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In advanced exploration projects or operating mines, the process of allocating capital for
infill drilling programs is a significant and recurrent challenge. Within a large company, the
different mine sites and projects compete for the available funds for drilling. To maximize a
project�s value to its company, a drillhole location optimizer can be used as an objective tool
to compare drilling campaigns. The fast semi-greedy optimizer presented here can allow for
the obtention of close to optimal solutions to the coverage problem with up to three orders
of magnitude less computing time needed than with integer programming. The heuristic
approach is flexible as it allows dynamic updating of block values once new drillholes are
selected in the solution, as opposed to existing methods based on static block values. The
block values used for optimization incorporate kriging estimate and variance, estimate of
indicator at cutoff grade and distances to existing or newly selected drillholes. The heuristic
approach tends to locate new drillholes within the maximum risk areas, i.e., within less
informed zones predicted as being ore zones. Applied to different deposits, it enables, after
suitable normalization, comparison of different drilling campaigns and allocation of budgets
accordingly.
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INTRODUCTION

During exploration and mining phases, the costs
of infill drilling represent a significant portion of
total project costs. Deposit definition is usually the
result of a staged process with confidence in mineral
resource estimates being gradually upgraded from
inferred to indicated and measured categories
(Canadian National Instrument 43-101). Uncertainty
on a deposit can represent a high risk for the com-
pany in terms of investment (e.g., construction of a
new mine or extensions) or actual production. Par-

ker (2012) indicates that changes in the net present
value (NPV) can be six times the variations on
grade, so that a 10% error in grade estimation can
result in a 60% variation in NPV. In order to de-
crease the risks associated with resource estimation,
obtaining more information through further drilling
is the standard practice. Face with limited budget,
optimization of drillhole localization becomes of
strategic importance for mining companies.

Infill drillhole planning is generally performed
manually by an experienced geologist. The drilling
plan is then submitted for approval. To reduce
subjectivity inherent to the exercise, drillhole loca-
tion optimization has been studied since the late
1970s (Kim et al. 1977; Scheck and Chou 1983).
These attempts focused mainly on selecting drill-
holes so as to minimize kriging variance (McBratney
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et al. 1981; Gershon et al. 1988; Mohammadi et al.
2012; Jafrasteh and Fathianpour 2017). The main
limitation of kriging variance is that it depends only
on data location and the variogram model, but not
on actual grade estimates. Mohammadi et al. (2012)
proposed to use the product of kriging variance and
kriged grade estimate to favor localization of new
drillhole in high-grade areas with large uncertainty.

Conditional simulations have also been consid-
ered for drillhole location optimization. They allow
generation of equiprobable realizations of the ran-
dom function (Chilès and Delfiner 2012). Both grade
and domains (or lithologies) can be simulated with
different algorithms such as sequential simulation
(Journal 1974), turning bands (Matheron 1973),
moving average (Chilès and Delfiner 2012) or sim-
ulated annealing (Kirkpatrick et al. 1983) among
many other methods. For each node or block, mul-
tiple realizations can be generated, providing a
measure of local uncertainty. Pilger et al. (2001),
Pinheiro et al. (2017) or Zagré et al. (2018) used
various forms of conditional simulations to define
the uncertainty parameter to be minimized.

The drillhole optimization problem was mod-
eled by Bilal et al. (2013) and Zagré et al. (2018) as a
set covering problem. In this approach, if a block�s
distance to the closest drillhole is less than a selected
distance threshold, it is considered fully covered;
otherwise, it is considered fully uncovered. It is then
possible to formulate the best coverage for a set of
blocks by a set of drillholes as an integer program as
mentioned in Bilal et al. (2014). The coverage ap-
proach has two main drawbacks. First, it is very slow
for large problems. Second, it uses a crude definition
of coverage. More realistically, a block should be
considered as only partially covered when some
drillholes are found close to the block.

We propose two main improvements to the
previous approaches. First, we define an objective
function focusing on the riskier parts of the deposits
and allowing easy updating of block values (BVs)
without having to redo the kriging every time a
drillhole is selected. Second, we present a new
heuristic approach using a semi-greedy method that
executes quickly and allows, for the first time, a
partial coverage of blocks. The proposed approach is
applied to a real deposit where it is also compared to
integer programming solution for execution time
and optimality gap in the special case of a 0–1
weighting function.

METHODOLOGY

Objective Function

The proposed block value (BV) function is:

BV xjhð Þ ¼ Z�
k xð Þ � r2�k xð Þ � I�a xð Þ �

Yn

i¼1
x1 xjhið Þ ð1Þ

where h is the set of existing drillholes and already
selecteddrillholes,n is the cardinal of the seth,BV(x|h)
indicates that theBV depends of the set h,Z�

k xð Þ is the
kriged grade estimated at block x, r2�k xð Þ is the block

kriging variance and I�a xð Þ is the indicator value
(Journal 1982) estimated at block center using cutoff
grade a. Only existing drillholes (not the selected ones)

are used to compute Z�
k xð Þ, r2�k xð Þ and I�a xð Þ. Hence,

these quantities have to be computed only once. Only
theweighting functionx1(x|hi) varies, between 0 and 1,
with the selected drillhole hi. It is 1 for blocks outside
the hi, and it is 0 for a block x that is crossed at its center
by drillholehi. Equation (1) gives high values to blocks
with high-grade estimate Z�

k xð Þ, high uncertainty

r2�k xð Þ and high probability I�a xð Þ to be above the cutoff
grade. For a given grade estimate and uncertainty, it
seems logical to prioritize covering of blocks that can
be exploited at a lower cutoff grade (hence with
higher I�a xð Þ). Once a given drillhole hi is selected, the
likelihood of selecting another drillhole in the same
area diminishes drastically because of the function
x1(hi). This avoids clustering of drillholes in a high-
grade area.

Similarly, we define the coverage of a candidate
drillhole hi as:

K hið Þ ¼
Xnb

j¼1

BV xjjh
� �

� x2 xjhið Þ ð2Þ

where nb is the number of blocks and x2(x|hi) is a
decreasing function, which is equal to 1 when x is
crossed at its center by hi and 0 for blocks outside the
distance of influence of drillhole hi. Note that x1

diminishes the value of a block that is already in-
formed by at least one nearby drillhole and x2 de-
creases the coverage of a block that is located farther
from the candidate drillhole. The classical approach
used in coverage optimization (e.g., Zagré et al. 2018)
implicitly usesx1 as a 0–1 step function at the drillhole
distance of influence and x2 as a 1–0 step function at
this same distance. Our formulation is, therefore,
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more general as it allows continuous variation of the
BV and drillhole influence.

The objective function to minimize is simply the
sum of BVs in Eq. 1 given the existing and added
drillholes, thus:

OF ¼
Xnb

i¼1

BV xjh [ haddð Þ ð3Þ

In the semi-greedy approach, we do not seek to
minimize exactly Eq. 3 but rather to find good
solutions by sequentially choosing drillholes with
high K(hi) values in Eq. 2 as described in the next
section below.

The quality of a solution is best expressed by its
coverage value:

CSol ¼
OF0 �OFSol

OF0
ð4Þ

where OF0 is the value of the objective function
using only the existing drillholes and OFSol is the
value of the objective function obtained with the
solution proposed. Figure 1 presents a theoretical
2D example of the dynamic updating of weighting
schemes. The example area has an extent of 100 by
100 units, and two existing virtual data (red squares)
were positioned at [0, 50] and [100, 50]. The two
upper images present x1 (left) and x2 (right) for a
first tested point positioned at [50, 25]. The red circle
lines are drawn at 25 units from the existing and
tested positions (distance of influence). The two
bottom images show the updated weights at a second
point (at [50, 75]) once the first point is accepted.

Semi-greedy Optimization

The drillhole positioning optimization problem
belongs to the family of the ‘‘set covering problem’’
(Bilal 2014), one of the 21 NP-complete problems
defined by Karp (1972). Some heuristic algorithm
used for drillhole positioning optimization includes
simulating annealing (Pinheiro et al. 2017), genetic
algorithm (Soltani et al. 2011), bees colonies (Ja-
frasteh and Fathianpour 2017), particle swarm
(Fatehi et al. 2017) and tabu search (Zagré et al.
2018). These algorithms are CPU time intensive for
large 3D models. To circumvent this limitation, a
fast and flexible semi-greedy heuristic algorithm
(Hart and Shogan 1987) is proposed.

The algorithm was developed in MATLAB
software and works for either 2D datasets (best
suited for a single lens or a tabular deposit) or 3D
datasets. In 3D, a series of possible collar positions,
orientations, dips and lengths of drillholes are eval-
uated to provide close to an optimal solution.

Semi-greedy Algorithm

The semi-greedy algorithm works sequentially,
one drillhole at a time. A new drillhole is randomly
selected among a list of nlist best drillhole candi-
dates. A new selected drillhole is added to the set of
already selected drillholes. The blocks� values are
updated, and the coverage function of the remaining
candidate drillholes is recomputed and sorted to
account for the newly selected drillhole. The
sequential selection continues until the drilling
budget is exhausted. Because there is a random
component involved when selecting one drillhole
from the sorted candidate list, the process can be
repeated ntrial times, each time providing a different
subset of selected drillholes. In the end, the best
solution among the ntrial is kept. In the semi-greedy
algorithm, there are three parameters to specify: the
size nlist of the list of best drillhole candidates, the
number ntrial of trials to run and the distance of
influence of a drillhole (dmin).

� Initialization. The input consists of:
� blocks to consider with their block-values

BV (x|h) (Eq. 1)
� existing drillholes
� candidate drillholes
� length of best candidate list (nlist)
� number of trials (ntrial)
� distance of influence of a drillhole (dmin)
� available drilling budget

� For each trial, until drilling budget is ex-
hausted

� compute BV (x|h) per block x considering
the existing and already selected drillholes h
(Eq. 1)

� compute coverage value K(hi) (Eq. 2) for
the remaining candidate drillholes and sort
it in decreasing order of coverage

� randomly select one among the nlist best
drillhole candidates
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� Compute OF value (Eq. 3) for current solu-
tion. The solution with the best coverage
among the ntrial solutions (Eq. 4) is kept.

When updating the blocks� values, only function
x1(x|hi) modifies the BVs. Kriging estimates (grade
and indicator) are left unchanged as the selected
drillhole is not yet materialized. Although kriging
variance can be recomputed to account for the
reduction in uncertainty brought by the newly se-
lected drillhole, this was not implemented in our
approach. The weight function x1(x|hi) essentially
fulfills this purpose by reducing the value of a block
already informed by a nearby drillhole (real or se-
lected). This avoids repetition of kriging for each
potential candidate drillhole, which drastically re-
duces the CPU time required.

The Role of nlist Parameter

The parameter nlist represents the length of the
list of the current best candidates. When nlist = 1,

we have the greedy solution, i.e., at each step we
take the best drillhole available. When
nlist = number of candidate drillholes, the selection
is purely random.

A simple example illustrates that the semi-
greedy approach provides better solutions than a
greedy approach. Consider a series of potential
drillholes with unit separation along a line and val-
ues: 1.1–2.1–3.1–4–3–2–1. To simplify, we use the
step weighting function x2 (with dmin = 1.5) and we
suppose two drillholes are needed and can only be
located at the above points. The greedy approach
first selects point 4 (best) and then point 2.1 (as
points 3.1 and 3 are already fully covered by point 4,
their value becomes 0). The total coverage value is
1.1 + 2.1 + 3.1 + 4 + 3 = 13.3. If we use a semi-
greedy approach say with nlist = 2, points 3.1–4 are
candidates for the first draw. Assume 3.1 is selected,
the next draw will be between 3 and 2 (as 2.1 and 4
are already fully covered, their value is updated to
0). Suppose point 2 is selected. The total coverage is
then 2.1 + 3.1 + 4 + 3 + 2 + 1 = 15.2, which is a
significant improvement over the greedy choice.

Figure 1. Weighting scheme theoretical example. Upper row presents x1 (left) and x2 (right) for the point (50,

25) (black dot) accounting for existing or already selected drillholes (two red dots). Bottom row shows the

updated weights for point (50, 75) once point (50, 25) has been selected.
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Note that, in this simple example, the optimal choice
is to select points 2.1 and 3, which give a total cov-
erage of 1.1 + 2.1 + 3.1 + 4 + 3 + 2=15.3. This opti-
mal choice would be available in the semi-greedy
approach with nlist ‡ 3 and will eventually be se-
lected provided we draw often enough (i.e., large
ntrial).

Choice of Distance of Influence dmin

The choice of the distance of influence can be
based on the geologist�s knowledge and experience
with the consideration of the variogram effective
correlation range, the geometric features of the de-
posit, similar outcrops or of already exploited areas.
A noticeable advantage of our approach is that it
enables to have a decreasing weight function from 1
for distance zero to 0 at the distance of influence,
instead of only a step function as in Zagré et al.
(2018).

For linearly varying weight functions x1(x) and
x2(x), increasing dmin diminishes BV (x|h) for each
block but increases the weights given to each block
when computing drillhole coverage with Eq. 2. The
solutions obtained are relatively robust to the choice
of dmin for linearly varying weight functions (see
next section).

CASE STUDY

Datasets Presentations

The proposed methodology and algorithm were
applied to two different datasets from the Rosebel
Gold Mine (RGM) in Suriname (South America).
The RGM is situated within the greenstone belt of
the Guianese shield, and it is composed of multiple
orogenic gold deposits (Daoust et al. 2011). RGM
produced approximately 5 Moz of gold since the
beginning of its commercial production in 2004.

To assess both 2D and 3D capabilities of the
software, two partial datasets were extracted from
two different deposits from the RGM complex.
Multiplicative factors were applied to the gold grade
values to protect confidentiality without altering any
of the results or conclusions in the present research.

2D Application

The 2D dataset corresponds to a subzone of the
RGM�s deposit. The ore zone selected corresponds
to a vertical shear zone extending approximately
over 400 m along strike and 500 m vertically. In
total, 96 drillholes crossing the ore zone were se-
lected to provide initial information.

The gold grades of the intersecting portions of
the drillhole, within the ore zone, were calculated as
a single composite, and the horizontal width of the
ore zone was saved. A 10 9 10 m regular grid was
created to define blocks within the deposit. The
same grid was used as possible definition drillhole
locations. Variogram models were used to interpo-
late the variables grade, thickness and grade indi-
cator above a cutoff grade of 1 g/t on the grid. The
BV function Eq. 1 was then calculated for each
block including ore thickness. The basic statistics of
the initial BVs are presented in Table 1. Locations
farther than 100 m from existing drillholes were
considered too remote to be considered for defini-
tion drillholes. A crisp 1–0 coverage distance was
applied to each drillhole to allow direct comparison
with integer programming results. A dmin of 26 m,
specific to the Rosebel case, was selected as a com-
promise: It is small enough to be compatible with
full coverage but large enough to allow some over-
lapping between drillhole locations. The dmin to be
used is expected to vary depending on geological
continuity, drill spacing and smu size specific to the
case under study. The impact of the dmin distance
on results is assessed in the next section below.

Figure 2 presents a 2D longitudinal view of the
existing drillholes (black points), and the BVs ob-
tained considering the existing drillholes. The se-
lected drillholes by semi-greedy algorithm (red
points) for sets of 1, 5, 10 and 20 drillholes are
indicated. The selected drillholes effectively cover
the high values areas. It can be noted that the exact
position varies with the number of drillholes rec-
ommended. Hence, for example, the best location
when N = 1 is not necessarily retained for solutions
corresponding to a larger N, which matches the ex-
pected behavior (Fig. 2).

Table 1. Block values basic statistics for the 2D dataset

Number of blocks Minimum Maximum Mean SD

873 0 100.2 27.0 22.9
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With a 0–1 weight function, we can compare the
best values of the semi-greedy algorithm to the exact
optimal solution obtained by integer programming.
For this, we use the linear program described in
Zagré et al. (2018). We stress that the integer pro-
gramming approach is limited to the step function

weighting scheme and does not allow for partial
coverage of blocks, contrarily to our semi-greedy
approach.

Figure 3 presents the coverage expressed in
percentage of the total BVs, as a function of the
number of drillholes optimized (a proxy for budget)

Figure 2. Longitudinal 2D results view. Black dots correspond to existing drillholes with ore intersects. Red dots are the resulting

drillholes from the optimization. BV considering only the existing drillholes is illustrated.
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by both integer programming and the proposed
semi-greedy algorithm. With dmin = 26 m and a
maximum distance of 100 m from existing drillholes,
approximately 80 drillholes suffice to cover entirely
the area. Both curves initially show a fast increase in
coverage and then a slower rate of improvement,
due to then filling the areas with lower BVs. The
blue line represents the optimality gap for each
solution expressed as the ratio (Csg � Copt)/Copt (Csg

is coverage with semi-greedy; Copt is coverage with
integer programming). The maximal optimality gap
reaches around 13% for N between 15 and 25.
Afterwards, the optimality gap decreases progres-
sively.

Two parameters mainly influence the quality of
the results and the calculation time of the semi-
greedy algorithm: nlist and ntrial. Figure 4a shows
the semi-greedy coverage results for 20 drillholes as
a function of nlist (using ntrial = 300). Increasing
nlist rapidly improves the quality of the solution at
the beginning, but when nlist becomes too large, the
total coverage decreases. Indeed, setting nlist equal
to the total number of drillholes available would be
equivalent to randomly selecting N drillholes and
keeping the best draw among ntrial trials, a poor
method of optimization. Conversely, setting nlist to
1 corresponds to a purely greedy solution, again, not
the best optimization approach. An easy method to
select nlist is to simply run the algorithm with a
series of increasing values for nlist until the maxi-
mum has been identified. Because the semi-greedy
algorithm is fast, this approach is tractable.

Figure 4b presents the results of applying the
semi-greedy algorithm with different nlist for 1–200
drillholes (with ntrial = 300). The best results were
obtained for nlist between 10 and 100 for all number
of drillholes to be selected. This suggests that a good

choice for nlist is relatively independent of the dril-
ling budget represented here by the number of
drillholes.

The other parameter that can be adjusted is the
number of trials ntrial. Using a fixed nlist = 50,
Figure 5 demonstrates convergence to a decent
solution after a relatively low number of trials (i.e.,
25–50). Increasing ntrial to above 100 improves the
results only marginally but increases computation
time linearly.
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Figure 4. (a) Coverage for 20 drillholes as a function of nlist,

using ntrial = 300. (b) Optimization coverage results for 1–200

drillholes for different nlist with ntrial = 300.
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Influence of dmin for Step or Linear Weight
Functions

The use of step functions in the previous sec-
tions was done to allow direct comparison of the
semi-greedy solutions to the optimal solutions ob-
tained by integer programming. It is obviously more

realistic to assume that the coverage of a block due
to the presence of a drillhole decreases regularly as a
function of distance. The influence of choice of dmin
for both types of weight functions is examined.

Results obtained for five new drillholes with
dmin values of 21, 26, 31 and 36 used with step and
linear functions are shown in Figure 6. The corre-

Figure 6. Longitudinal 2D results for five drillholes and increasing dmin with step (a) and linear (b) weight functions. Existing drillholes

(black dots) and drillholes selected (red dots) by semi-greedy algorithm with nlist = 50 and ntrial = 1000. Map of BVs considering only the

existing drillholes is illustrated.
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sponding coverage value obtained (computed with
Eq. 4) is given in Table 2. As expected, the choice of
dmin is more influential for the step functions than
for the linearly varying functions. For the step
functions, increasing dmin to 26 m removes the
drillhole located in the central part of the deposit as
this area becomes covered by the existing drillholes.
Increasing further dmin increases separation be-

tween drillholes and locate them more on the
periphery. The coverage Csol increases with dmin as
total BV to be covered diminishes, and the area
covered by each drillhole increases. We retained a
value of dmin = 26 m because it is close to typical
separation for definition drilling.

In the linear case, a drillhole remains selected in
the central area with dmin = 26 m (contrary to the

Figure 6. continued.
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step function). Further increasing dmin also tends to
increase drillhole separation and place them more
on the periphery but less so than as the step func-
tion. These results indicate lesser dependency of Csol

and drillhole location with the linear functions than
with the step functions.

3D Application

The 3D dataset corresponds to one of the RGM
active pits. The mineralization is composed of a
succession of sheared zone with quartz veins of dif-
ferent orientations. The extension of the mineral-
ization is about 1 km in easting and 200 m on
northing with vertical extension of about 300 m. The
mineralization has been partly mined out, but some
pushbacks are planned in the coming years. The
actual topography was used to generate possible
drillpad locations on a regularly spaced 25-m pat-
tern.

A restricted area of 400 m of extension (East-
ing) was selected within the entire 3D area. In total,
178 diamond drillholes totaling 23,635 m and 3855 6-
m composites were available in this zone. The de-
posit was discretized in blocks of size 10 9 10 m
horizontally 9 8 m vertically. BVs were calculated
using Eq. 1 for all blocks with a cutoff of 0.3 g/t to
define the ore indicator variable. The BVs statistics
of the 3D case are presented in Table 3. They differ
significantly from the statistics presented in the 2D
case, because of the varying grade, spacing and
economical cutoff (indicator). Moreover, thickness
does not intervene in the 3D case.

The zone of influence of each drillhole was also
set at 26 m for x1 and x2 functions. These were
defined as step functions to allow comparison with

integer programming results. Figure 7a shows the
existing drillholes composites (in black) with
BVs> 0.1 as blue squares and the possible collar
positions extracted from topography in green. Fig-
ure 7b presents the evaluated drillpads as well as all
the generated composites from drillholes. In order
to account for mineralization orientation as well as
existing drillholes, drillhole azimuth orientations of
165, 180 and 195 were forced, associated with plun-
ges of 60, 75 and 90, respectively. A fixed drillhole
length of 102 m was used. With these parameters, a
total of 3672 candidate drillholes were defined.

Optimization result for N = 10 drillholes (to-
taling 1020 m) is presented in Figure 8, using
nlist = 20, ntrial = 30. The proposed drillholes (in
red) are localized within area of high BVs and
spaced by at least 26 m from each other and from
existing drillholes.

Figure 9 shows the coverage as a function of the
number of drillholes for optimal integer program-
ming solution compared to the semi-greedy solution
for the 3D case dataset. The gap of optimality is
generally less than 10%. The proposed algorithm
ran all the cases shown in the figure in about 1240 s,
compared to the 455,403 s (about 127 h) it took for
the integer programming.

Simultaneous Optimization

An interesting application of the proposed
method is to optimize two or more deposits simul-
taneously and use the results to support budget al-
location. This requires a full or partial normalization
of the components defining Eq. 1 for the BVs:
grades, variograms sills and/or indicator cutoffs. It is
then possible to optimize the coverage of the riskiest
areas for both deposits simultaneously. The choice
of the normalization depends on the main purpose
of the definition campaign. As an example, Fig-
ure 10 presents the results of a simultaneous opti-
mization for the previous 2D and 3D examples.
Variograms sills were normalized to 1, and cutoffs
were set to 1 and 0.3 g/t for the 2D and 3D datasets,
respectively. In this example, the composite grades
were normalized by dividing them by the mean
grade of all composites in the respective datasets. A
flat topography was added to the 2D dataset so that
it could be treated as a 3D case. Both datasets were
then combined, and the semi-greedy algorithm was
applied to the combined dataset. In this application,

Table 2. Coverages for five drillholes as a function of dmin for

the step and linear weight functions

dmin (m) 21 26 31 36

Step functions (%) 12 21 29 37

Linear functions (%) 4 6 8 11

Table 3. Block values basic statistics for the 3D dataset

Number of blocks Minimum Maximum Mean SD

19,447 0 1.67 0.031 0.078
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x1 and x2 were set as a linear function [from 0 to 1
using dmin = 26 m].

Figure 10 shows the total coverage obtained for
both projects combined (red line) as a function of
the allocated budget (in m) from 500 to 10,000 m.
For a relatively small budget of up to 3000 m, most
of the added drillholes were positioned within the
3D zone. When the drilling budget exceeded
3000 m, then most of the additional drillholes were
located in the 2D project as most blocks with high

OF values in the 3D case were already partially
covered by the drillholes added in the initial steps.

DISCUSSION AND CONCLUSIONS

The most common practice for drillhole opti-
mization consists of minimizing the kriging variance
or statistics extracted from conditional simulations
results. Often, professionals simply implement sys-
tematic and regular spacing regardless of any geo-

Figure 7. (a) A total of 178 existing drillholes composites (black dots) and blocks with BV> 0.1 (blue squares),

within the selected area. (b) Trace of the 3672 drillholes that fulfill constraints on drillpad locations (green dots),

direction and dips.
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statistical parameters. These approaches do not
capture entirely the economic risks of a project or
operation, which generally lie within the high-grade
ore zones. An excess or lack of drillholes within the
areas of risk is possible. This would correspond to a
loss for the company (either as a risk or opportu-
nity). The proposed OF function incorporates eco-
nomical risk by maximizing the coverage of
additional definition drillholes. OtherOF could have
been used with our heuristic method. As an exam-
ple, conditional variances obtained by simulation
could replace kriging variance. Here, we limited our
study to a reasonableOF reflecting the main goals to
achieve for the Rosebel case study: avoiding drill-
hole clustering, targeting primarily the areas with
expected high grades, and reflecting the economic
factors by the probability to be ore material. More
research is needed to compare the utility of different
OF variants for decision purposes in a variety of
geological and economical contexts.

In our test, the semi-greedy algorithm was close
to three orders of magnitude faster than integer
programming. This computational advantage is ex-
pected to increase with larger instances. However,
the main advantage relative to integer programming
is to allow dynamic updating of blocks values as new
drillholes are selected. We stress that both grade
kriging and indicator kriging remain unchanged as
updating is taken into account entirely by the weight
functions x1 and x2. The use of x2 function can be

Figure 8. Topography (green), existing drillholes (black), 10 selected new drillholes (red) and blocks with

OF> 0.1 (blue).

0 10 20 30 40 50 60 70 80 90 100
Number of Holes

-20

0

20

40

60

80

100

120

C
ov

er
ag

e 
(%

)

Optimum
Semi-greedy
Optimality gap

Figure 9. 3D coverage as a function of number of drillholes.
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seen as a fast alternative to updating of kriging
variances each time a new drillhole is tentatively
selected. Updating of kriging variance would mean
performing (nfor � 1) 9 ntrial local kriging on the
blocks found in the neighborhood of each added
drillhole. This would increase by many orders of
magnitude the time required to run the algorithm.
The semi-greedy approach allows partial covering of
a block by a drillhole, something unavailable with
integer programming. Partial covering can also be
implemented in other heuristic approaches, but then
computing time is expected to become an issue due
to the iterative nature rather than sequential (as
with the semi-greedy approach) of these algorithms.

Our results indicate that relatively small values
of nlist and ntrial are required to get close to the best
results reachable by using the semi-greedy algo-
rithm. This finding is interesting as computing time
increases with both nlist and ntrial.

For the particular case of a 0–1 coverage func-
tion, the optimality gap of the semi-greedy algorithm
varies in the 0–13% range in our examples. This gap
is deemed acceptable considering the lack of realism
of the 0–1 coverage function, the long computing
time of the integer programming approach, and the
relative imprecision of the different components
(kriging estimate, kriging variance and kriged indi-
cator) appearing in the definition of the BV function.

Sensitivity to the choice of dmin was shown to
be higher for the step functions than for the more
realistic linear functions. This finding supports the
use of partial covering introduced in this paper. For
both step and linear weight functions, increasing
dmin tends to spread the drillholes more on the
periphery of the field. However, this effect is much
stronger with the step functions than with the linear
functions. The value of dmin was selected based on
typical separation for definition drilling. It can be
adjusted to account for the kind of deposit studied,
the perceived geological continuity and the corre-
lation range.

Our tests clearly indicate that our algorithm
does not cluster drillholes in high-grade area despite
the presence of grade estimate in the BV definition
(Eq. 1). The weight function x1 diminishes strongly
the value of blocks surrounding a selected drillhole
and thus prevents any risk of clustering.

A simple test showed that it is possible to con-
sider two deposits at once to assist decision making
for drilling budget allocation. This requires suit-
able normalization of the components defining the

BVs. More research is needed to determine whether
this can be extended to more than two deposits.

The proposed approach can be customized to
include additional knowledge about the deposit. For
example, if a certain lithology is known to control
mineralization, the BVs can be calculated only inside
the 3D solid of the mineralization, the rest of the
BVs being set to 0. Metallurgical values or
geotechnical parameters can also be incorporated in
the BVs� definition (Eq. 1).

The new simple semi-greedy algorithm pro-
posed is proven to be an efficient and flexible tool
for selection, under budget constraints, of drillholes
providing good coverage. Being sequential rather
than iterative, the algorithm is fast. It has allowed up
to three orders of magnitude CPU time reduction
compared to integer programming. It is also flexible
as it allows partial coverage of blocks, which is more
realistic than coverage functions used in previous
studies. The proposed method provides a useful tool
to support managers� decision about drillhole allo-
cations in competing projects.

ACKNOWLEDGMENTS

This research was made possible by National
Research Council of Canada thru NSERC Grant
(RGPIN-2015-06653). We thank IAMGOLD Corp.
for providing data used in this study. The authors
would like to thank Mehanaz Yakub for her help
and advises.

REFERENCES
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