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Mineral systems are composed of many interacting components that lead to complex,
singular and rare properties of geo-data. In mineral prospectivity mapping (MPM), super-
vised machine learning algorithms, which have advantages in dealing with complex geo-data,
usually involve uncertainty resulting from the discretization of continuous evidential maps
into arbitrary classes as well as the large data imbalance caused by the rarity of deposit
locations. Consequently, the predicted results may be biased. In this paper, a random forest
(RF) algorithm based on the bagging technique is used to map the prospectivity of tungsten
polymetallic deposits in the Nanling metallogenic belt. Data-driven logistic transformation is
employed to obtain continuous evidential maps. Both discretized and continuous evidential
maps are used to generate prospectivity models for comparison. To reduce the data
imbalance, the under-sampling method and the synthetic minority over-sampling technique
(SMOTE) are implemented to generate balanced datasets. The receiver operating charac-
teristic (ROC) curve and improved prediction-area (P-A) plot are applied to evaluate the
prospectivity models. The predictive results show that when using the RF algorithm in MPM,
the application of continuous evidential maps can improve the performance of prospectivity
models and reduce the uncertainty resulting from the discretization of evidential maps. The
prospectivity model trained with a balanced SMOTE-generated dataset shows the best
overall performance for improving the percentage of deposit locations that are correctly
predicted and decreasing the percentage of non-deposit locations that are inaccurately
identified as deposit locations to some extent. In addition, the improved P-A plot is superior
to the ROC curve because the latter neglects the occupied area, which is critical for mineral
exploration and may provide an overly optimistic performance with imbalanced data.
However, further testing of the evaluation criteria and the SMOTE approach to reduce data
imbalance is warranted to determine fully the universality in MPM from the perspective of
data imbalance. Based on prospectivity models, four high-potential areas and five moderate-
potential areas are delineated, which indicates good future prospecting for tungsten poly-
metallic deposits in this region.

KEY WORDS: Random forest, Data imbalance, SMOTE, Improved P-A plot, Mineral prospectivity
mapping.
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INTRODUCTION

Mineral systems are complex, consisting of
many components (e.g., geological, geochemical,
and geophysical) that interact with each other as the
systems evolve with time (Wyborn et al. 1994; Zhai
et al. 1999, 2000, 2002; Zhai 2003a, b; Cheng 2008a).
Due to the complexity of mineral systems, geo-data
have complex, singular, and rare properties with
nonlinear relationships, which lead to challenges in
understanding geological processes and uncertainty
in predictions (Agterberg 1989; Bárdossy and Fodor
2001, 2004; Yu 2006; Cheng 2008a, b; Zuo and Xia
2008).

Specifically, in mineral exploration, economic
geologists are concerned with extracting information
associated with mineralization from a very large
collection of complex geo-data (e.g., geological,
geochemical, geophysical, remote sensing and natu-
ral heavy mineral data), which may exhibit the
properties of large volume, high dimension, complex
distribution, and nonstationary and nonlinear rela-
tionships (Viktor and Kenneth 2013; Tan et al. 2017;
Zuo 2017; Zhao 2018). Hence, mineral exploration is
a kind of decision-making under the condition of
uncertainty (Zhao et al. 2013). The basic task of
mineral prospectivity mapping (MPM) is to reduce
the uncertainty and risk in mineral exploration by
narrowing the target area ranging from the regional
to the deposit scale (Zhao et al. 2013; Porwal and
Carranza 2015). From a mathematical perspective,
multisource geo-data can be regarded as the input,
while the occurrence of a particular type of mineral
deposit can be viewed as the output. The procedure
of data fusion can be modeled as a classification
function that combines the input and output vari-
ables (Hariharan et al. 2017). In MPM, spatially
continuous evidential maps (e.g., distance to struc-
tures and geochemical signatures) are usually dis-
cretized into classes using arbitrary intervals.
Weights are then assigned to every class based on
the subjective judgment of the analyst or on loca-
tions of mineral deposits, or functions are used to
calculate the weights of classes of discretized input
variables (Luo 1990; Bonham-Carter 1994; Luo and
Dimitrakopoulos 2003; Porwal et al. 2003b; Zhang
et al. 2014; Cheng 2015). Subsequently, discretized
evidential maps, which have been assigned weights
by the three approaches mentioned above, are
assembled using a mathematical model to generate
prospectivity maps. The procedure of MPM to dis-

cretize spatially continuous evidential maps may
result in exploration bias and uncertainty resulting
from the following three aspects: (1) MPM is sensi-
tive to the choice of the class interval, which may
lead to a biased estimation of the weights of classes
because of the approximation involved in classifica-
tion; (2) the assignment of meaningful weights to
every discretized evidential map is a highly subjec-
tive exercise involving trial and error; and (3)
stochastic bias and error can also be induced due to
data sufficiency when using the locations of known
mineral deposits as training sites to assign weights to
evidential maps (Nykänen et al. 2008; Yousefi and
Carranza 2015a, b, 2016, 2017a, b). Nykänen et al.
(2008) and Yousefi et al. (2012, 2014) assigned
weights to continuous evidential maps using specific
membership functions (e.g., �large�, �small�, and �lo-
gistic�) without discretizing the continuous evidential
maps into arbitrary classes and without using loca-
tions of known mineral deposits. However, these
methods still incurred exploration bias due to the
trial-and-error aspect involved [e.g., determining the
slope (s) and inflection point (i) in the logistic
function]. To overcome this problem, Yousefi and
Nykänen (2016) proposed a data-driven method to
define s and i.

With respect to data fusion, machine learning
algorithms (MLs) have demonstrated great advan-
tages in handling complex input variables compared
to traditional data-driven methods in MPM (e.g.,
weight of evidence and multivariate statistical
methods) (Singer and Kouda 1999; Porwal et al.
2003a; Nykänen 2008; Zuo and Carranza 2011; Chen
et al. 2014b; Carranza and Laborte 2015a; Harris
et al. 2015; McKay and Harris 2016; Chen and Wu
2017; Parsa et al. 2018). In recent years, the random
forest (RF) algorithm, which is a kind of supervised
ML method, has been widely applied in MPM. This
algorithm has shown better performance than other
MLs (e.g., neural networks and support vector
machines) due to its higher success rate, greater
stability, simpler parameter settings and increased
resistance to overfitting (Rodriguez-Galiano et al.
2014; Carranza and Laborte 2015a, b, 2016; Gao
et al. 2016; Hariharan et al. 2017). Additionally, the
RF algorithm can provide the relative importance of
the predictive variables, which coincides with well-
known geologic expectations (Rodriguez-Galiano
et al. 2014). However, in most cases of MPM using
the RF algorithm, spatially continuous evidential
maps are usually discretized into arbitrary classes,
which may lead to exploration bias and uncertainty,
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as mentioned above. Roshanravan et al. (2019b)
demonstrated the superiority of using continuously
weighted spatial evidence values compared to dis-
cretely weighted evidence data in MPM using an
artificial neural network. Parsa et al. (2018) applied
logistic regression and RF models with continuous
predictor variables to map skarn-type copper
prospectivity to reduce the possible uncertainty
resulting from discretized predictor variables.
However, little work has been conducted to discuss
the performance of prospectivity models generated
from discretized and continuous evidential maps
using the RF algorithm.

Another problem that occurs with the super-
vised MLs in MPM is data imbalance. Because
mineralization is a singular process, the occurrence
of mineral deposits exhibits rarity, resulting in frac-
tal spatial and temporal distributions (Cheng 2006,
2008a, b). Furthermore, limited geological observa-
tions and verifications are other factors that cause
data imbalance in MPM. Consequently, the number
of deposit locations is far smaller than that of non-
deposit locations, which results in a large data
imbalance in MPM. Therefore, because of data
imbalance, supervised MLs tend to ignore the
minority class and are biased to the majority class
(Chawla et al. 2004; Hariharan et al. 2017). When
using MLs in MPM, the output values are a series of
floating numbers between 0 (not representing a de-
posit) and 1 (representing a deposit) denoting the
likelihood of mineral deposit occurrence, which can
be reclassified using the threshold value 0.5 to map
prospective and non-prospective areas when the
training dataset is relatively balanced (Carranza and
Laborte 2015a, b). In general, there are two types of
misclassification errors in the reclassification proce-
dure: (1) false negative (FN) errors that classify a
prospective area as a non-prospective area and (2)
false-positive (FP) errors that classify a non-
prospective area as a prospective area (Zhao et al.
2013; Xiong and Zuo 2017). The costs of these two
types of errors are vastly different; the former can
result in the loss of important deposits, while the
latter can result in the waste of manpower and
financial resources (Zhao et al. 2013; Xiong and Zuo
2017). Consequently, if the training dataset is
imbalanced, the predictive prospectivity map may
then be biased when using 0.5 as the threshold value
for reclassification, which may result in exploration
risks. Additionally, the predictive accuracy, a kind of
performance evaluation index of classifiers, might
not be appropriate when the data are imbalanced

and/or the costs of different errors vary markedly
(Chawla 2009). To reduce the impact of data
imbalance, four strategies have been employed: (1)
assign distinct costs to training datasets, such as cost-
sensitive neural networks (Pazzani et al. 1994; Xiong
and Zuo 2017); (2) use one-class learning algorithms
(Chen and Wu 2017; Gonçalves et al. 2018); (3) use
unsupervised algorithms, such as deep autoencoder
neural networks (Xiong and Zuo 2016; Xiong et al.
2018); and (4) use sampling techniques, such as un-
der-sampling, over-sampling, and other synthetic
methods (Chawla et al. 2002; Chawla 2009; He and
Garcia 2010; Hoens and Chawla 2013). With respect
to the sampling techniques, researchers have noted
that the use of an equal number of negative samples
(e.g., non-deposit locations) and positive samples
(e.g., deposit locations) in a regression is optimal
when the latter represents rare events (Breslow and
Cain 1988; Schill et al. 1993). King and Zeng (2001)
mentioned that the information content of predic-
tors starts to diminish as the number of negative
samples exceeds the number of positive samples.
Nykänen et al. (2015) suggested using the locations
of other deposit types or random locations to rep-
resent non-deposit locations. Carranza and Laborte
(2015b) summarized three criteria for the selection
of target variables: (1) the number of negative
samples (or non-deposit locations) should be equal
to the number of positive samples (or deposit loca-
tions); (2) non-deposit locations should be distal to
any deposit location because locations proximal to
existing mineral deposits are likely to have multi-
variate spatial data signatures similar to those of the
deposit locations and thus preclude achievement of
the desired results; and (3) non-deposit locations
must be randomly spatially distributed. To this end,
spatial point pattern analysis is recommended to
determine the optimal distance to deposit locations
and ensure that the non-deposit locations are dis-
tributed randomly. Hariharan et al. (2017) selected
the non-deposit locations according to the geological
conditions and then applied a synthetic minority
over-sampling technique (SMOTE) to generate
more balanced training datasets to reduce data
imbalance.

In this paper, the Nanling metallogenic belt
(NMB) in South China is selected as the study area.
Discretized and continuous evidential maps are used
to obtain prospectivity models using the RF algo-
rithm. The under-sampling method and SMOTE are
used to generate training datasets from the per-
spective of data imbalance. Subsequently, the RF

205Prospectivity Mapping for Tungsten Polymetallic Mineral Resources



algorithm is employed to map the prospectivity of
the tungsten polymetallic deposits in this region. The
receiver operating characteristic (ROC) curve and
improved prediction-area (P-A) plot are compared
to evaluate the performance of the prospectivity
models. This paper has two main purposes: (1) to
demonstrate the superiority of using continuous
evidential maps over discretized evidential maps in
MPM and (2) to examine data imbalance in MPM
using the RF algorithm.

METHODOLOGY

Logistic-Based Transformation

Defining a suitable nonlinear transformation
into a new space could facilitate the interpretation of
a pattern for a set of evidential values in MPM when
compared to defining a nonlinear function in the
original space (Yousefi et al. 2014; Yousefi and
Carranza 2015a). The logistic sigmoid function,
which provides an optimal decision boundary for
classification, has played an important role in pat-
tern recognition (Bishop 2007; Zhou 2016). The
logistic function transforms an individual evidential
map into the same space and can distinguish the
classification boundary more efficiently (Yousefi and
Carranza 2017a). In the general expression of the
logistic function, the inflection point (i) and slope (s)
are usually determined by trial-and-error methods.
Yousefi and Nykänen (2016) proposed a data-driven
logistic-based function in which the maximum value
of an evidential map is assigned a value of 0.99,
while the minimum value of an evidential map is
assigned a value of 0.01. By solving the system of
equations using the maximum and minimum values
of weights, the values of i and s in the logistic
function can be obtained. This data-driven logistic-
based function can avoid the trial-and-error proce-
dure used for other types of functions (e.g., �large�
and �small�) and can estimate the relative importance
of evidential maps for MPM more realistically (Al-
masi et al. 2017; Yousefi and Carranza 2017a; You-
sefi and Nykänen 2017).

Point Pattern Analysis

In a regional-scale prospectivity analysis, it is
almost universally accepted that mineral deposits
can be adequately represented by spatial points

(Lisitsin 2015). Hence, the distribution of mineral
deposits can be investigated by various techniques of
point pattern analysis. Fry analysis (Fry 1979), which
was originally applied to assess the strain partition-
ing in rocks, has been widely used to quantify trends
in the distributions of mineral deposits (Vearn-
combe and Vearncombe 1999; Yaghubpur and
Hassannejad 2006; Carranza 2009c; Zuo et al. 2009;
Najafi et al. 2010). Assume that a sheet of trans-
parent paper with n marked points is placed over the
point pattern. Then, the transparent paper is shifted,
maintaining its original orientation, so that one of
the original points coincides with one of the points in
the point pattern; then, the locations of other points
in the point pattern can be mapped on the trans-
parent paper. Repeat this process for the remaining
(n � 1) points. As a result, n 9 (n � 1) Fry points
are obtained on the original transparent paper (Fry
1979). A rose diagram is used to portray the orien-
tation frequencies of the vector between any two Fry
points. The rose diagram plotted for all Fry points
may represent the distribution orientations of min-
eral deposits at the regional scale, while the rose
diagram plotted for Fry points that are located
within a specific distance could provide ore control
information at the local scale.

Fractal analysis (Mandelbrot 1983) has been
widely applied to investigate whether deposits tend
to be close or distal, which has major implications
for exploration targeting (Carlson 1991; Cheng and
Agterberg 1996; Raines 2008; Zuo et al. 2009; Li-
sitsin 2015; Haddad-Martim et al. 2017; Li et al.
2018; Parsa et al. 2018). Box-counting and radial-
density analyses are two common methods to
quantify the spatial heterogeneity of mineral de-
posits. Box-counting analysis involves converting
mineral deposits into a series of cells of different
sizes. Then, the relationship between cell size and
the number of cells containing mineral deposits
obeys a power-law relationship (Mandelbrot 1983):

NðeÞ ¼ C1 � e�Db ð1Þ

where NðeÞ is number of cells containing at least one
deposit, C1 is a constant, e is cell size, and Db is the
box-dimension.

In contrast, radial-density analysis involves
calculating the radial density of mineral deposits
within circles with different radii. The radial density
and the corresponding radius also obey a power-law
relationship (Mandelbrot 1983; Carlson 1991; Raines
2008):
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d ¼ C2 � rDr�2 ð2Þ

where d is radial density, C2 is a constant, r is radius
and Dr is the radial-density fractal dimension. More
detailed information about box-counting and radial-
density analysis can be found in related papers (e.g.,
Cheng and Agterberg 1996; Carranza et al. 2009;
Zuo et al. 2009; Li et al. 2018; Parsa et al. 2018).

Sampling Techniques for Imbalanced Datasets

The data imbalance problem, which causes
suboptimal classification performance, is one of the
challenges that have emerged in the application of
ML algorithms (Chawla et al. 2004). Data imbalance
occurs when one of the classes in a binary classifi-
cation dominates in the data. Random over-sam-
pling and under-sampling are non-heuristic but are
the most practical methods to address this issue. The
former method balances the data through random
replication of the minority class, while the latter
balances the data through elimination of the
majority class. SMOTE (Chawla et al. 2002) is a kind
of revised improved over-sampling method in which
the minority class is over-sampled by creating syn-
thetic examples in the feature space rather than by
over-sampling with replacement in the data space.
The minority class is over-sampled by taking each
minority class sample and introducing synthetic
examples along the line segments joining any/all of
the k minority class nearest neighbors. The method
takes the difference between the feature vector
(sample) under consideration as well as its nearest
neighbor and then multiplies the difference by a
random number between 0 and 1 and adds the result
to the feature vector under consideration. Usually,
under-sampling is also performed to reduce the
number of majority classes. By applying a combi-
nation of under-sampling and over-sampling, the
initial bias of the classifier toward the majority class
is reversed in favor of the minority class (Chawla
et al. 2002).

Random Forest Algorithm

The RF algorithm, which is a kind of ensemble
learning method, is a classifier consisting of a col-
lection of independently generated decision trees
(Breiman 2001; Liaw and Wiener 2002). For each
decision tree, bootstrap sampling with the replace-

ment method called bagging is employed to generate
a dataset of which 2/3 is used for training, known as
the in-bag data while the remaining 1/3 is used for
validation and is known as out-of-bag (OBB) data
(Breiman 1996). Afterward, from the root node, the
data splitting process in each internal rule node of
the tree is repeated until a previously specified stop
condition is reached (Rodriguez-Galiano et al.
2015). All decision trees are eventually assembled,
and the overall precision depends on the majority
vote of the individual trees. The optimal split
threshold for a decision tree is determined by the
Gini impurity index (IG) (Breiman et al. 1984),
which is defined as:

IGðf Þ ¼ 1�
Xm

i¼1

f 2i ð3Þ

where fi is probability of class i at node m and the
lowest IG corresponds to the optimal split threshold.
Since the classification of an RF model is deter-
mined by the vote of all decision trees, the output of
a random forest consisting of k decision trees can be
described as (Breiman 2001),

Pj ¼
1

k

Xk

j¼1

yij ð4Þ

where Pj is probability of classifying the input into
the jth class, j denotes the number of classes (deposit
or non-deposit in this case) and yj

i denotes the pre-
dicted result that the input is assigned into the jth
class by the ith decision tree.

Model Evaluation

There are many approaches to evaluate
prospectivity models, including successive-rate curve
(Agterberg and Bonham-Carter 2005), prediction
rate curve (Fabbri and Chung 2008), receiver oper-
ating characteristic (ROC) curve (Nykänen et al.
2015; Gao et al. 2016; Zhang et al. 2016; Xiong and
Zuo 2017), prediction-area (P-A) plot (Yousefi and
Carranza 2015b, 2017b) and improved P-A plot
(Roshanravan et al. 2019a).

On the ROC curve, the x-axis represents the
false-positive rate (i.e., the percentage of non-de-
posit locations that are falsely predicted), FPR =
FP/(FP + TN), while the y-axis represents the true-
positive rate (i.e., the percentage of mineral deposits
that are truly predicted), TPR = TP/(TP + FN).
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Additionally, the area under the curve (AUC) value
is an evaluation metric (Bradley 1997). The value of
AUC ranges from 0 to 1, and the higher the AUC
value, the better the model is.

In the improved P-A plot, the percentage of
known deposits anticipated by prospectivity classes,
the percentage of non-deposit locations anticipated
by prospectivity classes and occupied areas of the
corresponding prospectivity classes are employed to
evaluate prospectivity models (Roshanravan et al.
2019a). The value on the left y-axis corresponding to
the intersection of mineral deposit prediction rate
and occupied area curves is similar to TPR in the
ROC method, while the value on the left y-axis
corresponding to the intersection of the non-deposit
location prediction rate curve and occupied area
curve is similar to FPR. Because one of the purposes
of MPM is to promote the TPR and reduce the FPR
at the same time, the index Oe, which is the differ-
ence between TPR and FPR, can be used to evalu-
ate the overall performance of a prospectivity
model. The value of Oe ranges from � 1 to 1, and
the higher the positive Oe value, the better the
model is. Detailed information about the advantages
and disadvantages of different model evaluation
methods can be found in Roshanravan et al. (2019a).

REGIONAL GEOLOGY AND DATASETS

Regional Geology

The NMB, which is part of the Cathaysian block
in South China, is one of the largest tungsten poly-
metallic belts in the world (Fig. 1a) (Mao et al. 2005;
Chen et al. 2008; Liu et al. 2010; Shu 2012). As a part
of the Cathaysian block, the NMB has experienced
multiple stages of tectonic–magmatic activity,
forming a series of differently trending folds and
faults and large amounts of crustal re-melting gran-
ite (S-type) (Shu et al. 2004; Shu and Wang 2006;
Shu 2012). The exposed strata in this region can be
divided into three groups: (1) Precambrian to Sil-
urian strata composed of slate, sandstone and lime-
stone; (2) Devonian to Triassic strata consisting of
carbonate rocks and marlstone with interbedded
clastic deposits; and (3) Jurassic to Cretaceous strata
composed of volcanic rocks and red beds (Mao et al.
2009; Hua et al. 2013) (Fig. 1b). Most of the strata
are enriched in mineralization elements to some
extent, such as W, Sn, and Bi (Yu et al. 1987). Since
the Mesozoic, this region has been influenced by the

transformation from the Tethys tectonic system to
the Pacific tectonic system and has experienced
lithospheric delamination and thinning, resulting in
the formation of large amounts of S-type granite
accompanied by large-scale tungsten polymetallic
mineralization (Hua et al. 2003; Mao et al. 2007; Shu
2012). Chronologic studies show that the timing of
tungsten polymetallic mineralization extended from
170 to 90 Ma, with peak mineralization ranging from
170 to 150 Ma (Mao et al. 2004, 2005, 2007; Zhou
2007). This S-type granite related to tungsten poly-
metallic mineralization shows highly differential
geochemical characteristics of enrichments in Y and
Rb and has a high Rb/Sr ratio, while it is depleted in
Eu, Ba + Sr, and TiO2 and has a low LREE/HREE
ratio (Hua et al. 2003; Zhou 2007; Chen et al. 2008;
Hu and Zhou 2012). There are three main types of
tungsten polymetallic deposits in this region: quartz
vein-, skarn-, and greisen-type deposits. The type of
tungsten polymetallic deposit is largely dependent
on the wall rock. Quartz vein-type tungsten poly-
metallic deposits often occur when the wall rock is
shallow metamorphic sandstone or clastic rock,
while skarn-type and greisen-type tungsten poly-
metallic deposits often occur when the wall rock is
carbonate (Mao et al. 2008). The metallogenic con-
ditions in this region are superior, and many large
tungsten polymetallic deposits have been discov-
ered, including Shizhuyuan, Piaotang, Xihuashan,
Pangushan, Huangsha, and Dajishan.

Spatial Datasets

The 1:200, 000 scale Bouguer gravity data and
1:200, 000 scale geological map showing strata,
magmatic rocks, faults, and tungsten polymetallic
deposits originate from the China Geological Survey
(CGS). The 1:200, 000 scale geochemical data with
39 geochemical elements come from the Regional
Geochemistry National Reconnaissance (RGNR)
Project (Xie et al. 1997). Detailed information about
the geochemical data used in this paper can be found
in Liu et al. (2016).

Granite

Previous studies on S, Pb, and Hf isotopes
indicate that the ore-forming materials and ore-
bearing granite have a homologous relationship and
exhibit characteristics of an upper crustal source
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(Zhao et al. 2010; Chen et al. 2013; Xu and Wang
2014). Moreover, studies on H and O isotopes show
that the ore-forming fluid was dominated by mag-
matic water, with a mixture of construction water
and meteoric water (Mu et al. 1981). Hence, S-type
granite provides important materials and fluid
sources for tungsten mineralization (Wang et al.
2008, 2010; Song et al. 2011; Wei et al. 2011; Xu and
Wang 2014; Zhu et al. 2014; Huang et al. 2015; Wu
et al. 2016). In addition, the granite provides the
necessary energy for the extraction, migration, and
precipitation of ore-forming materials (Barnes
2000). Hence, the inference of concealed granite is
of great significance to MPM. According to the
physical parameters of the rocks in this region, the
density of granite is approximately 2.60 9 103 kg/
m3, which is generally lower than that of the wall
rock, while the magnetic susceptibility of granite is
not significantly different from that of the wall rock

(Rao et al. 2006). The Bouguer gravity anomaly can
be employed to infer the concealed granite in this
region. Chen et al. (2014a) applied the singularity
mapping technique based on the density/concentra-
tion-area power-law model, which can act as a high-
pass filter for extracting gravity anomalies regardless
of the background value, to detect the edges of the
gravity sources in the Nanling region. Since the
regular singularity analysis method cannot process
maps with negative values, a modified algorithm to
calculate the singularity index was proposed (Wang
and Zuo 2015; Zuo et al. 2015). In this paper, we
adopt the modified algorithm to infer concealed
granite in the NMB (Fig. 2). The singularity index
map of the Bouguer gravity anomaly is classified
into 10 categories to generate a discretized map
(Fig. 2a). In contrast, a continuous evidential map of
the singularity index is also generated via logistic
transformation (Fig. 2b).

Figure 1. Simplified geological maps of the NMB: (a) tectonic sketch map of the NMB (NCC denotes the

North China Craton; YB denotes the Yangtze Block; QDO denotes the Qinling-Dabie Orogen; JNO denotes

the Jiangnan Orogen; CB denotes the Cathaysian Block) (revised from Zhou 2007). (b) Simplified 1: 2,000,000

scale geological map of the NMB (revised from Liu et al. 2014).
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Faults

The NMB has experienced tectonic movement
from the Caledonian to the Himalayan, forming a
series of complex fold-fault structures (Shu et al.
2004; Shu 2012). Among the structures, faults cutting
different circles (e.g., the NE-, NW-, and EW-strik-
ing deep faults) not only provide important channels
for magma migration but also control the distribu-
tion of granite (Zhou 2007). In addition, the sec-
ondary faults of different strikes provide important
channels for the migration of ore-forming fluids
(Wei et al. 2004). Hence, fault systems are the major
ore- and rock controlling structures in this region,
forming a mineralization network (Zhai et al. 2002;
Zhai 2003a, 2003b; Zhou 2007). Pei et al. (1999)
proposed a ‘‘line-row-cluster’’ ore-controlling model
consisting of EW- or NS-striking rows, NE- or NW-
striking lines and intersection points of the lines and
rows, which coincide with deep tectonic processes in
this region. In this paper, faults of different strikes
are selected as evidential data representing path-
ways for ore-forming materials and fluids. A multi-
ring buffer with an interval of 2 km is employed to
distinguish faults with different strikes. Then, dis-
cretized evidential maps of the distances to faults
with different strikes are generated (Fig. 3a, b, c,
and d). In contrast, a data-driven logistic-based
transformation is conducted on the distance to faults
with different strikes to generate continuous evi-
dential maps. In this transformation approach, the
minimum value in each map is assigned the maxi-

mum weight (e.g., 0.99), while the maximum value in
each map is assigned the minimum weight (e.g.,
0.01) (Fig. 3e, f, g, and h).

Geochemical Anomalies

In fact, most of the strata in the NMB are en-
riched in ore-forming elements such as tungsten and
tin, which has laid a good foundation for tungsten
polymetallic mineralization in the region (Yu et al.
1987). Identifying the geochemical anomalies asso-
ciated with tungsten mineralization is critical for
mineral exploration. Factor analysis is a widely used
technique to explain the variation in a multivariate
geochemical dataset by a few factors containing
crucial information regarding the geochemical pro-
cesses (Tripathi 1979; Reimann et al. 2002). Since
geochemical data are compositional data that may
produce data closure problems when using tradi-
tional statistical methods, several transformations
(e.g., additive log-ratio, centered log-ratio, and iso-
metric log-ratio) are proposed to preprocess the data
prior to data analysis (Aitchison 1986; Egozcue et al.
2003). Many studies that discuss the closure problem
of stream sediment geochemical data in this region
have been performed (Liu et al. 2016). In contrast to
previous works, all 39 geochemical elements used in
this paper were selected to avoid possible informa-
tion losses (Zuo and Xiong 2018). Subsequently, the
centered log-ratio (CLR) transformation is de-
scribed by Eq. (5), which involves the transforma-

Figure 2. Evidential maps of derived from Bouguer gravity anomaly (YI denotes the Yanshanian intrusive rocks; HI

denotes the Hercynian intrusive rocks; II denotes the Indosinian intrusive rocks; CI denotes the Caledonian intrusive

rocks): (a) singularity index map of Bouguer gravity anomaly. (b) Fuzzy score of the singularity index of Bouguer gravity

anomaly.
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tion from the simplex sample space to the D-di-
mensional real space, was performed to preprocess
the geochemical data.

y ¼ y1; y2; . . . ; yDð Þ

¼ ln
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQD
i¼1 xi

n

q ; ln
x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQD
i¼1 xi

n

q ; . . . ; ln
xDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQD
i¼1 xi

n

q

0

B@

1

CA

ð5Þ

where x ¼ x1; x2; . . . ; xDð ÞT is a compositional vec-
tor.

Filzmoser et al. (2009) proposed a robust factor
analysis method for compositional data, which not
only overcomes the singularity problem in factor
analysis when using a centered log-ratio transfor-
mation but also provides a meaningful biplot for
interpretation of the results. Robust factor analysis
of the compositional data is applied in this paper to
obtain the geochemical relationship associated with
tungsten polymetallic mineralization (Fig. 4a and b).

It is essential to recognize the geochemical
association anomalies related to mineralization to
diminish the impact of the high background values.
With respect to anomaly recognition, fractal models
based on the nonlinear theory, such as the concen-
tration-area (C-A) model (Cheng et al. 1994),
spectrum-area (S-A) model (Cheng 1999) and local
singularity analysis (LSA) (Cheng 2007a, b), have
shown advantages over traditional methods in sep-
arating anomalies from the background in many
practical cases (Carranza 2009b; Zuo et al. 2012; Zuo
and Wang 2016). Because anomalous areas delin-
eated by the S-A model may have no direct corre-
spondence to potential sources (Zuo et al. 2016),
LSA is employed to detect geochemical association
anomalies. These anomalies are then classified into
10 classes to obtain a discretized evidential map
(Fig. 4c), and a logistic transformation is employed
to generate a continuous evidential map (Fig. 4d).

Ore-Host Structures

According to the tungsten polymetallic model,
the three major types of deposits in this region occur
near the contact zones between S-type granite and
wall rock. Hence, the contact zones are favorable
ore-host structures, and multi-ring buffers of the
contact zones between granite and the wall rock are
selected as a predictive map indicating the favorable

locations for mineral deposits. A multi-ring buffer
with an interval of 2 km is employed for contact.
Then, a discretized evidential map of the distance to
the contact is generated (Fig. 5a). In contrast,
logistic transformation is applied to the distance to
the contact to generate a continuous evidential map
(Fig. 5b). In this transformation, the minimum value
is assigned the maximum weight (e.g., 0.99), while
the maximum value is assigned the minimum weight
(e.g., 0.01).

RESULTS AND DISCUSSION

Spatial Distribution of Deposits

Most applications of Fry analysis are based on
regularly shaped study areas (Carranza 2009a; Car-
ranza et al. 2009; Salati et al. 2013; Haddad-Martim
et al. 2017; Parsa et al. 2018). Little work has dis-
cussed the shape of the study area, which may
influence the Fry analysis results for the subjective
determination of the scope of the study area. Hence,
in this paper, the applicability of Fry analysis to an
irregularly shaped study area is discussed at the
outset. A series of randomly distributed points (S1)
is generated in a regularly shaped study area
(Fig. 6a). For comparison, an irregular shape is also
generated inside the regular shape, and the points
located in the irregular shape comprise S2 (Fig. 6d).
Next, Fry analysis is performed for the S1 points,
and the S2 points are analyzed separately, while rose
diagrams of the different series of points are also
generated. The distribution of the S1 points shows
no dominant directions at the local scale, resulting in
a random distribution (Fig. 6b), but there is an EW-
striking distribution at the regional scale, which is
consistent with the shape of the study area (Fig. 6c).
In contrast to the Fry analysis of the regularly
shaped study area, the Fry analysis of the S2 points
indicates no notable dominant directions at the local
scale (Fig. 6e), but there is a NE-striking distribu-
tion at the regional scale. These results indicate that
the shape of the study area should not be ignored in
the application of Fry analysis since the shape may
influence the interpretation of the distribution of
mineral deposits at the regional scale.

On this basis, all of the tungsten polymetallic
deposits in the NMB are subjected to Fry analysis,
and rose diagrams are plotted (Fig. 7b). The spatial
distribution of the tungsten polymetallic deposits
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clearly shows that the distribution of mineral de-
posits is controlled by faults with different strikes
(Fig. 7c), and the EW-striking and NE-striking faults
dominate the distribution of tungsten deposits at a
regional scale (Fig. 7d). The results of the Fry
analysis are consistent with the tectonic stress of this
region since the Yanshanian period. Since the
Yanshanian, influenced by the subduction of the
Pacific Plate, this region has formed a series of
NNE-striking faults with sinistral strike-slip charac-
teristics. Additionally, a set of NEE-striking faults
with dextral strike-slip characteristics and NW-

striking faults with sinistral strike-slip characteristics
was formed at the same time (Liang et al. 2016)
(Fig. 7a). Among these results, the NNE-striking
and NEE-striking faults control the distribution of
the Yanshanian granite. Although the NE-striking
distribution of mineral deposits in the NMB at the
regional scale may be due to the shape of the study
area, the outline of the study area is based on deep
faults. Therefore, the NE-striking distribution of the
mineral deposits still reflects the ore-controlling
behavior of the NE-striking faults. At the local scale,
the faults of different strikes provide abundant
migration channels and convergence zones for the
ore-forming fluids. Hence, the mineral deposits in
this region exhibit multidirectional behaviors at the
local scale.

With the aid of GIS, mineral deposits can be
converted into a series of grids with different cell
sizes. The box-counting analysis is implemented, and
a log–log plot of the cell size vs. the number of cells

bFigure 3. Evidential maps of distance to faults of different strikes:

(a) distance to NE-striking faults; (b) distance to NS-striking

faults; (c) distance to EW-striking faults; (d) distance to NW-

striking faults; (e) fuzzy score of distance to NE-striking faults; (f)
fuzzy score of distance to NS-striking faults; (g) fuzzy score of

distance to EW-striking faults; (h) fuzzy score of distance to NW-

striking faults.

Figure 4. Geochemical association related to tungsten polymetallic mineralization: (a) biplot of 39 geochemical

elements; (b) Geochemical association related to tungsten polymetallic deposits (F1); (c) singularity index map of F1

(F1_alpha); (d) fuzzy score of singularity map of F1 (F1_alpha).
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containing a deposit is generated. It is clear that the
scatter in the log–log plot can be fitted by two
straight lines: a left straight line with a box-dimen-
sion of 0.44 and a right straight line with a box-
dimension of 1.02 (Fig. 8a). The threshold value is
approximately 35 km; i.e., the tungsten mineraliza-

tion may be controlled by local geological factors at
scales smaller than 35 km, while the scales greater
than 35 km may reflect regional geological pro-
cesses.

The radial density is calculated based on vari-
ous circles with different radii centered at the min-

Figure 5. Evidential maps of distance to contact: (a) distance to contact; (b) fuzzy score of distance to contact.

Figure 6. Fry analysis to differently shaped areas: (a) randomly distributed points S1 in a regularly shaped area; (b) Fry

analysis of points (S1) at the local scale; (c) Fry analysis of points (S1) at the regional scale; (d) randomly distributed points

(S2) in an irregularly shaped area; (e) Fry analysis of points (S2) at the local scale; (f) Fry analysis of points (S2) at

the regional scale.
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eral deposits. Then, a log–log plot of radius vs. the
corresponding radial density is implemented
(Fig. 8b). It is obvious that the scatter in the log–log
plot can be fitted by two straight lines: a left straight
line with a fractal dimension of 0.65 and a right
straight line with a fractal dimension of 1.53. The
threshold value is approximately 35 km, which is
consistent with the results of box-counting fractal
analysis.

For comparison, the nearest-neighbor distances
of every two deposits in this region are calculated.
More than 90% of the nearest-neighbor distances
are smaller than 30 km. Moreover, the 95th per-
centile is a commonly used threshold to determine
the lower limit of geochemical anomalies (Reimann
et al. 2008; Moeini and Torab 2017; Filzmoser et al.
2018). In this case, the 95th percentile of the nearest
neighbor distances is approximately 35 km. That is,
the probability of finding a deposit 35 km away from
a known deposit is low. Hence, the threshold value
in the log–log plot of the cell size vs. the number of
cells containing deposits can be regarded as the

optimal distance when selecting the non-deposit
locations.

In addition, according to previous studies, most
of the tungsten polymetallic deposits are within
1 km of the contact zone between S-type granite and
wall-rock (Liu et al. 2014, 2015). Therefore, the non-
deposit locations in this paper are defined by con-
sidering the following criteria: (1) the non-deposit
locations should be at least 35 km away from known
deposits; (2) the non-deposit locations should be at
least 1 km away from the contact between S-type
granite and wall rock; and (3) the non-deposit
locations should be distributed randomly.

Mineral Prospectivity Mapping

The under-sampling method, which is widely
used in MPM, is applied to generate a training da-
taset with 154 deposit locations and 154 non-deposit
locations. There are two parameters in the RF
algorithm: the number of predictors (m) randomly
sampled at each split and the number of trees (k) to

Figure 7. Fry analysis of tungsten polymetallic deposits in the NMB: (a) regional stress in the NMB since the Yanshanian

(revised from Liang et al. 2016); (b) Fry points generated from Fry analysis; (c) Rose diagram for dominant directions of

tungsten polymetallic deposits at the local scale; (d) Rose diagram for dominant directions of tungsten polymetallic

deposits at the regional scale.
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be used. The value m, a fraction of the total number
of predictors, is determined using the tuneRF func-
tion in the CRAN package randomForest, which
calculates the optimum value of m that minimizes
the OBB error (Liaw and Wiener 2002). There is no
fixed optimal value of parameter k. A practical way
to determine the optimal value is by using the value
of k when the classification error tends to become
stable (Carranza and Laborte 2015b). In this study,
five under-sampled discretized datasets (DUS,
DUS1, DUS2, DUS3, and DUS4) and five continu-
ous weighted datasets (CUS, CUS1, CUS2, CUS3,
and CUS4) are generated. According to the plot of
the OBB error vs. the number of trees, the OBB
errors of both the discretized training datasets and
continuous weighted training datasets tend to be-
come stable when the number of trees is greater
than 500 (Fig. 9a and b). Hence, the optimal value of
k is 500.

In contrast, 1540 randomly distributed non-de-
posit locations are chosen based on the selection
criteria for non-deposit locations. Hence, the dis-
cretized training dataset (DIM) and the continuous
weighted training dataset (CIM) compose the
imbalanced training dataset. In addition, the ratio of
deposit locations to non-deposit locations in both
imbalanced datasets is 1:10.

Subsequently, the SMOTE approach is adopted
to generate balanced datasets from the imbalanced
datasets DIM and CIM. In this procedure, the de-
posit locations are over-sampled in the feature
space. At the same time, the non-deposit locations

are under-sampled by randomly removing samples
until the deposit locations become closer in number
to the non-deposit locations. By iteratively under-
sampling and over-sampling the non-deposit loca-
tions and deposit locations, the balanced datasets
are used to train the RF model and generate clas-
sification errors. The fraction of over-sampling
locations with stable classification errors generated
from the corresponding training datasets is regarded
as the optimal value (Hariharan et al. 2017). The
classification error obtained by RF models with
discretized training datasets is the smallest when the
over-sampling ratio reaches 1000% (Fig. 10a), while
the classification error obtained by RF models with
continuous weighted training datasets is the smallest
when the over-sampling ratio is 900% (Fig. 10b). In
this case, a balanced discretized training dataset with
1694 deposit locations and 1694 non-deposit loca-
tions is generated (DSMOTE10), and balanced
continuous weighted training datasets with 1540
deposit locations and 1538 non-deposit locations are
generated (CSMOTE9).

When compared to other ML algorithms (e.g.,
neural networks), the RF algorithm can determine
the relative importance of predictive variables,
which provides insights into the ore-controlling fac-
tors as well as guidance for mineral exploration. In
this paper, the RF models are trained using different
training datasets, and the relative importance of the
predictive variables of different prospectivity models
is obtained (Fig. 11a and b). It is clear that the rel-
ative importance of the predictive variables is inde-

Figure 8. Fractal analysis of spatial distribution of mineral deposits in the NMB: (a) log–log plot of cell size vs. the number

of cells containing deposits; (b) log–log plot of radial density vs. the radius to the known deposit.
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pendent of whether the predictive variables are
discretized or continuous. However, the relative
importance depends on how the training dataset is
generated. Because a certain number of positive
samples (e.g., deposit locations) is synthesized
according to the features of the predictive variables
in SMOTE, the importance of predictive variables
may be difficult to explain. The number of samples
synthesized by SMOTE may also result in uncer-
tainty in the relative importance of the predictive
variables. However, the relative importance of pre-
dictive variables in a prospectivity model trained by
DUS (or CUS) data is similar to the relative

importance of the predictive variables in a
prospectivity model trained by DIM (or CIM) data.
It is understood that the geochemical association
anomalies related to tungsten polymetallic deposits
(F1_alpha) are of vital importance to the mineral-
ization in this region. Furthermore, the areas with
high anomalies are spatially correlated with the
areas with high prospectivity scores. This is consis-
tent with the geological settings with high degrees of
enrichment in W, Sn, and other elements, which
establishes an important foundation for tungsten
mineralization (Fig. 12). In addition, the study area
is a hilly area covered by vegetation, with an ele-

Figure 9. Plot of OBB error vs. number of trees used in the RF algorithm: (a) OBB error generated from different

discretized training datasets; (b) OBB error generated from different continuous training datasets.

Figure 10. Plots of different over-sampling rates vs. classification errors: (a) classification error of different RF models

generated from discretized evidential maps; (b) classification error of different RF models generated from continuous

evidential maps.
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vation of more than 300 m. The terrain is deeply
eroded, and the water system is well developed.
Therefore, geochemical exploration may be a prior
method for mineral exploration in this region.

Model Performance Evaluation

Based on the training datasets generated above,
six prospectivity maps of the tungsten polymetallic
deposits are generated using the RF algorithm.
Subsequently, each prospectivity map is classified by
the C-A model (Figs. 13a, c, and e, 14a, c, and e). It

is clear that most of the tungsten polymetallic de-
posits are located in areas with high prospectivity
values (Figs. 13b, d, and f, 14b, d, and f).

The ROC curve and improved P-A plot are
employed to evaluate the performance of the
prospectivity models. The performance of the RF
models trained by DSMOTE10 and DIM rank first
with the largest AUC value of 0.9789, while the
performance of the RF model trained by DUS ranks
last with the smallest AUC value of 0.9452
(Fig. 15a).

The improved P-A plot is also employed to
evaluate the performance of the prospectivity mod-
el. Every prospectivity map is classified by the C-A
model to generate the improved P-A plots. From the
improved P-A plots, the prediction rates of
prospectivity models generated from both
DSMOTE10 and DIM are 93%, while the prediction
rate of the prospectivity model generated from DUS
is 88%. At the same time, the prediction rates for
the non-deposit locations of the prospectivity mod-
els generated from DUS, DIM, and DSMOTE8 are
36%, 41%, and 36%, respectively. Hence, the
overall performance values (Oe) of the prospectivity
models generated from DUS, DIM, and
DSMOTE10 are 0.52, 0.52, and 0.57, respectively
(Fig. 15b, c, d). These results indicate that the
overall performance of the prospectivity model
generated from DSMOTE10 is the best.

With respect to MPM using the RF algorithm
with continuous evidential maps, the AUC value of
the prospectivity model generated from CIM is
0.9891 and ranks first. The AUC value of the

Figure 11. Relative importance of predictor variables obtained from different prospectivity models: (a) relative importance of

discretized predictor variables using different prospectivity models; (b) relative importance of continuous predictor variables

using different prospectivity models.

Figure 12. Prospectivity model with continuous evidential

map F1_alpha (singularity index of F1) using the continuous

balanced dataset CSMOTE9.
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Figure 13. Prospectivity maps generated from different discretized evidential maps: (a) C-A model of prospectivity map

generated from dataset DUS; (b) prospectivity map generated from dataset DUS; (c) C-A model of prospectivity map

generated from dataset DIM; (d) Prospectivity map generated from dataset DIM; (e) C-A model of prospectivity map

generated from dataset DSMOTE10; (f) Prospectivity map generated from dataset DSMOTE10.
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Figure 14. Prospectivity maps generated from different continuous evidential maps: (a) C-A model of prospectivity map

generated from dataset CUS; (b) prospectivity map generated from dataset CUS; (c) C-A model of prospectivity map

generated from dataset CIM; (d) prospectivity map generated from dataset CIM; (e) C-A model of prospectivity map

generated from dataset CSMOTE9; (f) Prospectivity map generated from dataset CSMOTE9.
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prospectivity model generated from CSMOTE9 is
0.9862, followed by the prospectivity model gener-
ated from CUS with an AUC value of 0.9546
(Fig. 16a). When using the improved P-A plot to
evaluate the performance, the prospectivity model
generated from CIM with a prediction rate of 94%
ranks first, followed by the prospectivity model
generated from CSMOTE9 with a prediction rate of
93%. The prospectivity model generated from CUS
has a prediction rate of 90% for the deposit loca-
tions. The prediction rates for the non-deposit
locations of the prospectivity models generated from
CUS, CIM, and CSMOTE9 are 35%, 41%, and
34%, respectively. The overall performance values (
Oe) of the prospectivity models generated from
CUS, CIM, and CSMOTE9 are 0.55, 0.53, and 0.59,
respectively (Fig. 16b, c, and d). These results indi-

cate that the overall performance of the prospec-
tivity model generated from CSMOT9 is the best,
followed by the overall performance of the
prospectivity model generated from CUS.

Additionally, the performance of the prospec-
tivity models obtained from continuous evidential
maps is obviously superior to the performance of the
prospectivity models obtained from discretized evi-
dential maps. One possible reason is that mapping
the mineral resource prospectivity using continuous
evidential maps can avoid the uncertainty and bias
resulting from the discretization of the evidential
maps. As a result, the prediction rate for the deposit
locations is improved and the prediction rate for the
non-deposit locations is reduced. It can also be ob-
served that the AUC value of the prospectivity
model generated from DIM (or CIM) is greater than

Figure 15. Performance of prospectivity models generated from discretized evidential maps: (a) ROC curves of prospectivity

models generated from different datasets (DUS, DIM, and DSMOTE10); (b) improved P-A plot of prospectivity model

generated from DUS; (c) improved P-A plot of prospectivity model generated from DIM; (d) improved P-A plot of prospectivity

model generated from DSMOTE10. The blue, green and red lines in (b), (c) and (d) denote prediction rate of deposits, prediction

rate of non-deposit locations and percentages of the areas occupied by the corresponding prospectivity classes, respectively.
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the AUC value of the prospectivity model generated
from DUS (or CUS). Because the number of non-
deposit locations is much larger than that of deposit
locations, a large change in the number of FP (i.e.,
non-deposit locations that are falsely predicted as
deposit locations) can lead to a small change in the
FPR in the ROC curve of the prospectivity model
trained by an imbalanced dataset when compared to
the prospectivity model trained by a balanced da-
taset generated from under-sampling. This result
indicates that the performance of a prospectivity
model may be optimistically evaluated when using
the ROC curve (Davis and Goadrich 2006; He and
Garcia 2010). Additionally, the improved P-A plot
may be more reliable in evaluating the performance
of prospectivity models than the ROC curve. The

improved P-A plot is also superior to the original P-
A plot for its ability to evaluate the correlation be-
tween the prospectivity models and non-deposit
locations. Furthermore, the performance of the
prospectivity models trained by datasets that are
generated by SMOTE is the best, indicating that
SMOTE can be a useful tool to reduce the data
imbalance and improve the performance of
prospectivity models.

According to the discussion above, the perfor-
mance of the prospectivity model trained by
CSMOTE9 is the best. From this predictive result
(Fig. 17), four potential areas with high exploration
degrees are delineated, including Qitianling–Qian-
lishan (A1), Dayu–Chongyi–Shangyou (A2), Yudu–
Huichang (A3) and Shixing–Quannan (A4). Several

Figure 16. Performance of prospectivity models generated from continuous evidential maps: (a) ROC curves of prospectivity

models generated from different datasets (CUS, CIM and CSMOTE9); (b) improved P-A plot of prospectivity model generated

from CUS; (c) improved P-A plot of prospectivity model generated from CIM; (d) improved P-A plot of prospectivity model

generated from CSMOTE9. The blue, green and red lines in (b), (c) and (d) denote prediction rate of deposits, prediction rate of

non-deposit locations and percentages of the areas occupied by the corresponding prospectivity classes, respectively.
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large tungsten polymetallic deposits are located in
the four potential areas, including Shizhuyuan,
Yaogangxian, Xintianling, Xihuashan, Piaotang,
Pangushan, Huangsha, Dajishan, and Kuimeishan.
The four potential areas have a large number of
geochemical anomalies and are located at the con-
fluence of deep multidirectional faults. Moreover,
large areas of granite are exposed in these areas.
Therefore, the metallogenic geological conditions in
these four potential areas are superior. In addition,
although there is little granite exposed in some
areas, including Zhongshan–Hexian (B1), Jiangy-
ong–Guanxian (B2), Le�an–Yihuang (B3), Ningdu–
Xingguo (B4), and Fengkai–Huaiji (B5), most of
these areas are located in regions with prolific geo-
chemical anomalies, in which a certain number of
tungsten polymetallic deposits occur. Hence, these
areas also have good prospecting potential.

CONCLUSIONS

The following conclusions can be drawn from
this paper:

1. The shape of the study area should not be
ignored when studying the spatial distribu-
tion of mineral deposits using Fry analysis.
Fry analysis indicates that the tungsten
polymetallic deposits in this region display
EW-striking and NE-striking distributions at
a regional scale, which is consistent with the

regional tectonic stress since the Yanshanian.
At the local scale, the distribution of tung-
sten polymetallic deposits is mainly con-
trolled by structures striking in multiple
directions.

2. Fractal analysis shows that the tungsten
polymetallic deposits in the NMB satisfy a
multifractal distribution. The intersection
point in the log–log plot can be a potential
measure to determine the optimal distance
from known deposits, which may be useful
for the selection of non-deposit locations in
MPM.

3. The application of data-driven logistic
transformation to generate continuous evi-
dential maps in MPM using the RF algo-
rithm can avoid the uncertainty and
information loss resulting from the dis-
cretization of evidential maps, which helps to
improve the performance of prospectivity
models.

4. When evaluating prospectivity models, the
improved P-A plot is superior to the ROC
curve because the ROC curve neglects the
occupied area, which is critical for mineral
exploration and may provide an overly
optimistic performance with imbalanced
data. The SMOTE approach can reduce the
data imbalance and improve the perfor-
mance of prospectivity models. However, in
the SMOTE approach, several deposit loca-
tions are synthesized according to the fea-
tures of the predictors, which may lead to
uncertainty in the explanation of the pre-
dictor relative importance. Further testing of
the improved P-A plot and SMOTE ap-
proach is warranted in MPM.

5. The predictor importance shows that geo-
chemical association anomalies contribute
the most to mineralization and that areas
with many geochemical anomalies are highly
correlated spatially with areas having high
prospectivity values. This result indicates
that geochemical exploration may be a prior
method for tungsten deposit exploration in
this region.

6. According to the predictive results, four
areas with high exploration potential and five
moderate-potential areas are delineated.
These results indicate good future prospect-
ing for tungsten polymetallic deposits in this
region.

Figure 17. Prospectivity map for tungsten polymetallic

deposits in the NMB.
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