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Traditional ore-waste discrimination schemes often do not take into consideration the im-
pact of fluctuations of the head grade, which have on the performance of mineral processing
facilities. This research introduces the use of target grades for processing destinations as an
alternative to cut off grade-based methods and models, in each processing destination, the
losses due to deviation from targets via the Taguchi loss function. Three unsupervised
learning algorithms, k-means clustering, CLARA and k-mean-based approximate spectral
clustering, are presented to group mine planning blocks into clusters of similar grades with
different processing destinations. In addition, a technique considering uncertainties associ-
ated with block grades is proposed to generate new sequences that reduce variation in
processing capacities across the life of mine (LoM). The case study in this paper involves the
treatment of a realistically large mining dataset. The results showed that clustering methods
outperform cutoff grade-based method when divergence from target grades is penalized and
that reclassification of blocks based on data from geostatistical simulations could achieve
smoother capacities for processing streams across the LoM.

KEY WORDS: Mining and mineral processing, Taguchi loss function, Target grades, Robust clustering,
CLARA, Spectral clustering.

INTRODUCTION

Block classification is one of the aspects of mine
design that has a direct impact on the profitability of
the operation. Many critical reviews on ore-waste
classification based on estimation and simulation
have been presented (Srivastava 1987; Isaaks 1990;
Glacken 1997; Verly 2005). However, one important
factor that is often ignored in open pit mine planning
is the impact on the performance of processing
facilities while having inputs with significant fluctu-
ations in grades. Maintaining a consistent input for

processing facilities is imperative as deviations from
the target grades of a processing stream lead to
unintended losses in recovery, which can be mod-
eled via the Taguchi loss function (Kumral 2015), a
quadratic function that penalizes deviation from a
certain target (Taguchi 1986). It has been proposed
that every processing stream maintains a target
grade where blocks with exactly the same grade re-
ceive no loss from processing, but those with grades
different from the target are penalized based on
their deviations. An illustration of this proposal is
shown in Figure 1. Hence, minimizing deviations
from target grades would lead to a reduced loss in
recovery and throughput and, in turn, the increased
value of profits from the operation. A more consis-
tent input for processing will also lead to a more
uniform recovery and throughput, which tend to be
more desirable.
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Consequently, unsupervised machine learning
algorithms such as k-means clustering or partitioning
around medoids (PAM) could be used to group
blocks into different clusters, with each cluster sig-
nifying a processing stream with pre-defined target
grades. In doing so, the within cluster dissimilarities
could be minimized, while target grades of each
processing stream could then be set to the grade
values of each cluster centroid. In recent years,
many machine learning methods have been intro-
duced to optimize geology, mining and mineral
processing systems (Zhang et al. 2011; Yanyan et al.
2015; Goodfellow and Dimitrakopoulos 2016; Rui-
seco et al. 2016; Li et al. 2019; Nguyen et al. 2019;
Nwaila et al. 2019; Rajabinasab and Asghari 2019;
Villalba Matamoros and Kumral 2019). However,
but few studies have taken into full consideration
the penalties that come with deviation from targets
in input grade and processing capacity. Performance
of the introduced clustering technique will be eval-
uated with the overall profitability of the operation
while taking into account the high costs of con-
structing additional processing facilities, so that new
processing streams are built if and only if the cost
more than balances out for the losses in recovery
due to deviation from target grades. A group of re-
lated research topics has also highlighted the
potential applications of clustering techniques in
addressing similar research problems (Ruiseco and
Kumral 2017; Ruiseco et al. 2016; Sari and Kumral
2018; Sepúlveda et al. 2018).

After deciding the optimal number of process-
ing streams through clustering, the capacities of
processing streams could be found by counting the
number of data points in each cluster. Nevertheless,
planning of a processing stream�s capacity during the

life of mine (LoM) is also important and challeng-
ing, as companies generally seek to maximize NPV
in mine planning and hence blocks of higher values
tend to be extracted at the earliest possible period,
leaving the overall processing capacity skewed.
However, producing below the processing capacity
or deviating from the process target grade may also
lower the NPV.

Therefore, in this research, the traditional
block sequencing is improved by identifying blocks
whose processing destination, according to a por-
tion of its simulated grades, differs from that
determined by the average expected grades.
Switching the processing destination of such blocks
reduces variation in processing capacities across the
LoM at minimum cost and risk. The original con-
tribution of this research roots from the introduc-
tion of target grades in mineral processing streams
and the utilization of the Taguchi loss function for
modeling penalized recovery. Moreover, CLARA,
which is a robust clustering algorithm for large
datasets, was used, and total revenues from differ-
ent scenarios were compared and optimized. In
addition, block destinations were tweaked accord-
ing to sequential Gaussian simulations and capaci-
ties of processing streams can be further smoothed
across the LoM.

METHODOLOGY

Clustering Algorithms for Optimal Process Design

The k-means Clustering Algorithm

The k-means algorithm is one of the most
commonly used clustering algorithms that scales
relatively well with large datasets. It partitions a
given dataset into k pre-specified number of clusters
in such a way that within cluster dissimilarity is
minimized and inter-cluster dissimilarity is maxi-
mized. Various distance measures exist for defining
dissimilarity among data points, including the Eu-
clidean distance, the Manhattan distance and many
other correlation-based distances. Euclidean dis-
tance is chosen in this case because it considers ex-
actly the spatial distance between points. A brief
summary of the k-means algorithm is shown in
Algorithm 1 (Kassambara 2017).

Figure 1. Relationship between input grade and recovery

modeled by Taguchi loss function.
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One common metric used to evaluate the
goodness of k-means clustering is the total within
cluster sum of squares (TWSS); its formula is:

TWSS ¼
Xk

i¼1

WSS ið Þ ¼
Xk

i¼1

X

j2Ci

xi � lj

���
���
2

2
ð1Þ

where xj refers to the jth data point, li is the cluster

center of the ith cluster and Ci is the set of all points
in the ith cluster. Results of the k-means algorithm
are known to be sensitive to the selection of k initial
cluster centers. It is common practice, therefore, to
start with many different initial allocations and then
choose the one that performs best. As the number
of clusters, k, has to be specified before the algo-
rithm could be run, the optimal number of clusters
can be determined by plotting the TWSS against
the number of clusters (James et al. 2013). Ideally,
the TWSS value should be minimized. However, as
the value will always tend to zero when the number
of clusters tends to the number of observations in
the dataset, it is important to select the optimal
number of clusters ( koptim) such that a further in-

crease in the number of clusters will lead to sig-
nificant diminishing benefit in the reduction in
TWSS. Identifying the optimal number of clusters
in this manner is also more commonly known as the
elbow method.

Partitioning Around Medoids (PAM) and CLARA

The k-means clustering algorithm has numerous
drawbacks, including: (1) The number of clusters, k,
must be manually chosen by the users; (2) the final
output is dependent on the initial random assign-
ment of cluster numbers; and (3) the algorithm
shows sensitivity to noise and outliers due to the use
of means. The first and second problem can be ad-
dressed, respectively, by running the algorithm for a
set of plausible values of k, and different initial
random cluster assignments (usually from 25 to 50)
and selecting the solution with the best performance.
While trying to find a better clustering algorithm, it
is natural to consider other methods such as hier-
archical agglomerative clustering or graph-based
spectral clustering, which do not require the prior
specification of the number of clusters. Unfortu-
nately, however, such clustering techniques, despite
being powerful, do not scale well with large data.
When clustering a dataset with n observations into k
clusters, the computational complexity of the k-
means algorithm per iteration is approximately
O nkð Þ, whereas hierarchical and spectral clustering

could cost as much as O n3
� �

, making them almost

impossible to be applied in clustering large-scale
mining data. Partitioning around medoids (PAM)
can be considered similar to a robust form of k-
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means clustering. While in k-means, each cluster is
represented by the mean of all data that belongs to
it, in PAM a cluster is represented by its most cen-
tral element, named its medoid. The general PAM
algorithm is described in Algorithm 2 (Kassambara
2017).

At the cost of O k n� kð Þ2
� �

, PAM is still too
cumbersome to be applied to truly large datasets.
Hence, a modified version of PAM based on re-
sampling named CLARA (Clustering LARge
Applications) was selected to optimize processing
options. The CLARA algorithm is a modified ver-
sion PAM designed for large datasets, and its gen-
eral idea is to draw multiple samples from the
dataset and apply PAM to them. The basic steps of
CLARA are displayed in Algorithm 3 (Kaufman
and Rousseeuw 2008).

The computational complexity of CLARA is

O km2 þ k n� kð Þ
� �

, which is a significant improve-

ment from PAM. The downside of CLARA is that if
the best k medoids were not selected in the sampling

process, then CLARA would produce a sub-optimal
solution. When applying CLARA, the algorithm is
run with a large m value for multiple times in order
to adjust for sampling bias.

K-means-Based Approximate Spectral Clustering
(KASP)

Spectral clustering is one of the most powerful
modern clustering algorithms and is based on the
spectral decomposition of the graph Laplacian ma-
trix of the data matrix. As a graph-based method,
each observation in the data matrix is viewed as a
vertex in the graph, and the dissimilarities between
data are viewed as edges between vertices. Spectral
clustering functions by identifying the optimal cut to

partition the graph such that the sum of the weights
of the edges cut in the process is minimized. The
basic form of a spectral clustering algorithm is de-
scribed in Algorithm 4 (von Luxburg 2007).
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Unfortunately, the spectral clustering algorithm
is computationally expensive at a complexity of

O n3
� �

, largely due to the need to construct explicitly

the adjacency matrix W and the spectral decompo-
sition of L. With a large dataset, one of the alter-
natives is to use the k-means-based approximate
spectral clustering algorithm (KASP) proposed by
Yan et al. (2009), which functions by first com-
pressing the data into l representative observations,
then applying spectral clustering to the compressed

data. The ratio l
k is referred to as the compression

ratio. A brief summary of the KASP algorithm is
shown in Algorithm 5.

An Economic Evaluation of Processing Scenarios

After using the k-means algorithm to group the
data points into k different clusters, the clusters were
sorted in ascending order of average grades. Then,
different k processing streams were sampled from n
availableprocessing streamswithout replacement, also
in ascending order of recovery, tomatch the k clusters.
Ordering the clusters as well as the processing streams
ensures that clusters with higher average grades are
sent to processing streams designed to have higher

recovery.Therefore, givenkandn, there are in totalCn
k

different scenarios for processing. Let the maximum
number of clusters be m, then the total number of
possible scenarios is given by:

Number of scenarios ¼
Xm

k¼1

Cn
k ð2Þ

The idea of �target grade� is applied in this paper,
such that grade deviation from the mean will receive
a penalized recovery during processing can be
modeled with the Taguchi loss function (Kumral
2015).

L xcj

� �
¼ c xcj � lci

� �2

8xj 2 Ci ð3Þ

where xcj is the value of attribute c(in the poly-

metallic case) of the jth block in the ith cluster,

which is denoted by Ci, with lcii being the value of

attribute c of its center. L xcj

� �
represents the loss in

the recovery of attribute c and c is a constant that
magnifies the penalization.Revenue and cost calcu-
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lations were performed on each scenario and the one
that maximizes profit was deemed as optimal. The
formulas for calculations of revenue and cost are
shown in Eqs. 3 and 4. The meanings of the
parameters are shown in Table 1.

Total revenue ¼
XN

j¼1

R xj
� �

¼
XN

j¼1

X

c2a
xcj � q� V � Pc

� rci � L xcj

� �h i
ð4Þ

Total cost ¼ Total construction cost for processing streams
þ Total mining cost
þ Total processing cost

ð5Þ

Total cost ¼
Xm

i¼1

Mi þN �mc � q� V þ
XN

j¼1

Xm

i¼1

yji

� q� V � pi:

ð6Þ

Processing Capacity Tuning Based on Simulation

In the previous step, an optimal processing
scheme was selected via a clustering algorithm such
that for every mineral processing stream, deviation
from target grade is minimized. Having found the
most suitable processing options, block sequencing
and scheduling were completed in a commercial
mine production scheduling software with the mean

of the simulated block grades as input, the corre-
sponding sequence output was exported and the
number of processed blocks for each processing
stream in each period was found. In order to have
the processing capacities of the streams as uniform
as possible, the blocks were analyzed based on their
grades in the 15 different simulations, so that dif-
ferent probable grade scenarios of blocks can be
studied, and a subset of blocks could be sent to
alternative destinations if their grades correspond to
different destinations in different scenarios. Such
blocks are named �marginal� blocks and are defined
as blocks whose most likely destination according to
a subset of the simulated grades differs from the one
computed from the average expected case. After
identifying the marginal blocks, in each period,
depending on the situation, marginal blocks were
sent to their most likely destination to reduce vari-
ation in processing capacities. When the high-grade
processing was over the mean capacity and the low-
grade processing was under the mean capacity,
marginal low-grade blocks currently sent to high-
grade processing were switched to low-grade pro-
cessing to fill the gap, and if there were insufficient
blocks, then marginal low blocks currently sent to
waste were also switched to low processing. When
low-grade processing was over the mean capacity
and the high-grade processing was under, then
marginal low-grade blocks were sent from waste to
low-grade processing and the marginal high-grade
blocks from low-grade processing to high-grade
processing as well. Similarly, if both processing
streams were over or under the mean capacity, then
the marginal waste blocks currently in low and high
processing were sent to waste or marginal low and

Table 1. List of parameters for revenue and cost calculations

Parameter Representation Unit

a Vector of attributes

q Block bulk density ton=m3

V Block volume m3

xcj jth block grade of cth attribute %

N Total number of blocks

Pc Price of cth attribute $

rci Recovery from ith processing stream of cth attribute %

L xcj

� �
Loss of recovery from ith processing stream of cth attribute %

yji Binary variable (1 if jth block sent to ith processing, 0 otherwise)

pi The processing cost of ith processing stream $/ton

Mi Cost of constructing the ith processing stream $

m Total number of clusters/processing streams

mc Mining cost $/ton
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the high blocks were sent, respectively, to low and
high processing. While switching destinations, mar-
ginal blocks were ranked according to the descend-
ing order of likelihood; hence, blocks with highest
likelihoods were switched first. A schematic of the
process is shown in Figure 2. By switching the des-
tination of the marginal blocks to their correspond-
ing most likely destinations, variation in processing
capacities across the LoM can be effectively reduced
at a minimum level of risk.

CASE STUDY

Determination of Optimal Processing Scenario

A relatively large dataset related to a Cu de-
posit was used in this study. The dataset contains
145,800 blocks with 15 equally likely geostatistical
simulations generated with sequential Gaussian
simulations (Journel and Alabert 1989; Chilès and
Delfiner 2012). The simulations were realized on the
nodes or locations of a random grid. In this simula-
tion, conditioning data were converted to equivalent
normal values, and the variography of the converted
values was computed. Using conditioning and pre-
viously simulated values, the value was then esti-
mated (kriged) at the simulation location of the grid.
A random sample was finally taken from the distri-
bution characterized by the estimated kriged value
and its variance at the simulation location on the
grid. This process was repeated for all locations on

the grid. In addition to generating multiple realiza-
tions of grade uncertainty, sequential Gaussian
simulation was also used to reproduce variability in
various engineering phenomena such as soil water
content (Delbari et al. 2009), the standard penetra-
tion tests to characterize soil exploration (Basarir
et al. 2010), Ni contamination (Qu et al. 2013) and
appraising geochemical anomaly (Liu et al. 2018).
As expressed by Dowd (1993), geostatistical simu-
lation must meet the following criteria: (i) simula-
tion and actual values agree with each other at all
sample locations; (ii) each simulation must exhibit
the same spatial dispersion; (iii) each simulation and
the true values must exhibit the same distribution;
and (iv) if there are multiple attributes, their simu-
lations must co-regionalize each other in the same
manner as the true values. These criteria were tested
for the simulations and verified that the criteria are
satisfied. Thus, a series of simulations complying the
criteria given above was reproduced. An important
speculative aspect is the number of simulations re-
quired in mine planning works. Goovaerts (1999)
discussed the effect of the number of simulations on
transfer functions and concluded that sequential
Gaussian simulation produced outcomes that are
more accurate. He also emphasized that having
more than 20 simulations has not much effect on
accuracy.

To compensate for computational complexities,
relatively few possible processing stream options
were considered. Detailed information regarding
those processing options is shown in Table 2. A list
of profitability parameters used in this case study is
detailed in Table 3. A histogram depicting the ex-
pected average of the 15 simulations is shown in
Figure 3.

In this case study, blocks with grades lower than
the lowest possible cutoff grade (in this case, 0.84%)
determined from the processing stream option with
the lowest processing cost and recovery were not
included in the clustering algorithm, such that only
blocks classified as ore were partitioned into clus-
ters. The optimal number of clusters was decided by
plotting the TWSS against the number of clusters
and selecting the cluster number where the next
increment in the number of clusters results from a
significantly lower decrease in TWSS than the pre-
vious number. The results from the clustering
methods are shown in Figure 4. Due to limited
computational power available, the maximum com-
pression ratio of KASP used was 2%. KASP with
1% compression ratio was also performed to identify

Figure 2. Identification and changing destination of marginal

blocks.
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the impact of compression ratio on the overall per-
formance of the clustering algorithm. The optimal
number of clusters from both clustering methods
was found to be 3. It can be observed that k-means
has only marginally better TWSS when compared

with CLARA, even when medoids were used as
cluster centers instead of means in CLARA, while
KASP performed similarly to K-means before three
clusters, but fluctuated with more clusters, possibly
due to the small compression ratio used.

The total number of processing scenarios was
calculated to be 14. Economic evaluations were
performed on all scenarios, according to k-means
clustering, CLARA, KASP with 1% and 2% com-
pression ratio and marginal cutoff grade, respec-
tively. Table 4 details the possible processing
scenarios, where, in each scenario, the clusters were
mapped with different corresponding processing
destinations. For instance, in processing scenario 7,
the dataset was partitioned into two clusters ranked
by average grade values, with cluster 1 mapped with
processing 1 and cluster 2 with processing 4. The
profits for different processing scenarios and clus-
tering methods were computed exhaustively and are
shown in Figure 5.

As can be seen from Figure 5, for this particular
dataset and parameters, the maximum profit was
generated by the KASP with 2% compression ratio
at processing scenario 9 with a value of $87.25 M. In
general, when the deviations from target grades
were penalized in mineral processing, determining
block destinations via clustering algorithms gener-
ated higher profits when compared to using marginal
cutoff grade. In this particular case, CLARA gen-
erated higher profits than results from other clus-
tering algorithms in most scenarios, but KASP with
2% compression ratio performed marginally better

Table 2. List of processing stream options

Processing stream Processing cost ($/ton) Recovery (%) Construction cost ($M)

1 20 40 10

2 35 65 10

3 45.5 80 12.5

4 57.25 95 15

Table 3. List of profitability parameters

Parameter Representation Unit

Pcopper Price of Cu per ton $5939.1

mc Mining cost per ton $1.75

c Magnitude of penalization 30

V Block volume (Block size 5m� 5m� 10m) 250 m3

q Block bulk density 4 ton=m3

Figure 3. Simulated average block grades.

Figure 4. TWSS plot for different clustering techniques.
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than CLARA at its scenario with maximum profit,
while CLARA at processing scenario 9 resulted in a
profit of $86.47 M. It can also be seen that KASP
performed better in all scenarios when the com-
pression ratio was increased. If higher computa-
tional power were available, KASP can be projected
to yield even better results.

Capacity Tuning of Processing Streams Based
on Geostatistical Simulations

From the previous section, the processing sce-
nario with the highest profit was identified to be
scenario 9 with processing streams 2 and 4 selected
for low-grade and high-grade processing, respec-
tively. At a mining capacity of 15,000 blocks per
period, the commercial software outputs a total
LoM of 10 periods (years). Marginal blocks were
identified from the geostatistical simulations and
were then sent to their most likely destination to
reduce variation in processing capacities. The pro-

cessing capacities of processing streams across the
LoM before and after the switching are shown in
Table 5. The final year of LoM was intentionally

left out as most of the valuable ore has been mined
out and there is insufficient material left for mining.
Details of the mean and variances of processing
capacities across the LoM are shown in Figure 6.
The mean for both processing streams was lowered
to a small extent due to switching blocks from low-
and high-grade processing to waste. The new
sequencing generated by the switching of marginal
blocks managed to lower the variance in low-grade
processing capacity by 31% and that of high-grade
processing by 17%. Because of the reclassification of
blocks, a smoothing effect on the processing vol-
umes throughout the periods can be observed.

Figure 7 shows in situ grades and the outcomes
of CLARA and KASP for three destinations. In this
figure, the blocks shown in navy blue, green and
claret red are routed to waste dump, low-grade and
high-grade processing, respectively. The consistency
between the grades and block destinations can be
seen easily in the figure. As also seen from the fig-
ure, the number of blocks to be sent to high-grade

Table 4. List of processing scenarios

Scenario number Cluster 1 Cluster 2 Cluster 3

1 1

2 2

3 3

4 4

5 1 2

6 1 3

7 1 4

8 2 3

9 2 4

10 3 4

11 1 2 3

12 1 2 4

13 1 3 4

14 2 3 4

Figure 5. Profit comparison.

Table 5. Processing capacities for old and new sequencing

Mean Variance

Low processing

Old sequencing (before switching) 7948 420622

New sequencing (after switching) 7904 289407

High processing

Old sequencing (before switching) 2891 1442632

New sequencing (after switching) 2779 1187592

Figure 6. Processing capacity across LoM for old and new

sequencing.
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Figure 7. Block grades a and process destinations of blocks b CLARA and c KASP.
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processing is more in CLARA�s results compared to
KASP�s results.

CONCLUSIONS

This research introduces the use of clustering
algorithms to generate clusters of selective mining
units with similar grades that correspond to different
processing destinations while minimizing the within
cluster dissimilarities in mineral grades. Realistic
concerns, including deviation from target grades and
capacities in processing facilities, are also taken into
consideration via the penalization of recovery via
the Taguchi loss function and calculating the num-
ber of data points in each grouped cluster. One of
the important factors in the determination of the
profit from the clustering algorithms is the magni-
tude of penalization of the Taguchi loss function,
with better results expected from the clustering
methods when a high degree of penalization is pre-
sent. Another influential factor is the overall scale
and profitability of the mining operation, with
smaller operations being unlikely to balance out the
high amount of additional costs of constructing extra
processing facilities. A more sophisticated clustering
algorithm than k-means, CLARA, is based on per-
forming PAM on random samples of the original
dataset and is considered more robust than k-means.
In this particular setting of the study, clustering with
respect to CLARA generated more profit than k-
means in almost all scenarios, despite k-means per-
forming slightly better in scenario 9, the scenario
with the highest profit. KASP, which provides a
computationally efficient solution approximate to
spectral clustering, was the top-performing cluster-
ing algorithm and generated higher profit than k-
means in the optimal scenario. Increasing the com-
pression ratio of KASP also had an impact on gen-
erating better results. In future studies, when the
dataset is large, all three clustering methods should
be considered in grouping blocks with similar
grades. Furthermore, by identifying marginal blocks
judging from the simulated block grades, it is pos-
sible to tune the processing capacities by changing
their destinations. In doing so, variation in process-
ing capacities across the LoM can be reduced at
minimum risk and cost. Although the simulated
grades may differ from the actual grades and this
may result in potential economic loss, the aim of the
proposed methodology is to provide an efficient
capacity installation approach in which the mine

production schedule is considered. If the grade
heterogeneity increases in a deposit, the number of
simulations should be increased to capture the de-
posit uncertainty more accurately. After the settling
of the processing capacities, the mine schedule can
be generated with the new parameters. The other
extension will be an incorporation of rock and
metallurgical characteristics affecting processing
performance into the process design.
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