prediction and optimization. In the prediction phase, an artificial neural
network (ANN) model was developed to forecast PPV using as model inputs burden,
spacing, distance from blast face, and charge per delay. The results of prediction phase
showed that the ANN model, with coefficient of determinations of 0.938 and 0.977 for
training and testing stages, respectively, can provide a high level of accuracy. In the opti-
mization phase, the developed ANN model was used as an objective function of firefly
algorithm (FA) in order to minimize the PPV. Many FA models were constructed to see the
effects of FA parameters on the optimization results. Eventually, it was found that the FA-
based optimization was able to decrease PPV to 17 mm/s (or 60% reduction). In addition,
burden of 3.1 m, spacing of 3.9 m, and charge per delay of 247 kg were obtained as the
values optimized by FA. The results confirmed that both developed techniques of ANN and
FA are powerful, accurate, and applicable in estimating and minimizing blasting-induced
ground vibration and they can be used with caution in similar fields.

KEY WORDS: Ground vibration, Optimization, Minimization, Artificial neural network, Firefly
algorithm.

INTRODUCTION

Blasting is universally the most popular method
for fragmenting in situ rock for excavation in mining
and construction activities (Mehrdanesh et al. 2018).
However, such operations typically release huge

volumes of useless energy, which bring about some
environmental effects such as air blast or air over-
pressure, flyrock, ground vibrations, back-break, and
many others (Khandelwal and Singh 2006; Monjezi
et al. 2011a, b; Armaghani et al. 2014, 2018; Han
et al. 2020). Among all of environmental side effects
of blasting, ground vibration is highlighted as one of
the most serious (Monjezi et al. 2010; Hajihassani
et al. 2015; Jahed Armaghani et al. 2015; Hasani-
panah et al. 2015). Blasting-induced ground vibra-
tion has undesirable impacts not only on the
integrity of structures but also on groundwater in the
neighboring region (Singh and Singh 2005; Khan-
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delwal and Singh 2009). Therefore, it is of high sig-
nificance to predict properly the magnitude of blast-
induced ground vibrations in order to decrease as
much as possible its environmental impact at the
time of blasting or in the wake of such operation.

After detonation of explosive materials within a
blast hole, the chemical reactions of explosives can
lead to formation of high pressure gases. The gas
pressure formed in the former step, which decays or
dissipates rapidly, will crush rock mass around the
blast hole (Armaghani et al. 2015a, b). Then, a wavy
motion is generated in the ground by straining waves
that are conveyed to neighboring rock masses (Du-
vall and Petkof 1958). According to Dowding and
Hryciw (1986), the generated straining waves, which
are elastic waves, spread to lower levels of the
ground when their intensity decreases. The waves
formed in this way are actually in the form of ground
vibrations.

In general, two parameters affect blast-induced
ground vibration significantly, namely peak particle
velocity (PPV) and frequency. The literature shows
that PPV can be used to measure ground vibration
because it has been recognized as a key indicator
that can be taken into account to control the criteria
of structural damages (e.g., Khandelwal et al. 2011;
Nateghi 2011). A few decades ago, numerous
empirical predictors have been introduced for the
prediction of blasting-generated PPV. However,
according to the literature, such methods were not
successful in doing the defined task (e.g., Hasani-
panah et al. 2016, 2018) and this is due to their
limited connections with the number of effective
factors of PPV (i.e., distance from blast face, maxi-
mum charge per delay). Nevertheless, the PPV is
influenced by other factors that can be grouped as
controllable and non-controllable such as powder
factor, spacing, and burden (Monjezi et al. 2016). In
addition, multiple regression methods have been
developed for PPV approximation (Hudaverdi
2012), although such methods have not been found
to be highly reliable in cases where new available
data differ from the original data (Mohamed 2011).

Recently, some soft computing and machine
learning techniques have been proposed for accurate
estimation of blasting-generated PPV (e.g., Zhou
et al. 2016a, b; Nguyen et al. 2019a, b). The capa-
bility of such techniques to predict accurately issues
related to engineering and sciences has been high-
lighted by many researchers (Shi et al. 2012; Zhou
et al. 2016a, b, 2019a, b; Wang et al. 2018a, b; Chen
et al. 2019a, b; Hajihassani et al. 2019; Huang et al.

2019; Koopialipoor et al. 2019; Sarir et al. 2019; Xu
et al. 2019a, b; Yang et al. 2018a, b). By investigating
150 blasting events, Khandelwal and Singh (2006)
attempted to predict PPV using an empirical method
and a soft computing technique (i.e., artificial neural
network or ANN). Their findings confirmed the
superiority of ANN over the empirical method in
terms of accuracy. An adaptive neuro-fuzzy infer-
ence system (ANFIS) was developed by Iphar et al.
(2008) and Armaghani et al. (2015a, b) for predic-
tion of PPV. Fisne et al. (2011) introduced a fuzzy
inference system (FIS) to assess and estimate PPV
for 33 blast-generated events in Akdaglar quarry
(Turkey). Based on the blasting parameters investi-
gated at the Bakhtiari Dam located in Iran, another
soft computing method, i.e., support vector machine
(SVM) was developed by Hasanipanah et al. (2015)
for prediction of PPV. Many predictive techniques
such as gene expression programming (GEP),
imperialism competitive algorithm (ICA), ANN-
based models, extreme gradient boosting machine
(XGBoost), clustering ANN, regression tree, parti-
cle swarm optimization (PSO), hybrid ANFIS-based
models, and hybrid support vector regression
(SVR)-based models, have also been proposed and
applied for PPV prediction (Shirani Faradonbeh
et al. 2016; Hasanipanah et al. 2016; Shahnazar et al.
2017; Armaghani et al. 2018; Nguyen et al. 2019a, b;
Zhang et al. 2019; Chen et al. 2019a, b). Table 1
summarizes some of the previous investigations
from 2011 to 2019, with their developed models and
respective input parameters for PPV prediction.
From Table 1, it is apparent that new models with
acceptable prediction accuracy still need to be
investigated and developed for PPV estimation.

Therefore, the present study was conducted in
two phases, namely prediction and optimization. In
the prediction phase, an ANN model was con-
structed and introduced to predict blast-induced
PPV. Then, in the second phase, the developed
ANN technique was used as input to optimization to
minimize blast-induced ground vibration using the
firefly algorithm (FA), which is a powerful opti-
mization technique.

BACKGROUND OF APPLIED METHODS

The following steps were for the prediction and
minimization of blast-induced PPV with the help of
ANN and FA (Fig. 1): (a) identify the input and
output parameters; (b) predict blast-induced ground
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vibrations by adopting an ANN-based technique;
and (c) introduce the developed ANN model to FA
model to minimize blast-induced ground vibrations.
In the following subsections, detailed backgrounds

of ANN and FA are given for better understanding
of their modeling procedure.

Artificial Neural Networks

An ANN simulates the neural system of a hu-
man brain (Trippi and Turban 1992). It consists of a
number of interconnected layers, each of which
contains computational components (neurons). An
ANN is able to solve nonlinear problems. Its power
is largely highlighted when they are applied to tasks
such as feature selection and function approximation
(Simpson 1990; Kosko 1992). When an ANN is to be
applied, the initial step is defined as systemic train-
ing, which needs a database with model inputs and
outputs. In the modeling procedure of multilayer
perception (MLP), a number of tactics need to be
taken into account; in contrast, the back-propaga-
tion algorithm enjoys more advantages compared to
other approaches already proposed in the literature
(Momeni et al. 2015). The MLP networks consist of
at least the following three parts: input layers, hid-
den layers, and output layers. The nature of a given
problem determines how many neurons should exist
within the hidden layer. In the training process, a
certain weight is initially allocated to each connec-
tion between the nodes that exist within each layer.
To evaluate the efficiency level of the network, the
connection weight needs modifications. Figure 2
shows a general model of an ANN wherein x signi-
fies input, w denotes weight,

P
represents summa-

tion, and f stands for activation function. The neuron
(also named unit, cell, or node) is a processing ele-

Table 1. Some of the previous researches to predict ground vibration

Study Predictive model Input parameter

Monjezi et al. (2011a, b) ANN DI, HD, MC, ST

Ghasemi et al. (2013) Fuzzy model DI, S, B, MC, N ST

Hajihassani et al. (2014) ICA–ANN E, BS, MC, ST, DI, PF, Vp

Hajihassani et al. (2015) PSO–ANN RQD, BS, HD, MC, Sd, ST, DI, PF

Armaghani et al. (2015a, b) ANFIS DI, MC

Shirani Faradonbeh et al. (2016) GEP MC, HD, ST, B, D, S, PF, DI

Khandelwal et al. (2017) Regression tree DI, MC

Shahnazar et al. (2017) PSO–ANFIS DI, MC

Armaghani et al. (2018) ICA DI, MC

Zhang et al. (2019) PSO–XGBoost S, B, PF, MC, DI

Nguyen et al. (2019a, b) ANN, clustering S, B, PF, MC, DI

Chen et al. (2019a, b) MFA–SVR BS, MC, ST, E, Vp DI

E: Young�s modulus, B: burden, S: spacing, MC: max charge per delay, ST: stemming, DI: distance from the blast face, HD: hole depth, D:

hole diameter, PF: powder factor, BS: burden to spacing ratio, RQD: rock quality designation, N: number of row, Sd: sub-drilling, Vp: p-

wave velocity, MFA: modified firefly algorithm

Figure 1. Different steps for estimating and

minimizing blast-induced PPV.
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ment that takes several inputs, weights them, and
then sums them up.

Firefly Algorithm Structure

Among the most effective types of algorithms
applied to optimization problems, the nature-in-
spired ones (e.g., firefly algorithm, FA) play a sig-
nificant role in this field. FA has been designed
based on the social behaviors of fireflies in nature.
Most of these captivating insects generate short and
recurring flashes. Factors such as rhythm, rate, and
amount of time of flashes affect the process of
attracting both sexes to each other. Therefore, the
flashing behavior of a firefly is actually a signal sys-
tem for attracting other fireflies flying in the neigh-
boring area.

FA was proposed by Yang (2010) based on a
light intensity physical formula that drops when the
square of the distance rises. This phenomenon can
be in relation with the objective function that should
be optimized. Typically, three rules make the fun-
damental base of FA. (1) All fireflies are unisex; as a
result, regardless of sex, they will be attracted to
each other. (2) Intensity of light generated affects
attractiveness, and attractiveness reduces when the
insects get more distant. (3) A firefly�s light intensity
is determined by fitness function.

To design a FA properly, there is a need to
define two significant items: attractiveness formula-
tion and variation of light intensity. Designers can
use these two items when adapting various FAs in
order to satisfy the requirements of the problem in
hand. In a standard FA, a firefly�s light intensity (I),
which represents the solutions, is proportional to the
values of fitness function I(s) and F(s), while the

light intensity I(r) is changed based on the following
equation (Yang 2010):

I ¼ I0e
�cr ð1Þ

where I0 stands for the source�s light intensity, and
the fixed light absorption coefficient c is applied to
the estimation of the light absorption. At r = 0, the
singularity in the expression I/r2 is evaded through
the integration of the impacts of the inverse square
law. The fireflies� attractiveness (b) is proportional
to I(r). Therefore, analogous to Eq. 1; b is expressed
as:

b ¼ b0e
�cr2 ð2Þ

where b0 stands for attractiveness at r = 0. Based on
the base FA, the distance between Xi and Xj is
indicated as Euclidean distance; thus:

rij ¼ Xi �Xj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

k¼1

Xi;k �Xj;k

� �2
s

ð3Þ

where n signifies the problem dimensionality. The
ith firefly�s movement attracts another more attrac-
tive firefly j. This can be expressed as:

xi ¼ xi þ b0e
�cr2ijðxi � xjÞ þ aei ð4Þ

where ei stands for a random number taken from the
Gaussian distribution. The movement of a firefly
consists of three different items: the ith firefly�s
current position, attraction to another firefly with
higher attractiveness, and a random walk that in-
cludes a as an index for randomization. If b0 = 0,
then, the movement only affects the random walk.
In addition, parameter c significantly affects the
speed of convergence process. In general, it varies
between 0.1 and 10. In brief, three parameters con-
trol FA, namely attractiveness (b), randomization
parameter (a), and absorption coefficient (c). FA has
two distinguished usage performances; the first one
appears in the case c � 0 and the latter in the case
c � ¥; when c � 0, then b = b0.

Note that throughout the search space, attrac-
tiveness is fixed. Such behavior is a certain instance
of PSO. When c � ¥, then the second term is de-
tached from Eq. 4, and the movement of a firefly will
be a random walk indicating a version of stimulated
annealing. Indeed, each utilization of FA may take

Figure 2. A simple model of a neuron (Mehrotra

et al. 1997).
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place between its two usage performances (Fister
et al. 2013).

FIELD STUDY AND DATA SOURCE

In this study, we selected the Hozak limestone
mine, which is located along the Karaj-Qazvin
highway, Alborz state, Iran. The mine area is a part
of the Central Alborz Range. The largest and most
important residential and industrial areas around the
mine include Abyek city and Abyek and Siporex
cement factories. The Hozak limestone belongs to
the Lar Formation. The oldest sediments in the area
are Paleozoic in age. They include the Soltanieh
dolomite, the Chile Formation, the Ziggon Sand-
stone Formation, the quartzite–sandstone of the
Dorood Formation, and the Rime Gray Lime For-
mation. The Paleozoic sediments are overlain by the
Elika Formation (dolomite and limestone), followed
by the Shemshak Formation (gray-brown to mud-
stone and siltstone with charcoal sandstones). These
formations underlie the area�s coal mines, including

Hugh and Esquite. A field view of the Hozak lime-
stone mine is presented in Figure 3.

In order to prepare and establish a database,
the results of a blasting operation in the Hozak
limestone mine were used. To do that, 154 blasts
were evaluated and their PPV results, which were
recorded by a Vibraloc ABEM seismograph, were
considered. Several blasting design factors such as
burden (B), spacing (S), charge per delay (CPD),
and distance from blast face (DI) were also deter-
mined before the blasting. It should be noted that
the operations were conducted with the use of blast
holes with 76 mm diameter. The main explosive
applied to these operations was the ammonium-ni-
trate fuel oil (ANFO).

All 154 datasets were evaluated in order to re-
move outlier data, and eventually, three datasets
were removed. Hence, the modeling procedure of
this study was applied using 151 datasets with B, S,
DI, and CPD as model inputs and PPV as model
output. The range, mean, and standard deviation of
these variables are shown in Table 2. In addition, the

Figure 3. The Hozak mine long view.

Table 2. Input and output variables and their relevant statistical information

Parameter Group Unit Symbol Min Max Mean SD

Burden (B) Input m B 2.5 3.8 3.094 0.335

Spacing (S) Input m S 3.5 5.3 4.324 0.438

Distance from the blast face (DI) Input m DI 256 1650 809.848 345.134

Charge per delay (CPD) Input kg CPD 225 3745 2007.013 895.114

Peak particle velocity (PPV) Output mm/s PPV 13 97 42.411 20.812
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Electronic Supplementary Material provides box
plots of the input and output data.

MODELING AND OPTIMIZATION
OF GROUND VIBRATION

ANN Modeling

After the required data were gathered and the
input/output parameters determined, a number of
models were built using ANN to predict PPV. To
estimate accurately the blast-induced ground vibra-
tions, different ANN predictive models were built
with various structures. The established database
was separated into two parts. Specifically, 80% of
the dataset was dedicated to training, while the
remaining 20% was allocated to testing. In nonlinear
predictive applications, results of higher quality can
be obtained using only one hidden layer when
computing the validation criteria. Eventually, an
ANN model with 1-hidden layer and 23 neurons
demonstrated the best results. In addition, among all
available transfer functions, the exponential and
logistic functions returned the best outcomes for
prediction of PPV. Figure 4 shows the suggested
ANN structure to estimate blast-induced ground
vibration.

For the ANN model developed in this study, the
coefficient of determination (R2) of the testing and
training results was 0.977 and 0.9384, respectively.
Figures 5 and 6 present the measured values and
predicted PPVs, respectively, for the training and
testing stages. These figures show clearly that the
predicted PPVs are very close to the measured ones.
This confirms the capability of ANN in predicting
blast-induced PPV.

The precision of a model is examined by taking
into consideration it outputs with respect to the
measured values. In this study, to evaluate the pre-
cision of the ANN model, five indices, namely root
mean square error (RMSE), mean absolute error
(MAE), R2, variance accounted for (VAF), and a20
were considered and calculated. The literature re-
ported successful and efficient uses of these indices
for evaluation purposes (Armaghani et al. 2017;
Koopialipoor et al. 2018; Tonnizam Mohamad et al.
2018;Asteris et al. 2019; Asteris and Nikoo 2019).
Equations 5–9 present the formulas of the men-
tioned indices.

R2 ¼ 1�
PN

i¼1 y� y0ð Þ2
PN

i¼1 y� ~yð Þ2
ð5Þ

VAF ¼ 1�VAR y� y0ð Þ
VAR yð Þ

� �

� 100 ð6Þ

Figure 4. The suggested ANN structure.
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

y� y0ð Þ2
v
u
u
t ð7Þ

MAE ¼ 1

N

XN

i¼1

y0 � yj j ð8Þ

a20 ¼ m20

N
ð9Þ

where y, y0 and ~y are the measured, predicted and
mean values, respectively, N is the total number of
dataset, and m20 is obtained by dividing measured
PPVs by predicted PPVs. The prediction perfor-
mance results for the training and testing stages of
the developed ANN model are presented in Table 3.
The obtained R2, VAF, RMSE, MAE, and a20 were
0.9384, 93.82%, 4.483, 0.231, and 0.9 for the training

stage and 0.977, 97.391%, 4.38, 1.644, and 0.83 for
the test stage. These reveal that the ANN model is a
powerful and applicable model for PPV prediction.

After the ANN modeling, a necessary step is to
apply sensitivity analysis and to investigate the ef-

y = 0.952x + 1.7766
R² = 0.9384
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Figure 5. Actual and predicted blast-induced ground vibration

(training set).
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R² = 0.977
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Figure 6. Actual and predicted blast-induced ground vibration

(testing set).

Table 3. Performance prediction results for train and test stages

of ANN model

Stage Performance Index

R2 RMSE VAF (%) MAE A20-index

Train 0.9384 4.843 93.82 0.231 0.9

Test 0.977 4.38 97.391 1.644 0.83
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fects of the input variables on blast-induced PPV. To
this end, the cosine amplitude method was used;
thus:

rij ¼
Pm

k¼1 XikXjk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1 X
2
ik

Pm
k¼1 X

2
jk

q : ð10Þ

The value of rij ranges between 0 and 1. Values
closer to 1 indicate higher effect on the output. The
sensitivity analysis results (Fig. 7) show that the
CPD, with rji value of 0.656, is the most effective
input predictor of PPV, while S, with rji value of
0.061, has the least impact on PPV.

Optimization by FA

The FA can be used determine the blasting
pattern parameters through optimization. Different
FA-based models were created with the use of var-
ious modifiable parameters. Figure 8 depicts the
optimization process conducted using FA to opti-
mize blasting parameters. Following the accom-
plishment of several analyses, the most suitable FA
variables were achieved and are recorded in Table 4.
FA requires an objective function, which in this
study is the developed ANN model obtained from
the previous section. In fact, the ANN model has the
task of simulating the objective function. Eventually,
the optimal pattern parameters (the improved ver-
sion compared to the initial pattern) in order to re-
duce blast-induced ground vibration were obtained
by FA as shown in Table 5. In addition, the differ-

ence percentages of the parameters compared to
their mean values were calculated (Table 5); thus,
blast-induced ground vibration was reduced by 60%
if there are 1% increment of burden, 10% reduction
of spacing, 88% reduction of charge per delay. All
the differences percentages were calculated based
on mean values in the original database. As can be
seen in Table 5, CPD is the most effective parameter
for reducing PPV as the system output. It should be
mentioned that CPD is also found to be one of the
most effective parameters in previously developed
empirical and computational models (Armaghani
et al. 2014, 2015a, b; Ghoraba et al. 2016; Monjezi
et al. 2016; Shahnazar et al. 2017). This parameter
has also been determined as the most effective in-
puts in the sensitivity analysis discussed in the pre-
vious section. The results of optimization confirmed
that FA is a powerful technique that is able to
minimize blast-induced ground vibration up to 60%
in this study. In fact, this technique, due to its
powerful, can be used in other optimization prob-
lems in other engineering fields.

CONCLUSIONS

In the present paper, for the purpose of alle-
viating blast-induced ground vibrations, first, re-
quired data were collected and the input variables,
i.e., spacing, burden, charge per delay, distance
from blast face were prepared. As the system
output, PPV was specified. After that, several
parametric analyses were done with the use of
ANN for estimation of PPV. The MAE, RMSE,

CPD DI B S

0.656 0.162 0.120 0.061

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

R i
j

Inputs

Figure 7. Results of PPV sensitivity analysis.
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and VAF of the obtained ANN model were 0.231,
4.483, and 93.82%, respectively, for the training set
and 1.644, 4.38, and 97.391%, respectively, for the

testing set. These results reveal that the ANN is a
powerful, accurate, and applicable approach for
estimating PPV. In the optimization phase, FA was
used to minimize PPV where the developed ANN
model was considered as the objective function.
Various effective parameters of FA were identified
and utilized in the optimization. The results of FA
showed that it was able to minimize PPV to 60%
compared to its mean value. This can be achieved
when burden is 3.1 m (1% increment), spacing is
3.9 m (10% reduction), and charge per delay is
247 kg (88% reduction). The results of this study
indicated that ANN and FA are usable for similar
conditions and for the same model inputs and their
ranges.

Figure 8. The optimization process using FA to optimize blasting

parameters.

Table 4. Controllable FA parameters used for optimization

Parameter Symbol Value

Maximum number of repetitions MaxIt 400

Number of fireflies npop 151

Light absorption coefficient c 1

Randomization parameter a 0.2

Space width d 0.05

Amount attractiveness of r = 0 b 0.7
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ELECTRONIC SUPPLEMENTARY
MATERIAL

The online version of this article (https://doi.or
g/10.1007/s11053-020-09697-1) contains supplemen-
tary material, which is available to authorized users.
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