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A new imaging method has been developed for elucidating the observed magnetic data
gauged along profile. The method is based on the calculation of the correlation factor (the R-
parameter) between the analytic signal of the measured magnetic anomaly and the analytic
signal of the calculated response of some geometrically simple interpretive models in the
confined category of sheets, cylinders, and spheres. The characteristic parameters (amplitude
coefficient, depth, location, approximative shape of the buried structure, and effective angle
of magnetization) of the interpretive model correspond to the maximum R-parameter value.
The scheme has been verified on a number of noise-free synthetic examples and recovered
the actual model parameters. Prior to applying the developed scheme to real-field examples,
the accuracy of it has been carefully investigated on synthetic examples which are con-
taminated with realistic noise levels, interference effects, and regional field. Finally, the
method has been successfully applied to three real-field data examples from the USA,
Senegal, and Egypt for mineral exploration, and it is found that the obtained results are in
good concordance with those obtained from drilling and/or the published literature.

KEY WORDS: Magnetic data interpretation, R-parameter imaging method, Analytic signal, Mineral
exploration.

INTRODUCTION

Magnetic methods are useful in geothermal
exploration, environmental, and engineering appli-
cations, archaeological investigation, mapping of
unexploded military ordnance (UXO), and tectonic
studies (Hinze 1990; Munschy et al. 2007; Robinson
et al. 2008; Domra Kana et al. 2016; Elkhadragy
et al. 2018; Augusto et al. 2019; Linford et al. 2019).
In addition, magnetic methods have a remarkable
application in mapping economically significant
targets, such as ores and hydrocarbons (Eventov
1997; Piskarev and Tchernyshev 1997; Abdelrahman
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et al. 2007a; Mandal et al. 2014; Archer and Reid
2016; Essa et al. 2017, 2018; Innocent et al. 2019).

Analysis and interpretation of the magnetic
data anomaly gauged along profile by some geo-
metrically simple idealized body (such as faulted
structure, sphere, horizontal cylinder, and sheet)
remains of interest in the field of exploration geo-
physics (Abdelrahman and Essa 2015; Essa and
Elhussein 2019). In this context, the model param-
eters we seek to retrieve for the interpretive ideal-
ized body are the amplitude coefficient, depth,
shape, and the location.

Several numerical and graphical techniques
have been developed for interpreting the magnetic
data using some simple geometrical body. These
techniques include the characteristic curves method,
nomograms, characteristic points and distances
method, curve matching and standardized curves
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method (Gay 1963; McGrath and Hood 1970; Atchuta
Rao and Ram Babu 1980; Prakasa Rao et al. 1986;
Prakasa Rao and Subrahmanyam 1988; Dondurur
and Pamuku 2003; Subrahmanyam and Prakasa Rao
2009), Werner and Euler deconvolution methods
(Werner 1953; Thompson 1982; Reid et al. 1990;
FitzGerald et al. 2004; Reid et al. 2014), linear and
nonlinear least-squares methods (Abdelrahman and
Essa 2005; Abo-Ezz and Essa 2016), spectral methods
(Al-Garni 2011; Clifton 2017), Hilbert transforms
(Mohan et al. 1982), parametric curves method (Ab-
delrahman et al. 2012), Walsh transform technique
(Shaw and Agarwal 1990), local wave number method
(Salem et al. 2005), window curves method (Abdel-
rahman et al.2007b), derivatives-based method (Essa
and Elhussein 2017), tilt-depth and contact-depth
methods (Salem et al. 2007; Cooper 2016), moving
average methods (Abdelrahman et al. 2003), semi-
automatic method (Abdelrahman et al. 2002), and
correlation techniques (Ma and Li 2013; Ma et al.
2017). However, the drawback of most of these
methods includes the personal subjectivity in the
interpretation, the use of a few data points and dis-
tances out of the measurement profile (rather than the
entire data points of the profile), sensitivity to the
noise embedded into the magnetic data, impact of the
neighboring effect (which might deteriorate the
accuracy of the results), and independence in the
sense that these methods rely upon a priori informa-
tion, which sometimes may not be available (Essa and
Elhussein 2018).

Moreover, new metaheuristics algorithms were
developed for interpreting the magnetic data, such
as anti-colony optimization inversion (Liu et al.
2015; Kushwaha et al. 2018), differential evolution
algorithm (Balkaya et al. 2013, 2017), genetic algo-
rithm (Montesinos et al. 2016; Kaftan 2017), neural
networks method (Hajian et al. 2012; Al-Garni
2015), particle swarm optimization (Xiong and
Zhang 2015; Essa and Elhussein 2020), and simu-
lated annealing (Biswas and Acharya 2016). How-
ever, these approaches require wide search ranges to
recover the best-fitting model parameters, which
could be time-consuming in some cases.

In this paper, we propose an imaging method
(R-parameter imaging method) to interpret the
magnetic data taken along profile by some simple
geometrical bodies in the confined category of sheet,
semi-infinite vertical cylinder, infinitely long hori-
zontal cylinder- and sphere-shaped models. The
primary goal in this case is to recover the charac-
teristic model parameters (depth, effective angle,
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amplitude coefficient, origin point, and shape factor)
of the underlying approximative model. The method
calculates the R-parameter (a statistical parameter
called the correlation coefficient) between the ana-
lytic signal of the measured magnetic field and the
analytic signal of the synthetic response of an as-
sumed interpretive model out of the aforementioned
class. The best interpretive model is that with the
characteristic source parameters (evolved from the
developed imaging method) which correspond to the
maximum R-parameter value. The proposed
scheme has a number of benefits. First, it uses an
exact formula for the direct problem (i.e., the for-
ward modeling solution). Second, it uses the entire
data points of the measurement magnetic profile in
computing the depth and horizontal location of the
buried source, which are considered substantial
parameters in exploration geophysics. Third, it is not
very sensitive to noise as will be seen in “Syn-
thetic Examples’ section.

The layout of the present paper is described as
follows. “Forward Modeling Solution” section pre-
sents the direct problem. The formulation of the
proposed imaging scheme is described in ‘“Method-
ology” section. The developed scheme is then veri-
fied on synthetic models (including different levels
of noise, studying the interference effects, and the
embedded regional background) in “‘Synthetic Ex-
amples” section. The applicability of the scheme to
real data examples is carefully investigated and dis-
cussed in “‘Field Examples” section. Finally, con-
clusions are drawn.

FORWARD MODELING SOLUTION

The magnetic forward modeling solution along
profile of some geometrically simple bodies in the
context of sheets, cylinders, and spheres (Fig. 1)
(Gay 1963; Rao et al. 1977; Prakasa Rao et al. 1986;
Prakasa Rao and Subrahmanyam 1988; Abdelrah-
man et al. 2012) is given by

T(xj,X0,2,20,0,q,K)

A(zo = 2)° + B(xj — %) + C(x; — x,)°
((xj —X0)> + (20 — Z)z)q

i=1,2,3,....n

- K| -

where x; and x, are the horizontal coordinates (m)
of the observation point and the center of the buried
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Figure 1. Simple geometrical-shaped models configuration
and its parameters: sphere (top), infinitely long horizontal
cylinder (middle), and thin sheet (bottom).

q is the shape factor (dimensionless, where g = 2.5,2
and 1 for sphere, infinitely long horizontal cylinder,
and thin sheet models), K is the amplitude coeffi-
cient of the unit of which in this particular formu-
lation is nT m 2972, n is the total number of the data
points of the magnetic profile to be interpreted, and
A, B, and C are some parameters defined in Table 1.
In the case of sphere-shaped body, the parameters K
and 6 are the magnetic moment and effective angle
of magnetization (Rao et al. 1973; Prakasa Rao and
Subrahmanyam 1988). The detailed definition of
these parameters for the thin sheet and horizontal
cylinder bodies is given in Table 2.

METHODOLOGY

Analytic Signal Estimation

Nabighian (1972) demonstrated that the ana-
lytic signal AS can be expressed in terms of the

horizontal ( 47) and vertical derivatives ( 9L) of the
g 4
magnetic anomaly 7 as

or .oT .
ASOG.3) =G T i =YL @)
]

Thereby, the amplitude of the analytic signal,
|AS(x;, z)|, of magnetic anomaly is

sl = [(50) +(32)

By evaluating the horizontal and vertical derivatives
of the magnetic anomaly analytically from forward
modeling Eq. 1, and by substituting the corre-
sponding results into Eq. 3, we get

[(2C(x; — x,) + B)” + (PPP)?] [(x; — x,)? + (20 — 2)?] + 4q(RRR) [q(RRR) — (B(xj — X,) + 2C(x; — x,)* + 2A(z, — 2) + 2(PPP))]

|AS(x;,2)| = |K]| $

(5 — x0)? + (20 — 2)] "

(4)

source (Fig. 1), z and z,, are the vertical coordinates
(m) of the observation point and the buried source
(Fig. 1), 0 is the effective angle of magnetization ( °),

where the parameters A, B, and C are defined in
Table 1, RRR = A(z, — z)* + B(xj — x,) + C(x; —
x,)? and PPP = A*(z, — z)? +B*(xj — x,) +C*(xj —
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Table 1. Definition of the parameters A, B, and C of Eq. 1 and their vertical derivatives (Gay 1963; Rao et al. 1977; Prakasa Rao et al.
1986; Prakasa Rao and Subrahmanyam 1988; Abdelrahman et al. 2012)

Parameters Sphere Sphere Sphere Infinitely long horizontal Thin sheet (thin dike)
{total {vertical field} {horizontal cylinder, FHD of thin sheet, and FHD of
field} field} and SHD of geological geological contact

contact {all fields} {all fields}

A 3sin?(0) — 1 2sin(0) —cos(0) cos(0) cos(0)/(zo — 2)

B —3(z, — z)sin(20) —3(zo — z) cos(0) —3(z, — z)sin(0) 2(z, — z) sin(0) sin(0)

C 3cos?(0) — 1 —sin(0) 2 cos(0) —cos(0) 0

A 0 0 0 0 cos(0)/(zo — 2)*

B* 3sin(20) 3cos(0) 3sin(0) —2sin(0) 0

cr 0 0 0 0 0

FHD and SHD denote the first and the second horizontal derivatives of the magnetic anomaly, respectively

Table 2. Characteristic amplitude coefficient (K) and an effective angle of magnetization ( 0) for vertical, horizontal, and total magnetic
field anomalies due to thin sheet and horizontal cylinder (modified from Gay 1963, 1965)

Magnetic Thin sheet model Horizontal cylinder model
field type
Amplitude coefficient (K) = Magnetization parameter ( )  Amplitude coefficient (K) = Magnetization parameter ( 0)
Vertical 2¢t T} IL—d 2¢THS 1L —90°
Horizontal 2 ct T} sina I —d —90° 2¢T)S/sina Ih — 180°
Total 2t Ty 5ot 215 —d — 90° 2¢ Ty S5 215 — 180°

¢ is the magnetic susceptibility contrast of the thin sheet or cylinder model, ¢ and d are the thickness and dip of the thin sheet model, S is the
cross-sectional area of the cylinder model, Iy is the true inclination of the geomagnetic field, 7)) and I} are the effective total intensity and
effective inclination of magnetic polarization in the vertical plane normal to the strike of the body, and o is the strike of the body measured
clockwise from magnetic north

xo)z. The parameters A*, B*, and C*, which are the 1
vertical derivatives of the parameters A, B, and C ( ‘AS (x;, Z)‘ =|K | > >
A* =94 B* =98 and C* = 95), are given in Table 1. {(x,- —Xo)" + (20 — 2) }
Equation (4) represents the general formula of the

two-dimensional (2D) amplitude analytic signal for ‘ AS(x; z)‘ :|2 K| 1

some geometrically simple structures (sheets, cylin- " N2 B
ders, and spheres). {(x, *o)"+ (20— 2)

From Eq. 4, the amplitudes of the analytic sig- . . L
nal of the thin sheet ( ¢ =1) and 2D horizontal Flnglly, the amphtude analytic signal zlinomaly of the
horizontal, vertical, and total magnetic components

of a sphere model (g = 2.5) is

s and (5)

SR

cylinder ( g = 2) models are

\/ [(eee) ((x) — x0)% + (20 — 2)%) + 5(2¢08(0) (x; — %,)* — 3(20 — 2)(x; — X,) sin(0) — (2, — 2)* cos(0))’]
(5 — x0)% + (20 — 2)2]°

|AS(x;, )| =|K|

I

(7)

\/ [(559) (55 — %0)? + (20 — 2)7) + 5(2(z0 — 2)? sin(0) — 3(z, — 2)(x] — X,) cos(0) — sin(0) (x; — x,)?)’]
(5 — x0)> + (20— 2)2]°

|AS(x;,2)| =|K| , and
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|AS(x;, 2)| =|K|

\/[(fff) (55 = %0)” + (20 = 2)°) +5((z0 — 2)° Bsin’(0) = 1) = 3(z, — 2)(x; = %,) sin(0) + (x; — %,)’(3c0s(0) — 1))’]

(6 —x0)> + (20 — 2)2}3

)

©)

where eee, 4cos?(0)(4(x; — x,)* + (z0 — 2)°) —12
(2o — 2)(xj — x,) sin(0) cos(0) +9sin®(0)((x; — x,)*+
(20 — Z)z); SSS, 4Sin2(9)((xj - xo)z +4(z0 — Z)Z)
—12(zo — 2)(xj — X,) sin(0) cos(0) + 9sin*(0)  ((x;—
Xo) 4 (2o —2)%); and fff, 4(xj —x,)*(3cos?() —
D’ 4(zo — 2)°Bsin®(0) — 1) = 12(z0 — 2)(x] —
x,) sin(0) +9sin®(0)((x; — x0)* + (2o — 2)).

Model Search

The main goal of the interpretation process,
which requires an initial model, is to assess the
model parameters of a subsurface buried structure
from the observed magnetic data (Tarantola 2005).
The initial model can be constructed from the
available drilling, geological, and/or geophysical
information (Mehanee and Essa 2015).

In this paper, an R-parameter imaging tech-
nique is used to estimate the model parameters. A
2D (X-Z) mosaic of the R-parameter (the correla-
tion coefficient, dimensionless) is constructed from
the analytic signal amplitudes |ASoss| and |ASca|
determined, respectively, from the measured mag-
netic data and the calculated magnetic anomaly
generated by an assumed geometrical source jth and
is given as:

_ Z/y'l:l |ASObs |j|ASCal|j
\/E.?:l |ASObs|j2 2;1:1 |ASCal|j2

It is noted that |ASops| is obtained numerically
using Eq. 3, and that |[AS¢,| of an assumed source is
calculated analytically using Egs. 5-9.

In order to image the R-parameter variation
around the spatial location ( z, and x,) of an as-
sumed source, a 2D discretization in the X- and Z-
coordinates is performed. It is noted that the com-
putation of the R-parameter does not need a prior
knowledge about the amplitude coefficient (K) of
the assumed source model as is seen in Eq. 10. In the
case of sphere-shaped model the R-parameter ap-

R

(10)

proaches the extreme value (R-max) when the depth
( z,), the origin location ( x,). and the effective angle
of magnetization ( 0) of the observed magnetic
profile match the real source for a given data set.
The amplitude coefficient K is calculated from the
observed magnetic response at x; = x,, by substitut-
ing z,, Xo, Xj, 0 and g into Eq. 1. In the case of thin
sheet and horizontal cylinder models the parameter
K is calculated from Egs. 5 and 6 at x; = x,. The
parameter 0 is then calculated from the observed
magnetic response at x; = x, by substituting z,, x,,
xj, K and ¢q into Eq. 1.

The estimated magnetic response can then be
calculated from Eq. 1 along the measurement profile
to evaluate the misfit between the observed and
predicted responses. Figure 2 summarizes the
workflow of the developed scheme.

SYNTHETIC EXAMPLES

To verify and demonstrate the constancy of the
proposed scheme, three numerical models with
various anomalous sources (thin sheet, horizontal
cylinder, or sphere) have been investigated. In
Model 1 (thin sheet), we first verify the scheme on
noise-free magnetic data profile. Following that, the
noise impact on the accuracy of the model parame-
ters ( 2o, K, x, and 6) has been carefully assessed by
contaminating the aforementioned magnetic data by
various noise levels (3, 5, 7, and 10%) prior to
interpreting these data. In some geological settings,
the magnetic response of the main target (anoma-
lous body) can be influenced by the minor (sec-
ondary) structures present in the vicinity of the
target. Having known that, Model 2 (horizontal
cylinder) examines and assesses influence of the
neighboring structures on the accuracy of the
parameters recovered for the main target. Finally,
the effect of the embedded regional field has been
studied in Model 3 to demonstrate further the
developed method. It is noted that hereinafter the
parameter z of Eq. 1 is set to 0 in order to simplify
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Print the results and plot the
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ST

Figure 2. Flowchart showing the workflow of the developed
scheme.

the calculations; that is the depth of the observation
level is set to 0, which subsequently means that the
parameter z, in this case refers to the source’s depth
of burial.

Model 1

Figure 3a shows the magnetic anomaly profile
generated, from Eq. 1, for a sheet model ( ¢ =1,
Fig. 3b) with K =500 nT m, z, = 8 m, x, = 60 m,
and 0 = —35°. The profile length is 120 m. Figure 3c
presents the horizontal and vertical derivatives
(calculated from the data of the magnetic anomaly
depicted in Fig. 3a), which are used to construct the
amplitude profile of the analytic signal (Fig. 3d).
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Figure 3. Model 1: noise-free theoretical example. (a)
magnetic anomaly generated by the thin sheet model
presented in (b), (¢) horizontal and vertical derivatives of the
magnetic anomaly shown in (a), (d) amplitude of analytic
signal of the magnetic anomaly shown in (a), and (e) 2D
surface of the estimated R-parameter (R), and the R-max
value (black dot).

The 2D imaging surface S (over which the R-
parameter values are calculated) expanded to 120 x
15 m in both the X- and Z-directions (which means
(X0,20) € S =(0,120) x (1,15)), was discretized into
1-m intervals in both directions (Fig. 3e). Figure 3e
illustrates the R-parameter image constructed from
Eq. 10 using a sheet source (this means that the
parameter g was set to unity in Eq. 4). Figure 3e
shows a maximum value for the R-parameter (‘“R-
max”’) of 1, at which the optimal model parameters (
K =500 nT m, z, =8 m, x, = 60 m, and 0 = —35°)
have been achieved, which precisely correspond to
the actual model parameters (Table 3). In other
words, this means that the imaging scheme has suc-
cessfully retrieved the actual values of the model. To
realize better the analysis, Eq. 10 has been used to
determine the R-parameter values for two other
sources, namely sphere and horizontal cylinder
(Table 4). The table shows that the maximum value
of the parameter ““‘R-max” corresponds to the actual
source, which is the thin sheet model.
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Table 3. Model 1: recovered model parameters for the noise-free
synthetic example presented in Figure 3

Model parameters True Recovered
K (nT m) 500 500

Zo (m) 8 8

X, (m) 60 60

0(°) - 35 - 35

q 1.0 1.0

R-max 1.0 1.0

Table 4. Model 1: the R-parameter calculated for different shapes
for the noise-free synthetic example presented in Figure 3

Shape factor (q) Maximum R-parameter (R-max)

1 1.0000
2 0.9980
2.5 0.9960

Bold values indicate the correct model corresponding to the ture
subsurface one

To analyze further the performance of the
suggested method, subsequent white Gaussian noise
levels of about 3, 5, 7, and 10% have been added
into the magnetic data profile presented in Fig-
ure 3a. Each noise level was separately generated
and added into the magnetic noise-free data using
the MATLAB function “awgn’ in order to produce
the corresponding corrupted data set subject to
interpretation (Mehanee and Essa 2015). The noise
percentage was calculated as follows (Mehanee and
Zhdanov 2002; Zhdanov 2002)

HTnoisy — TH

x 100%, where
[ Toois | )

Noise percentage =

Toisy and T are the noisy and noise-free magnetic
data vectors. It is noted that hereinafter all pre-
sented noisy data are calculated as described above.
Figure 4 depicts the corresponding noisy magnetic
data. By applying the aforementioned procedures
for each noisy data set, the corresponding horizontal
and vertical derivatives, estimated amplitudes, and
estimated R-parameters are, respectively, shown in
panels (c), panels (d), and panels (e) of Figure 4.
Table 5 presents the corresponding results, which
demonstrate that “R-max” decreases with increas-
ing the noise level, and that the accuracy of the
model parameters is not significantly influenced by
the embedded noise levels. Thus, it can be con-
cluded that the scheme proposed here is stable with
respect to noise.
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In order to examine the developed method with
respect to the shape factor, we have re-interpreted
the aforementioned noisy data sets using a g value of
2 (that is, a horizontal cylinder model) and then
using another ¢ value of 2.5 (that is, a sphere-shaped
model) (Figs. 5, 6). Tables 6 and 7, respectively,
present the corresponding results, which suggest that
inaccuracy in the parameter g does not notably
influence the accuracy of the parameter x, when the
true value of the parameter 0 is used in the calcu-
lations. The tables also suggest that the parameters
K and z,, encountered some inaccuracy, which is not
unexpected because of the difference in the units of
the parameter K and that the depth in the case of
horizontal cylinder and sphere models is measured
to the center of the body, not to the top of the body
as in the case of the sheet model (Fig. 1), which is
the true model in this analysis.

Model 2

Figure 7a presents the composite magnetic
anomaly due to two nearby geological bodies
(Fig. 7b). The first (considered the main target) is
a horizontal cylinder model ( ¢; = 2) the param-
eters of which are: K; = 7000 nT m 2, z,; = 10 m,
Xo1 = 30m, and 6; = —45°. The second (consid-
ered an interfering secondary body) is a thin sheet
model ( g, = 1) with K; = 400 nT m, z,, = 5 m,
Xo2 = 100 m, and 6, = —30°. The horizontal and
vertical derivatives, analytic signal amplitude, and
R-parameter image are displayed in Figure 7c, d,
and e. Figure 7e depicts the “R-max” of the main
target (R- max; = 0.73) and the interfering struc-
ture (R- max; = 0.68). The corresponding model
parameters, respectively, are ( K; = 7502 nT m 2,
Zo1 = 10.7 m, x,; = 30 m, and 0; = —44°) and ( K,
=6424 nTm, z,p = 74 m, x,, = 100 m, and 6, =
—32.7°) (Table 8). The results support that the
scheme presented here is stable, and the retrieved
model parameters exhibited some inaccuracy
depending upon the extent of the neighboring ef-
fect, which is not unexpected.

To investigate the scheme further, the data
presented in Figure 7a have been corrupted by 5%
noise prior to interpretation (Fig. 8a, b, ¢, d, and e).
The results of the main and interfering targets are
(R- max; = 0.73, K; = 83721 nTm 2, z,; = 11.5 m,
Xo1 =30 m, and 0, = —47.77°) and (R- max; = 0.67,
K, = 7941 nTm, z,, = 8m, x,; = 100 m, and
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<«Figure 4. Model 1: noisy theoretical example for the thin sheet
model (Fig. 3a) after adding 3% noise (I), 5% noise (II), 7%
noise (IIT), and 10% noise (IV). The true shape factor (that is
q =1) is used in the calculations.

Table 5. Model 1: results and R-max obtained from the proposed
scheme using the actual shape factor (that is, ¢ was set to 1 in the
calculations) of different noise levels (Fig. 4)

Model parameters Noise level

3% 5% 7% 10%
K (nT m) 53560 57155  908.54 17356
2o (m) 8.1 8.4 102 12.9

x, (m) 60 60 60 60
0(°) — 3427 —3558 —49.17  — 64.29
q 1.0 1.0 1.0 1.0
R-max 0.99 0.96 0.94 0.91

0, = —39.19°) (Table 9), which remain in good
agreement with the actual ones.

In order to further assess the neighboring effect
on the accuracy of the scheme, we have reduced the
distance that separates the two bodies presented in
Figure 7b and corrupted the resulting forward
modeling magnetic anomaly by 5% noise. The new
locations of the two bodies are x,; = 30 and x,, = 45
m; the other model parameters remained unchanged
(Fig. 9a, b, c, d, and e). Table 10 presents the cor-
responding results of the two bodies ( K; = 45,792
nTm? z, =22 m, xo1 =34m, and 0; = —52.17°
with R- max; = 0.94) and ( K, = 3008.1 nT m, z,; =
22.7 m, x,» =39 m, and 0, = —68.51° with R- max; =
0.93), which suggests that the neighboring effect can
be notable when the separation distance is small in
the presence of noise.

Model 3

A 120-m magnetic anomaly profile (Fig. 10a)
due to a total effect of sphere model (K = 150,000
nTm?3,z,=7m,0=25,x,=75m,and q =2.5) and
a first-order regional (Fig. 10b) is introduced to as-
sess the effect of the embedded regional back-
ground. Figure 10c and d renders the horizontal and
vertical derivatives as well as the amplitude of the
analytic signal. Figure 10e illustrates the mosaic of
the R parameter on which an “R- max” of 0.99 is
shown.
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By adapting the procedures reported above, the
obtained model parameters of the total effect of the
spherical shaped model (¢ = 2.5) after adding the
regional background are found to be K = 158,590
nTm?3, z,=76m, 0 =26° and x, = 76 m, which
have a good coincidence with the actual parameters
(Table 11).

For realistic investigation, we added 10% noise
into the magnetic anomaly depicted in Figure 10a.
Figure 11a, b, c, and d demonstrates the magnetic
anomaly profile to be analyzed, horizontal and ver-
tical derivatives of this magnetic anomaly, and its
analytic signal amplitude. The R-parameter image
(Fig. 11e) yielded an “R-max” of 0.87 with model
parameters of K = 141,280 nT m 3 20=78m, 0=
22° and x, = 76 m, which is well matched with the
actual source model (Table 11). The obtained re-
sults in both cases confirm the constancy of this
method in magnetic data interpretation.

FIELD EXAMPLES

The scheme is applied to three magnetic field
examples for mineral exploration.

Case Study 1: the Pima Copper Mine, The USA

The Pima Province represents one of the most
important real sources of copper in the USA. The
Pima mining district is situated in the southern-west
of Tucson city, on the eastern part of the Sierrita
Mountains in Pima County, Arizona, USA. Fig-
ure 12a shows the vertical magnetic field profile ac-
quired from the Pima copper mine (Gay 1963). The
magnetic anomaly profile is 750 m long and was
digitized at 10-m sampling intervals. The horizontal
and the vertical derivatives and the amplitude of the
analytic signal are rendered in Figure 12b and c. The
2D mosaic image shows an ‘“R-max” of 0.99, as is
illustrated by the black dot shown in Figure 12d.
Table 12 shows the R-parameter computed for all
possible shape factors (¢ = 1, 2, and 2.5), where R-
max encountered its maximum value at g = 1, which
suggests that the buried structure resembles a thin
sheet. The corresponding approximative solution is
K = 4642438 nTm, z, = 71 m, x, = 370 m, 0 =
—55.11°, and g = 1. The predicted response has been
calculated from this solution and is found in good
match with the observed magnetic data (Fig. 12a).
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Table 6. Model 1: as in Table 5, but using an incorrect shape factor of 2 (that is ¢ = 2) (Fig. 5)

Model parameters

Noise level

3% 5% 7% 10%
K (nT m ?) 6878.4 7536.7 15,334 36,337
Zo (m) 11.9 12.3 152 19.1
X, (m) 60 60 60 60
0(°) - 19.12 — 18.90 — 45.61 — 60.39
q 2.0 2.0 2.0 2.0
R-max 0.98 0.95 0.93 0.89
Table 7. Model 1: as in Table 5, but using an incorrect shape factor of 2.5 (that is ¢ = 2.5) (Fig. 6)
Model parameters Noise level
3% 5% 7% 10%
K (nT m 3) — 152,500 — 182,210 — 356,940 — 960,140
Zo (m) 14.2 15.1 18.8 26.6
X, (m) 60 60 60 60
0(°) 5 5 5 5
q 2.5 2.5 2.5 2.5
R-max 0.98 0.95 0.93 0.90
2 100 . ;
£ in spetmode Table 8. Model 2: obtained model parameters for the noise-free
§ = sof (a) interfering structures
Lec
% 08 Model Noise-free interfering structures
s . % parameters
: Horizontal cylinder Thin sheet
5 model model
§_—§ (b)
&~ 10/ ) K (nT m 29-2) 7502 nT m 2 642.4 nT m
, ‘ ‘ ‘ ‘ Zo (m) 10.7 7.4
zzo 20 40 60 80 100 120 X, (m) 30 100
o * 0(°) — 44 - 327
T E q 2.0 1.0
SE o
BE R-max 0.73 0.68
-1

U
N
o

N
o

(nT/m)

AS-anomaly

0 20 40 60 80 100 120
x (m)

Figure 7. Model 2: influence of interfering structures: (a)
magnetic anomaly generated by two different adjacent bodies
of horizontal cylinder and thin sheet models (b), (¢) horizontal
and vertical derivatives of the magnetic anomaly shown in (a),
(d) amplitude of the analytic signal of the magnetic anomaly
shown in (a), and (e) 2D surface of the estimated R-parameter
and the R-max value (black dots; R-max ; = 0.73 at ¢; = 2 and
R-max , = 0.68 at ¢, = 1.0).

The magnetic profile analyzed here has been
interpreted by several authors (Gay 1963; Asfahani
and Tlas 2007). Table 13 compares the results ob-
tained from the scheme developed here against
those reported in the published literature. The
table shows that the depth and interpretive idealized
model determined using the present developed
method are compatible and consistent with those
confirmed from drilling and the published literature.

Case Study 2: West Coast anomaly, Senegal

Figure 13a represents the observed magnetic
anomaly (total field) measured in a region at the
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Figure 8. Model 2: (a) noisy magnetic anomaly generated by
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surface of the estimated R-parameter and the R-max value
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1.0).

Table 9. Model 2: obtained model parameters after adding 5%
noise to the interfering structures

Model parameters Noisy interfering structures

Horizontal cylinder Thin sheet
model model

K (nT m 24-2) 8372.1 nT m 2 794.1 nT m
Zo (m) 11.5 8
X, (m) 30 100
0(°) — 47.77 —39.19
q 2.0 1.0
R-max 0.73 0.67

western coast of Senegal of West Africa continent
(Nettleton 1976). The base line and the zero crossing
of the profile are those given by Nettleton (1976)
and Prakasa Rao and Subrahmanyam (1988). The
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Figure 9. Model 2: (a) the magnetic anomaly generated by the
data set shown in Figure 7a after decreasing the distance
between the two sources and adding 5% noise to the magnetic
anomaly, (b) sources outlines of the two given models
(horizontal cylinder and thin sheet model), (¢) the horizontal
and vertical derivatives the magnetic anomaly shown in (a), (d)
the amplitude of the analytic signal of the magnetic anomaly
shown in (a), and (e) 2D surface of the estimated R-parameter
and the R-max value (black dots; R-max | = 0.94 at ¢; = 2 and
R-max , = 0.93 at ¢, = 1.0).

Table 10. As in Table 9, but the distance between the two
anomalous bodies is much smaller

Model parameters Noisy interfering structures with much closer

distance
Horizontal Thin sheet

cylinder model model
K (nT m 24-2) 45,792 nT m 2 3008.1 nT m
Z, (m) 22 22.7
X, (m) 34 39
0(°) - 5217 — 68.51
q 2.0 1.0
R-max 0.94 0.93

magnetic anomaly profile is 40 km long and was
digitized at 0.5-km intervals. Nettleton (1976) re-
ported that the causative body is comprised of a
basic intrusion within the basement rock.
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Figure 10. Model 3: the effect of regional field: (a) magnetic
anomaly generated by a sphere model (b) and a first-order
regional, (¢) horizontal and vertical derivative of the magnetic
anomaly shown in (a), (d) amplitude of analytic signal of the
magnetic anomaly in (a), and (e) 2D surface of the estimated
R-parameter, and the R-max value (black dot).

Table 11. Model 3: recovered model parameters of a composite
magnetic anomaly generated by both a sphere model and an
embedded regional background

Model parameters Composite effect of a sphere + 1st order

regional
Noise free Noise (10%)

K (nT m ) 158,590 141,280
Zo (m) 7.6 7.8

X, (m) 76 76

0(°) 26 22

q 2.5 2.5
R-max 0.99 0.87

Figure 13b, c, and d shows the horizontal and
vertical derivatives, analytic signal response, 2D
surface for the R-parameter. Figure 13d reveals an
R-max value of 0.99 using a sphere model the cor-
responding model parameters of which are K =
461,865.90 nT km 3, z, = 10 km, x, =29 km and 0 =
19°, and g = 2.5. Table 14 presents the R-parameters

0 20 40 60 80 100 120
x (m)

Figure 11. Model 3: (a) noisy magnetic anomaly generated by
the data set shown in Figure 10a after adding 10% noise, (b)
model sketch, (¢) horizontal and vertical derivative of the
magnetic anomaly shown in (a), (d) amplitude of analytic
signal of the magnetic anomaly in (a), and (e) 2D surface of
the estimated R-parameter, and the R-max value (black dot)..

calculated for various shape factors (¢ = 1, 2, and
2.5), and the maximum of the R-parameter corre-
sponds to a shape factor g of 2.5, which suggests that
the buried structure can be reasonably described by
a sphere body.

Table 15 compares the results obtained here
against those reported in the published literature
(Nettleton 1976; Prakasa Rao and Subrahmanyam
1988; Abdelrahman et al. 2007a). The comparison
supports that the depth and index angle recovered
by the scheme developed in our paper are in good
match with those reported in the published litera-
ture.

Case Study 3: the Hamrawein anomaly, the Red Sea,
Egypt

The total observed magnetic anomaly of the
Hamrawein field example was measured by a highly
definition airborne magnetic survey along the
Hamrawein area, over the western margin of the
Red Sea, Egypt (Salem et al. 1999). Generally, the
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Figure 12. The Pima copper mine anomaly, USA. (a) True
(red) and calculated (black) anomalies, (b) horizontal and
vertical derivatives of the magnetic anomaly shown in (a), (c)
amplitude of the analytic signal of the magnetic anomaly
shown in (a), and (d) 2D surface of the estimated R-parameter
and the R-max value (black dot; R-max = 0.99 at ¢ = 1.0,
K =46,42438 nT m, z, =71 m, x, =370 m and 0 = —55.11°).
The standard deviation between the true and calculated
magnetic anomalies is 28.27 nT..

Table 12. Case study 1: the Pima copper mine, USA

Shape factor (q)

Maximum R-parameter (R-max)

1
2
2.5

0.9884
0.9839
0.9834

Bold values indicate the correct model corresponding to the ture

subsurface one

R-parameter calculated for various interpretive shapes
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Figure 13. The West Coast anomaly, Senegal. (a) True (red) and
calculated (black) anomalies, (b) horizontal and vertical
derivatives of the magnetic anomaly shown in (a), (¢) amplitude
of the analyticsignal of the magnetic anomaly shown in (a), and (d)
2D surface of the estimated R-parameter and the R-max value
(black dot; R-max = 0.99 at g = 2.5, K = 461,865.90 nT km 3, z, =
10 km, x, =29 km and 0 = 19°). The standard deviation between
the true and calculated magnetic anomalies is 33.83 nT..

Table 14. Case study 2: the West Coast of Senegal anomaly, West
Africa

Shape factor (q) Maximum R-parameter (R-max)

1 0.9879
2 0.9878
2.5 0.9925

Bold values indicate the correct model corresponding to the ture
subsurface one
R-parameter calculated for various interpretive shapes

Table 13. Case study 1: the Pima copper mine, USA

Model Drilling Gay Abdelrahman  Asfahani Tlas and Abdelrahman Abo-Ezz  Ekinci  Biswas  Present

parameters information method et al. (2003) and Tlas Asfahani and Essa and Essa  (2016) et al. study
Gay (1963)  (1963) (2007) (2011) (2015) (2016) (2017)

K ®mTm) - - 1611 - - - 1219 3926731 613.0  46,424.38

Z, (m) 64 69.8 68 71.5 71.25 60 61.5 67.9 68.0 71

X, (m) - - - - -0.22 - - - -4.3 370

0(°) - - -52 - 50.5 — 4758 - — 66.4 -50.76 - — 5511

q - 1.0 1.0 1.0 1.0 0.95 1.0 1.0 1.0 1.0

Bold values indicate the correct model corresponding to the ture subsurface one

Comparison results
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Table 15. Case study 2: the West Coast of Senegal anomaly, West Africa

Model Parameters Nettleton (1976)

Prakasa Rao and Subrahmanyam (1988)

Abdelrahman et al. (2007a) Present study

K (nT km %) - -
Z, (km) 10 10.8
X, (km) - -
0(°) 20 19.5
q 2.5 2.5

310795.0 461,865.90
11.62 10
- 29
18.5 19
2.5 25

Bold values indicate the correct model corresponding to the ture subsurface one

Comparison results
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Figure 14. The Hamrawein anomaly, the Red Sea, Egypt. (a)
True (red) and calculated (black) anomalies, (b) horizontal
and vertical derivatives of the magnetic anomaly shown in (a),
(¢) amplitude of the analytic signal of the magnetic anomaly
shown in (a), and (d) 2D surface of the estimated R-parameter
and the R-max values; R-max ; = 0.80 at ( ¢; = 1.0, K; =
102,046 nT m, z,; = 480 m, x,; = 4550 m and 0; = 70.49°) and
R-max ; =0.59 at (g2 = 1.0, K; = 56,549.52 nT m, z,, = 400 m,
Xp2 = 15200 m and 0, =55.04°). The standard deviation
between the true and calculated magnetic anomalies is
26.57 nT..

Hamrawein area is covered by sedimentary and
meta-volcanic rocks and the observed magnetic
anomaly is represented by two main anomalies
(Salem 2005; Salem et al. 2005). The profile of the
magnetic anomaly has a length of 17,800 m digitized
at 200-m intervals (Fig. 14a).

The horizontal and vertical derivatives as well
as the amplitude of the analytic signal of the mag-

Table 16. Case study 3: the Hamrawein anomaly, the Red Sea,

Egypt
Shape Maximum R-parameter
factor (q)
First anomaly Second anomaly
(R-max) (R-max)

1 0.8010 0.5932

2 0.7948 0.5888

2.5 0.7944 0.5852

Bold values indicate the correct model corresponding to the ture
subsurface one
R-parameter calculated for various interpretive shapes

netic anomaly are shown in Figure 14b and c,
respectively. The 2D mosaic surface of the R-pa-
rameter reveals two maxima: R-max { = 0.80 and R-
max , = 0.59, as is shown by the black dot shown in
Figure 14d. Table 16 shows the R-parameters cal-
culated for all possible shapes, and that R-max ap-
proaches its maximum when the shape factor is 1 for
the two main targets. The corresponding model
parameters are ( K; = 102,046 nT m, z,; = 480 m,
Xo1 = 4550 m and 6; = 70.49°, and ¢q; = 1.0) and ( K,
=56549.52 nT m, z,, = 400 m, x,, = 15,200 m and 0,
= 55.04°, and ¢, = 1.0), respectively. Figure 14a
shows that the observed and modeled (predicted)
responses are in good match.

Table 17 demonstrates a comparison between
the outcomes obtained by the present approach and
the other published methods (Salem et al. 2005; Essa
and Elhussein 2018). Salem et al. (2005) interpreted
the Hamrawein anomaly as two sheet structures at a
depth of z,1 = 555.7 and z,; = 441.2 m. Salem (2005)
reported a depth of z,; = 540 m and z,, = 447 m.
Salem (2011) interpreted the Hamrawein anomaly
using the local wave number (LW) method with
depths of z,; = 432.6 m and z,; = 422.8 m and using
the total gradient (TG) method with depths of z,; =
486.5 m and z,, = 440.4 m. Essa and Elhussein
(2018) interpreted these anomalies using the particle
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Table 17. Case study 3: the Hamrawein anomaly, the Red Sea, Egypt
Model Salem et al. (2005) Salem (2005) Salem (2011) Essa and Elhussein Present study
parameters (2018)
First Second First Second First Second First Second First Second
anomaly anomaly anomaly  anomaly  anomaly anomaly anomaly anomaly anomaly  anomaly
K (nT m) - - - - 127,595.3  83,746.7 507.64 42738 102,046.00 56,549.52
Z, (m) 555.7+10 4412413 540+£30 477+£25 440.4 623.05 494.14 480 400
X, (m) 4526.3 + 14,858.4+17 4530+10 14,850+21 - 425598  14,823.96 4550 15200
7
0(°) - - - - - 57.04 3727 70.49 55.04
q 1.44 1.20 14+01 12401 1.0 1.0 1.0 1.0 1.0

Bold values indicate the correct model corresponding to the ture subsurface one

Comparison results

swarm optimization (PSO) ( z,1 = 623.05 m and z,,
= 494.14 m). It can be concluded that the depths
obtained by the developed scheme ( z,; = 480 m and
Zo2 = 400 m) are in good agreement with those re-
ported in the published literature.

CONCLUSIONS

The R-parameter imaging technique is a fast (it
takes about 2s on a simple PC) and automatic
imaging approach that can estimate the model
parameters of a buried anomalous body (depth,
location, effective angle of magnetization, amplitude
coefficient, and shape). The developed method uti-
lizes the amplitude of the analytic signal of the real
data and the amplitude of the analytic signal of the
calculated data caused by some assumed sources. It
approaches the maximum (R-max) when the model
parameters match the true ones. The three numeri-
cal examples investigated in this paper show that
developed scheme is stable with respect to noise,
and that the neighboring effect can impact the
accuracy of the recovered model parameters. The
method has been successfully applied to three real-
field data examples from the USA, Senegal, and
Egypt, and affirmed that the obtained results are
reasonable and reliable with the background infor-
mation that was obtained from drilling and other
methods. The developed R-parameter imaging
method is appropriate in ore and mineral explo-
ration and reconnaissance studies intended to
delineate the subsurface structures from magnetic
data.
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