Natural Resources Research, Vol. 29, No. 4, August 2020 (© 2019)
https://doi.org/10.1007/511053-019-09583-5

Original Paper

®

Check for
updates

3D Structural, Facies and Petrophysical Modeling of C
Member of Six Hills Formation, Komombo Basin, Upper

Egypt

Moamen Ali®,"* Ahmed Abdelmaksoud,! M. A. Essa,! A. Abdelhady,2 and M. Darwish®

Received 10 June 2019; accepted 20 October 2019

Published online: 1 November 2019

Two main reservoirs are producing in Komombo Basin: the first one belongs to the C
Member of the Six Hills Formation, and the second belongs to the Albian/Cenomanian
cycle. The C Member reservoir lacks detailed studies. Therefore, a detailed study of this
reservoir is needed. 3D geological reservoir modeling of the C Member reservoir can be a
pertinent part of an overall strategy for the development of hydrocarbon fields in Komombo
Basin. Five boreholes, three vertical seismic profiles and twenty 2D seismic reflection sec-
tions are integrated in Petrel™ modeling software for building 3D structural, facies and
petrophysical models for the C Member reservoir. The constructed 3D structural model
reveals the presence of two normal faults, in NW-SE and NE-SW directions. A detailed
petrophysical evaluation was performed for the available wells. The resulted facies/petro-
physical parameters are then used as input in the processes of facies and petrophysical
modeling. The C Member reservoir exhibits thickness values ranging from about 91.5 to
426.5 m. The constructed 3D facies model of the studied reservoir depicts that the shale beds
have the large probability distribution in the study area with the comparison of the sandstone
and siltstone beds. The created 3D petrophysical models reveal that the C Member reservoir
has a fair reservoir quality. This reservoir exhibits, generally, high water saturation values in
most parts of the study area, while the hydrocarbon saturation is restricted to the depocenter

of the basin.

KEY WORDS: Komombo Basin, C Member, Six Hills Formation, Reservoir characterization, 3D

geological model, Upper Egypt.

INTRODUCTION

Rift basins are considered the most important
and primary targets for hydrocarbon exploration in
North Africa (Nagati 1986; Meshref 1990; Ali et al.

1Department of Geology, Faculty of Science, Assiut University,
Assiut 71516, Egypt.

DEA Group, Cairo, Egypt.

*Department of Geology, Faculty of Science, Cairo University,
Giza 12613, Egypt.

“To whom correspondence should be addressed; e-mail:
momen.mohamed@science.au.edu.eg

2575

2019a). Aeromagnetic and gravity data revealed the
presence of elongated low structural areas in the
southern part of the Western Desert. These areas
were interpreted as half-graben basins. The Ko-
mombo Basin in the Western Desert and Nuqura
and Kharit Basins in the Eastern Desert represent
examples for these half-graben rift basins (Klitzsch
1984; Wycisk 1987; Meshref 1990; Taha and Aziz
1998). These grabens lack detailed studies, so their
evaluation is very necessary because it will provide
much useful information about the hydrocarbon
potential in these basins (Ali et al. 2017b). Nagati
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Figure 1. (a) Landsat image (MDA Federal 2004) showing the study area within Komombo Basin, Southern Egypt (Ali et al. 2017b). (b)
and (¢) Base maps showing the location of the used boreholes and twenty 2D seismic lines.

(1986) was the first to point out the presence of
hydrocarbons in Upper Egypt. He discussed the
presence of a triple junction in Upper Egypt. He
identified and pointed out the presence of the
Mesozoic rift basins in Upper Egypt from the
interpretation of the aeromagnetic data.

The Komombo Basin lies in the southern part
of the Western Desert, approximately 65 km
northwest of Aswan city (Fig. 1a). It represents a
half-graben and an intracontinental rift basin

(Fig. 2); it is the only hydrocarbon-producing basin
in southern Egypt (Ali et al. 2017a). Therefore, the
authors aim to conduct a detailed study of the main
structural elements and to discuss the characteristics
of the main reservoirs of the Komombo Basin that
have not been studied previously, as well as they
have studied the main source rocks in this basin (Ali
et al. 2018, 2019b).

The C Member reservoir is one of the two main
reservoirs that contribute to the petroleum system in
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Figure 2. (a) Un-interpreted NE-SW 2D seismic section (05-01-Cf77-08) crossing the Komombo Basin, Upper Egypt. (b) Interpreted
NE-SW 2D seismic section showing the half-graben basin and the main seismic horizons in the study area (Ali et al. 2019).

the Komombo Basin (Ali 2017). This reservoir has
not been studied previously in detail. Therefore,
the main objective of the current research is the
integration of the available data (represented
mainly by 2D seismic reflection sections, wireline
logs and the description of ditch samples) to iden-
tify the main structural features of the study area,
to recognize the thickness/facies distribution of the
C Member reservoir and to evaluate the studied
reservoir from the petrophysical point of view. This
work represents a 3D geological modeling ap-
proach, comprising 3D structural, facies and
petrophysical models.

The main character of the 3D geomodeling
techniques is the ability to model complex struc-
tures. This technique allows the interpreter to
evaluate the model by displaying cross sections
along any direction through the constructed model.
The concept of 3D facies/petrophysics is also
essential for linking wellbore measurements to a 3D
geological model (Bryant and Flint 1993; Bilodeau
et al. 2002; Cosentino 2005; De Jager and Pols 2006;
Abdel-Fattah et al. 2010; Abdelmaksoud et al.
2019a, b).

GEOLOGICAL SETTING

The Komombo Basin was formed due to the
stress regime created in North and Central Africa
that was associated with the opening of the South
Atlantic. This basin is bounded by a major normal
fault striking NW-SE that is situated on the NE side
of the Komombo Basin and downthrown to the
southwest. There are also many minor normal faults
with the same NW-SE direction. The Komombo
Basin contains great sedimentary cover of about
4000 m (Fig. 3). This cover is composed mainly of
clastics (shale and sandstone) with some carbonate
deposits (Ziegler 1992; Bosworth et al. 2008). The
Komombo Basin holds two oil fields, Al Baraka and
West Al Baraka fields (Fig. 1b). It is a great explo-
ration target for GANOPE and DANA petroleum
companies because most of the previous work and
exploration activities until the 1990s concentrated
on the unstable shelf in the northwestern desert
where thick marine Cretaceous and Jurassic sedi-
ments were identified (Ali et al. 2019b).

The stratigraphic column of the Komombo
Basin is representative of non-marine and shallow
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Figure 3. Stratigraphic chart of the Komombo Basin, showing that the stratigraphic succession is representative of non-
marine and shallow marine deposits are during the Cretaceous (Selim 2016).

marine sequences deposited during the Cretaceous
(Abdelhady et al. 2016). The stratigraphic succession
is composed of seven formations, namely from top
to bottom, Dakhla, Qusier, Taref, Maghrabi, Sa-
baya, Abu Ballas and Six Hills Formations (Fig. 3).
The Six Hills Formation composed of a succession of
fining-up cycles, medium- to coarse-grained sand-
stone and described as fluvial deposits. The sand-
stone exhibits large-scale tabular planar cross-
bedding sets (Klitzsch et al. 1979; Hendriks et al.

1984). It belongs to Late Jurassic—Early Cretaceous
with type section between Six Hills and Gebel Nu-
sab el-Balgum, northeast of Bir Tarfawi (Barthel
and Boettcher 1978). It classified into seven mem-
bers (A-G), where A member at the bottom and G
member at the top. A member composed of gravelly
sandstone with some mudstone inter-beds. B mem-
ber composed mainly of gray to dark gray organic-
rich mudstone. C-E members consist of successive
alternations of pebbly to medium-grained sandstone
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Figure 4. Neutron—density cross-plots of the C Member reservoir (example of wells ABSE-1 and Kom-1) for recognizing
the comprising lithology.
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Figure 5. Pickett’s plot [true resistivity (R) vs. total porosity values (@)] for interval 2119.7-2164 m in
Kom-1 well.

and red to brown mudstone with general coarsening
upward pattern. F member consists of variegated to
red mudstone with thin sandstone inter-beds. G
member is similar to E member but shows wide
spatial distribution (Selim 2016). The C Member of
the Six Hills Formation consists mainly of shale with

sandstone and siltstone streaks, deposited as fan-
delta and/or fluvial deposits. The C Member reser-
voir represents the first siliciclastic reservoir in the
Komombo Basin (Abdelhady 2016). Selim (2016)
recognized the depositional environments in the
Komombo Basin, and he supposed that the C
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Figure 6. Cross-plotting of bulk density, apparent neutron porosity, shallow resistivity and deep resistivity values vs. gamma
ray values (example of AB-1 well) for obtaining the shale parameters.

Member of the Six Hills Formation is representative
by two facies associations: distal braid-plain and
mid-braid-plain. The first one is characterized by
red, massive to laminated mudstone with medium-
to coarse-grained sandstones, exhibiting fining-up-
ward patterns. The large probability distribution of
the red mudstones in the C Member reflects the
deposition under low-energy and oxidizing condi-
tions. The mid-braid-plain facies association is
characterized by semi-equal red mudstone and

coarse-grained to pebbly sandstones. The thickness
of the C Member reservoir varies in the drilled wells
from 165, 244, 116 and 216 m in Kom-1, Kom-2, AB-
1 and ABSE-1 wells, respectively.

MATERIALS AND METHODS

The available data sets that are used in the
present study include four well data sets (Kom-1,
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Kom-2, AB-1 and ABSE-1 wells) and three vertical
seismic profiles (VSP), in addition to twenty 2D
seismic reflection sections. These sections are rep-
resented by eight sections with a NE trend and
twelve sections with a NW-NNW trend (Fig. 1c).
The data sets include the detailed description of the
ditch samples of wells AB-1 and ABSE-1, as well.
Authors achieved their aims by integrating the
available data in Petrel™ modeling software. The
present work is initiated by the interpretation of
seismic data, which is subdivided into many steps,
including seismic to well tying, interpreting faults
and picking horizons of the top and bottom of the C
Member to construct the two-way time (TWT) sur-
face. The final step in seismic interpretation is the
domain conversion of the TWT surface to depth
surface using the velocity surface (Cosentino 2005;
Abdelmaksoud et al. 2016, 2017). The results of the
seismic interpretation are then incorporated as input
data in the 3D structural modeling process. This
structural model/framework acts as a container for
the facies and petrophysical characteristics.

The structural modeling process is subdivided
into three main processes: fault modeling, pillar
gridding and making horizons. Firstly, the inter-
preted faults are modeled followed by the pillar
gridding process, which represents the creation of
structural grids from the fault model. The final
process is making horizons, which represent the
addition of the different layers of the model by
inserting the interpreted horizons, represented by
the top and bottom of the C Member reservoir
(Cosentino 2005; Abdelmaksoud 2017; Abdelmak-
soud et al. 2019a). Petrophysical evaluation of the C
Member is then conducted, where the various
petrophysical characteristics are obtained through
the analyses of the different well logging curves. The

Table 1. Estimated shale parameters of the C Member reservoir
in the studied wells

Well Parameter

Rsh (Q m) Psh (gm/cc) (pNsh (%)
ABSE-1 20.50 2.50 20.7
AB-1 47.00 2.64 25.50
Kom-1 18.00 2.40 35.00
Kom-2 18.25 2.44 34.00
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lithological interpretation of the C Member reser-
voir is based on the description of the ditch samples
in addition to the different well logs, i.e., caliper,
resistivity, gamma ray and sonic logs in addition to
neutron-density cross-plots (Fig. 4).

The petrophysical evaluation is initiated with
the quantitative interpretation of the well logging
data. The water resistivity (Ry) is calculated using
the spontaneous potential log ABSE-1 well and is
found to equal 0.12 Q m at the formation tempera-
ture (85 °C). The relationship between the true
resistivity and total porosity of Pickett’s plot (Pickett
1972) is used for determining cementation factor (m)
of the C Member reservoir (Fig. 5). Simply, the
cementation factor of the reservoir can be obtained
from the slope of the line, which has 100% water
saturation. The slope of this line equals to — m. The
obtained cementation factor value equals 1.93 for C
Member. Determination of shale parameters and
taking into account their effects on the well log
measurements is one of the most important steps in
well log analysis. These parameters are represented
in the present study by the resistivity of shale (Ryy),
neutron porosity of shale (®Ny,) and density of shale
(psn)- These parameters can be obtained from the
cross-plots of gamma ray values vs. bulk density,
apparent neutron porosity, shallow resistivity and
deep resistivity values (Fig. 6). The equation of
Larionov (1969) for older rocks is applied on the
gamma ray log in order to calculate the clay volume
(V) of the studied reservoir. Both the neutron and
density logs are used in calculating the total and
effective porosities (@, and ®,, respectively) of the
studied reservoir. The water saturation (Sw) is esti-
mated using the Indonesian equation (Poupon and
Leveaux 1971) because the studied reservoir con-
tains variable amounts of clay. The hydrocarbon
saturation (Sy) is calculated by subtracting S, from
100% saturation.

In order to get approximate values for perme-
ability (K), the Timur equation (Timur 1968) is used.
Although empirical estimates of permeability have
uncertainties, the Timur equation has the lowest.
The irreducible water saturation (Sy;) values are set
to 0.01 below the lowest water saturation noticed
anywhere in the reservoir in logs (Darling 2005;
Abdelmaksoud 2017; Abdelmaksoud et al. 2019b).
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<«Figure 7. Examples of litho-saturation cross-plots of the C
Member reservoir: (a) ABSE-1 well; (b) Kom-2 well.

Cutoff values are used for obtaining the net reser-
voir and pay thicknesses. These values are 40% for
shale volume, 10% for porosity and 60% for water
saturation. The next stage in reservoir modeling is
the population of the reservoir rock’s facies/petro-
physical characteristics, such as porosity, perme-
ability and facies directly from well data, through
the 3D model. The obtained lithologies/facies and
petrophysical characteristics are therefore used as
input in the previously constructed 3D structural
framework in order to obtain 3D facies and petro-
physical models for the C Member reservoir,
through the processes of facies and petrophysical
modeling.
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RESULTS AND DISCUSSION
Lithology and Petrophysical Parameters

The lithology of the C Member reservoir is
interpreted, from well logs, as sandstone cemented
by argillaceous and/or calcareous materials, siltstone
and shale. The obtained cross-plots exhibit three
main clusters. The shale lithology is represented by
the first cluster of these cross-plots. It lies in the
upper portion of the cross-plots. Shale is character-
ized by high gamma ray readings (130-170 API),
high neutron porosity (20.7-35% porosity units, pu)
and relatively intermediate bulk density (2.40-
2.64 gm/cc), while it exhibits intermediate, deep
resistivity values (18-47 Q m). The average shale
parameters for the studied wells show that wells
ABSE-1 and AB-1 have intermediate neutron
porosity, relatively high density and intermediate to
high resistivity, which reflects that this shale is al-

most dry, while wells Kom-1 and Kom-2 exhibit high
neutron porosity, relatively low density and inter-

Table 2. A summary of the average petrophysical parameters of the C Member reservoir within the studied wells

Well Parameter

Gross thickness Net reservoir Net pay Net/gross Average &, Average V., Average S,, Average S;, Average k

(m) (m) (m) (%) (%) (%) (%) (mD)
ABSE-1 216 68.9 68.50 0.469 12.4 18.30 25.4 74.60 65
AB-1 116 27.0 045 0.422 12.6 430 93.2 6.80 2
Kom-1 165 101.7 625 0.693 13.6 12.00 88.0 12.00 6
Kom-2 244 77.8 3.15 0375 133 12.70 91.9 8.10 9

Table 3. Quantitative results of the petrophysical analysis of all identified reservoir zones in the studied wells within the C Member

Well Zone # Top (m) Bottom (m) NST (m) NRT(m) NPT (m) N/G D, (%) Vi (%) Sw (%)  Sh(%)
ABSE-1 1 2125.29 2159.28 34.00 15.47 15.10 0.455 10.8 6.5 48.5 51.5
2 2179.09 2208.20 29.12 11.43 11.43 0.393 11.7 19.8 21.2 78.8
3 2215.59 2299.49 83.90 42.00 42.00 0.500 13.2 22.3 19.4 80.6
AB-1 1 2186.03 2194.41 8.38 5.18 0.46 0.618 12.5 83 80.0 20
2 2219.10 2257.65 38.56 13.56 0.00 0.352 12.9 35 95.7 4.3
3 2270.15 2287.07 16.92 8.23 0.00 0.486 12.3 3.1 97.3 2.7
Kom-1 1 2090.93 2110.13 19.20 13.50 2.60 0.702 13.4 5.8 83.2 16.8
2 2114.25 2221.08 106.83 82.83 2.60 0.775 13.7 124 88.9 11.1
3 2229.92 2250.49 20.58 5.34 1.10 0.259 13.1 20.3 85.5 14.5
Kom-2 1 2036.47 2154.61 118.14 53.85 0.00 0.456 12.6 7.90 99.7 0.3
2 2170.70 2223.26 52.56 13.00 1.27 0.245 12.7 24.1 77.8 222
3 2241.21 2277.70 36.49 11.00 1.88 0.302 17.2 22.8 75.7 24.3

NTS, net sand thickness; NRT, net reservoir thickness; NPT, net pay thickness; N/G, net-to-gross ratio; @, effective porosity; Vy,, volume
of shale; S,,, water saturation; Sy, hydrocarbon saturation
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Figure 8. Buckles plot of porosity as a function of water saturation, indicating the bulk volume of water
(example of the three zones of Kom-2).

mediate to low resistivity, indicating that most of the
shales in these wells are wet (Table 1). The second
cluster lies in the lower portion of these cross-plots
representing sandstone lithology. The third cluster
that is sandwiched between the two previous clusters
represents the shaly sandstone and siltstone
lithologies. The obtained petrophysical parameters
of the C Member reservoir within the studied wells
are presented in Figures 6 and 7 and in Table 2.
Three main reservoir zones are identified through
the C Member. The detailed petrophysical parame-
ters for these zones are presented in Table 3. Kom-1
well exhibits the highest net reservoir thickness with
101.7 m, while AB-1 has the lowest value (27 m).
The net pay has its greatest and smallest values in
ABSE-1 (68.5 m) and AB-1 (0.45 m) wells, respec-
tively. The four wells have approximately the same
average porosity values (about 13%). The C Mem-
ber reservoir zones exhibit relatively low shale
content, ranging from about 3-24%. ABSE-1 is the
only well with high hydrocarbon saturation values
(51.5-80.6%). On the other hand, wells AB-1, Kom-
1 and Kom-2 have low hydrocarbon saturation val-
ues (2.7-20%, 11.1-16.8% and 0.3-24.3%, respec-
tively). The water saturation values can be displayed
using Buckles plot (Buckles 1965) which plots
porosity as a function of water saturation. Plotting

porosity as a function of water saturation is adopted
by a set of hyperbolas of fixed bulk volume of water
(BVW) values (Nabawy et al. 2018a). The lower the
BVW values, is the better reservoir quality charac-
terized by higher permeability, coarser grain size
and much more pore connectivity (Fig. 8).

TWT, Depth and Isopach Maps of the C Member
Reservoir

The TWT contour map of the top of the C
Member of the Six Hills Formation displays two
main general normal fault trends in the NW-SE and
NE-SW directions. The TWTs of the reservoir in-
crease in the eastern part of the Komombo Basin,
recording the maximum value of about 1600 ms,
representing low structure features. The TWTs de-
crease in the western and southwestern parts of the
Komombo Basin, recording the minimum value of
about 600 and 700 ms, respectively, representing
high structural features (Fig. 9).

The depth structure contour map of the top of
the C Member reservoir shows that the Komombo
Basin is controlled by many normal faults. These
faults form horsts and half-grabens due to tensional
forces, so the displacements along these faults are
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Figure 9. Two-way time contour map of the top of C Member reservoir.

reflected in the depth values of the reservoir; the
maximum depth values are found in graben areas,
and the minimum depth values are found in horst
areas or at the shoulders of the basin. The depth
values, as deduced from the 2D seismic lines, range
between 2195 and 2377 m in the central and east-
ern parts (the depocenter of the basin) and be-
tween 914 and 1036 m in the western and
southwestern parts of the Komombo Basin (the
shoulders of the basin). It is not appeared in the
central part of the basin and is absent in the Kom-3
well probably due to structural Paleo-highs (horst

block), and it appeared again toward the SW
direction from Kom-3 well (Fig. 10).

The isopach map of the C Member reservoir
was constructed by subtracting the depth map of the
B member from the depth map of the C Member
reservoir. Figure 11 shows that the minimum value
thickness of the reservoir is 91.5 m in the southern,
western and northern parts (due to the presence of
the shoulders of the basin or horst structures).
Meanwhile, the maximum value of the reservoir’s
thickness is 426.5 m in the eastern part of the Ko-
mombo Basin (due to the presence of the



2586

780000 784000 788000 792000
1 1 1 1

Ali, Abdelmaksoud, Essa, Abdelhady, and Darwish

796000 800000 804000
1 1 1

24000
1l 1

Depth from S.L
-3000.00

-3600.00
-4200.00

204000

. -4800.00 -
o 1] -5400.00 o
g1 -6000.00 g
& -6600.00

p 720000

] 2000 4000 6000  8000m
8 780000 C.I=200 Ft. "
§ - T T T T T T 1:|190735 T T _g
= 780000 784000 788000 792000 796000 800000 804000

Figure 10. Depth structure contour map of the top of C Member reservoir. (1 ft = 0.3048 m).

depocenter of the basin). The large variation in the
thickness of the reservoir may be related to the ef-
fect of the normal faults.

3D Structural Model

The 3D structural model of the C Member is
necessary for the elucidation and understanding of
the structural setting of the reservoir in 3D pattern.
The objective is to construct a reliable structural
model utilizing only a few wells by maximizing the

information from seismic data. Some cross sections
are extracted from the 3D model in order to provide
a clear image about the different structural features.
The 3D structural model and the associated sections
indicate that the dominant fault system in the Ko-
mombo Basin is represented by normal faults with a
NW-SE trend (Fig. 12). Most of these faults are
characterized by steep planes at the top parts with
dip angle of 60°-80°, while the lower parts of the
most of them have low-to-medium dip angles (20°-
40°), and most of them are listric faults. The dis-
placement values of most of these faults range be-
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Figure 11. Isopach contour map of the C Member reservoir (1 ft = 0.3048 m).

tween 12 and 61 m in the SE and NW directions,
forming many horst, graben and half-graben struc-
tures. Some of these faults have large displacement
values ranging from 30.5 to 244 m (Ali et al. 2019a).
The NW-SE and NE-SW normal faults resulted
from the Early Cretaceous extension phase in the
N35° E and N45° W directions, respectively, during
the active opening of the South and equatorial
Atlantic Ocean. This opening occurred during the
Early Cretaceous rifting phases due to clockwise
rotation of North and Central Africa, which was

linked with the breakup of western Gondwana
(Guiraud and Maurin 1992; Philobbos et al. 2000;
Noweir et al. 2002; Guiraud et al. 2005; Bosworth
et al. 2008). Figure 12 represents the 3D structural
model of the C Member reservoir and shows hori-
zons that are dissected by many normal faults with
NW-SE and NE-SW directions. Additionally, it is
noticed that the depth values of the C Member
reservoir reach their maximum in the eastern part of
the Komombo Basin and decrease gradually toward
the corners of the basin.



2588

Ali, Abdelmaksoud, Essa, Abdelhady, and Darwish

Y-axis
210000

200000

0

-4000
Z-axis

-8000

790000
X-axis

800000

220000

X-axis -

790000
800000

-4000

Z-axis

-8000

220000

C member
B member
Basement

210000
Y-axis
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3D Facies Model

The 3D facies model of the C Member reservoir
is constructed by up-scaling of the facies character
for the available wells and then going through the
facies modeling process. The sequential indicator
simulation (SIS) algorithm is used in the facies
modeling process. The 3D facies model of the
reservoir shows that the shale has a large probability
distribution in the study area compared to the
sandstone and siltstone (Fig. 13). The C Member
reservoir is composed mainly of approximately 42%
shale with sandstone and siltstone at approximately
33% and 25%, respectively. The shale is concen-
trated in the central and northern parts of the basin,
while the sandstone is concentrated in the southern
part. Most of the siltstone is distributed in the
northeastern part of the Komombo Basin (Fig. 13).
Lateral and vertical facies change through the

studied reservoir are noticed as well. The 3D facies
model of the reservoir is consistent with the inter-
pretation of depositional systems of the Komombo
Basin by Selim (2016). He supposed that the C
Member of the Six Hills Formation is represented by
distal braid-plain and mid-braid-plain, depending on
sand/shale ratios. The distal braid-plain is composed
mainly of massive to laminated, red mudstone with
some medium- to coarse-grained sandstone. These
sandstone facies are arranged in erosively based
fining-upward pattern. The mid-braid-plain consists
of semi-equal ratio of massive to laminated, red
mudstone and coarse-grained sandstones. The
description of the ditch samples and the patterns of
the gamma ray logs of the four wells are consistent
with this interpretation because the lithology shows
fining-upward sequences (FUS) with shale domi-
nating the upper part of the depositional cycle and
semi-equal ratio between sandstone and mudstone
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Figure 13. 3D facies model showing the facies distribution of the C Member reservoir. Units of X- and Y-axes are in meters
and Z-axis in ft (1 ft = 0.3048 m).

at the lowermost part of the same cycle (Fig. 14a
and b). Four cross sections were extracted from the
3D facies and structural models in the N-S, E-W,
NE-SW and NW-SE directions, which display the
detailed lithology and structural elements of the C
member reservoir (Fig. 15).

3D Petrophysical Model

The petrophysical parameters, obtained from
the Interactive Petrophysics™ software, are up-
scaled and then modeled using the petrophysical
modeling process. The statistical method used in the
petrophysical modeling process is the sequential
Gaussian simulation algorithm. This method is
appropriate, in the present case, given the amount of
available data. The modeled parameters are porosity
and permeability in addition to water and hydro-
carbon saturation (Figs. 16, 17). Some cross sections
are extracted from these models to identify the 3D

distribution of these parameters within the basin
(Fig. 18).

The petrophysical models and the associated
cross sections show that the C Member reservoir is
generally considered to have fair reservoir quality
according to the recent classifications of Nabawy
and Al-Azazi (2015) and Nabawy et al. (2018a, b).
This reservoir exhibits, in general, intermediate
porosity and low-to-intermediate permeability val-
ues. The C Member reservoir within the Komombo
Basin exhibits high net reservoir thicknesses. In
contrast, this reservoir shows low net pay values,
which are, related to the high water saturation val-
ues, while the hydrocarbon saturation is restricted to
some parts within the basin, especially in the
depocenter of the basin. The porosity and perme-
ability increase mainly in the central portion of the
study area, locating within the main depocenter of
the basin. The hydrocarbon saturations through the
studied reservoir increase generally in the central
portion as well. The C Member in ABSE-1, Kom-1
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<«Figure 14. Ditch samples’ description and lithology of the C
Member in ABSE-1 well, interval from 7680 to 7000 ft (2341-

2134 m).

and Kom-2 wells is classified as hydrocarbon-bearing
reservoir, while in well AB-1 it is classified as water-
bearing reservoir, as the net pay thickness in this
well is negligible. Wells Kom-1 and Kom-2 have
relatively small pay zones if compared to ABSE-1

well.
SUMMARY AND CONCLUSIONS
The present study is an attempt to get clear and

detailed geological information about the C Mem-
ber reservoir of the Six Hill Formation. The main
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results and conclusions can be summarized as fol-
lows.
The 3D structural model of the C Member
reservoir shows two normal fault directions NW-SE
and NE-SW, with the dominance of the NW-SE
direction. The depth values of the C Member
reservoir range from 2195 to 2377 m in the central
and eastern parts, to 914 and 1036 m in the western
and southwestern parts of the Komombo Basin. The
thickness of the C Member reservoir ranges from
914 to 1036 m in the flanks and depocenter of the
basin, respectively, and it varies in the drilled wells
from 165, 244,116 and 216 m in Kom-1, Kom-2, AB-
1 and ABSE-1 wells, respectively. The 3D facies
model shows that the C Member reservoir is com-
posed mainly of shale about 42% with sandstone and
siltstone about 33% and 25%, respectively. The
petrophysical models show that the C Member
reservoir is considered generally to have fair reser-
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Figure 15. 3D facies model and the four extracted cross sections portraying the detailed lithology and structural elements of

the C Member reservoir. Units of X- and Y-axes are in meters and Z-axis in ft (1 ft = 0.3048 m).
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Figure 18. Cross sections through the different petrophysical models in NE-SW direction. Units of X-axis are in meters and
Y-axis in ft (1 ft = 0.3048 m).

voir quality. The reservoir exhibits, in general,
intermediate porosity and low-to-intermediate per-
meability values. The reservoir has also, in general,
high water saturation values. Most of the C Member
reservoir within the Komombo Basin exhibits high
water saturation values. In contrast, the hydrocar-
bon saturation is restricted to the depocenter of the
basin. The porosity and permeability increase
mainly in the central portion of the study area,
locating within the main depocenter of the basin.
The hydrocarbon saturations through the studied
reservoir increase generally in the central portion as

well. In the ABSE-1, Kom-1 and Kom-2 wells, the C
Member is classified as hydrocarbon-bearing reser-
voir; however, in the AB-1 well, it is classified as
water-bearing reservoir, exhibiting very small
thickness of net pay.
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