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Exploring the spatial relationships between various geological features and mineralization is
not only conducive to understanding the genesis of ore deposits but can also help to guide
mineral exploration by providing predictive mineral maps. However, most current methods
assume spatially constant determinants of mineralization and therefore have limited appli-
cability to detecting possible spatially non-stationary relationships between the geological
features and the mineralization. In this paper, the spatial variation between the distribution
of mineralization and its determining factors is described for a case study in the Dingjiashan
Pb–Zn deposit, China. A local regression modeling technique, geological weighted regres-
sion (GWR), was leveraged to study the spatial non-stationarity in the 3D geological space.
First, ordinary least-squares (OLS) regression was applied, the redundancy and significance
of the controlling factors were tested, and the spatial dependency in Zn and Pb ore grade
measurements was confirmed. Second, GWR models with different kernel functions in 3D
space were applied, and their results were compared to the OLS model. The results show a
superior performance of GWR compared with OLS and a significant spatial non-stationarity
in the determinants of ore grade. Third, a non-stationarity test was performed. The sta-
tionarity index and the Monte Carlo stationarity test demonstrate the non-stationarity of all
the variables throughout the area. Finally, the influences of the degree of non-stationary of
all controlling factors on mineralization are discussed. The existence of significant non-
stationarity of mineral ore determinants in 3D space opens up an exciting avenue for re-
search into the prediction of underground ore bodies.

KEY WORDS: Geographically weighted regression, Spatial non-stationarity, Metallogenic prognosis,
3D geological space, Ordinary least-squares (OLS) regression.

INTRODUCTION

With the current interest in deep mine
prospecting and the ongoing improvements to sub-
surface geological and geophysical mapping meth-
ods (Schamper et al. 2014a, b; Chen and Wu 2017),
vast amounts of geological exploration data in three
dimensions are being generated. Analysis and
modeling of 3D geological objects by integrating
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geophysical and geological datasets provides new
insights into exploration targeting, but uncertainty in
mineral exploration cannot be eliminated (Lindsay
et al. 2012; Zuo and Xiong 2018; Wang et al. 2015; Li
et al. 2019). How to use these large three-dimen-
sional datasets to reveal the spatial distribution of
the mineralization and the determinants of ore
genesis is becoming an important research topic in
metallogeny.

The goal of this research is to uncover some-
thing new about ‘‘why things are the way they are.’’
Exploring the spatial relationships between various
geological features and mineralization is not only
useful in understanding the ore genesis of deposits
but can also help to guide mineral exploration by
providing predictive mineral maps (Liu et al. 2013).
Recently, spatial issues associated with mineraliza-
tion and its determining factors have been of interest
to many geologists. Most current methods are based
on models that assume that the determinants of
mineralization are constant over space (Zhang et al.
2012; Chen et al. 2005; Mao et al. 2009, 2010; Lin
et al. 2019; Chen et al. 2019). Such models can only
produce ‘‘average’’ or ‘‘global’’ parameter estimates
(Batisani and Yarnal 2009; Geri and Amici 2010)
and are unable to detect possible spatial non-sta-
tionary relationships. If spatial non-stationarity in
the processes affecting ore mineralization exists,
predictive modeling based on these classical global
statistical methods will have limited accuracy.

In past research that aimed to explore spatial
trends and non-stationary, a series of statistical
techniques and modeling approaches were pro-
posed. The solutions have focused on local spatial
analysis and spatial modeling (Zhang et al. 2018).
Early contributions introduced location coordinates
or their functions as direct or indirect independent
variables in predictive models to express linear or
nonlinear trends in space (Agterberg, 1964, 1970;
Casetti, 1972). The famous local window statistics
models in geosciences, such as local singularity
analysis, reduce the effect of spatial non-stationarity
to some degree by removing spatial trends and
minimizing the effects of high and low values of the
variables on predictions (Cheng 1997, 1999; Zuo
et al. 2016; Zhang et al. 2016). Geographically
weighted regression (GWR) is a recently developed
spatial analysis technique that considers the non-
stationarity of variables. It is a relatively simple, but
effective technique for exploring spatially varying
relationships (Fotheringham et al. 1996, 1998, 1999;
Brunsdon et al. 1996, 1999). It has attracted a great

deal of attention in different fields such as resources
and environment (Tu and Xia 2008; Gao and Li
2011; Gilbert and Chakraborty 2011; Clement et al.
2009; Harris and Brunsdon 2010; Zhao et al. 2014;
Zhang et al. 2019), and economics (Lu et al. 2011; Lu
and Bo 2014; Lee and Schuett 2014; Nilsson 2014;
Breetzke and Cohn 2012; Andrew et al. 2015). In the
field of metallogenic prediction, Zhang et al. (2018)
developed a spatially weighted logistic regression
technique where the dependent variable is a binary
variable. Liu et al. (2013) quantified the spatial
relationships between gold mineralization and
plausible controlling factors in the central part of the
St Ives area, Western Australia. Zhao et al. (2014)
applied geographically weighted regression to iden-
tify spatially non-stationary relationships between
Fe mineralization and its controlling factors in
eastern Tianshan, China.

While GWR shows strength in modeling non-
stationary spatial relationships, most of the existing
work is limited to two-dimensional (2D) space. To-
bler�s first law of geography (Tobler 1979), which ar-
gues that ‘‘everything is related to everything else, but
near things are more related than distant things,’’
applies equally to 3D geological space. Therefore, the
influence of ore-controlling factors on mineralization
is multidimensional. In the metallogenic system, there
are great differences in the distribution of geological
bodies and fluids at different depths, temperature,
pressure, acidity and alkalinity, and redox environ-
ment. The spatial non-stationarity of mineralization
in the vertical direction cannot be ignored. Therefore,
modelers need to introduce variables that reflect
spatial non-stationarity at different depths.

Given that real geological space is a three-di-
mensional (3D) space, extension of the GWR to 3D
will give us a new perspective to explore spatially
non-stationary relationships in the determinants of
mineralization. In this study, we extend the current
GWR model from 2D to 3D. The main advantage of
the 3D GWR is that it can simulate the spatial
relationships between the mineralization and its
determinants in real geological space. The spatial
relationships can be quantified and calculated by
using the 3D GWR model, and the geological
information obtained from the simulation results has
three-dimensional attributes. To examine the use of
GWR in 3D space to detect spatially non-stationary
relationships between mineral concentration and its
determinants, we performed a case study of the
Dingjiashan Pb–Zn deposit by using the ore grades
of Zn and Pb as the dependent variables and
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potential determinants as explanatory variables in
the regression. After investigating the adaptability
of GWR in modeling the relationships between the
mineralization and its driving factors, we applied the
GWR to the 3D ore deposit and made some com-
parisons with the predictions. Finally, we discussed
the degree of non-stationary influence for all the
controlling factors on mineralization.

The main original contributions of this study
can be summarized as follows:

� We introduced a new method to analyze
quantitatively the spatial relationship among
the complex geological factors in real 3D
space. This innovation will contribute to the
techniques of metallogenic prediction.

� We extended the GWR model from 2D to 3D
space and implemented it in the MATLAB
language.

� We applied the GWR model in 3D geological
space to explore the spatial relationships be-
tween mineralization and its controlling fac-
tors.

DATA

Study Area

The approach proposed in this paper was tested
on the Dingjiashan Pb–Zn deposit, which is a non-
ferrous mine and is well known for its polymetallic
mineralization. It is located in the northeastern part
of the Wuyi–Yunkai fold belt in the eastern region
of the South China fold system. The study area
measures 880 m from east to west, 730 m from south
to north, and has depth of 375 m based on elevation
change from � 75 m to 285 m above sea level. The
Pb–Zn ore in this district occurs in one of the largest
deposits in eastern China (Fig. 1) (Zhang et al.
2011). The exposed strata are mainly Mesozoic,
continental magmatic rocks, which are underlain by
middle and upper Proterozoic metamorphic rocks.
The geological structure of the district includes
many folds, faults, and unconformities.

Data and Variables

In this study, we choose mineralization, which is
measured by the ore grades of Zn and Pb as the

dependent variables. Figure 2 shows the three-di-
mensional spatial distribution of the grades of Zn (a)
and Pb (b) ore. The explanatory variables are se-
lected based on a block model of the region, which
was built using the Datamine (Changsha, Hunan
province, China) software in a geocentric 3D coor-
dinate system. The block model consists of a set of
regular blocks or units, or voxels. Each voxel has
attributes, such as grade and stratigraphic types. The
geological space is divided into three-dimensional
voxels whose size is 10 m 9 10 m 9 10 m. Each
voxel has values for ore concentration and each
potential explanatory variable (Shao et al. 2010). In
this study, the coordinates of each voxel correspond
to its center point.

For each voxel that includes data for samples,
the Zn or Pb grade is calculated as the weighted
average grade, measured as the length-weighted
mean of samples in the voxel. It is calculated as
follows:

C ¼
Xn

i¼1

CiHi=
Xn

i¼1

Hi xi; yi; zið Þ 2 v

where Ci is Zn or Pb content of sample i, Hi is the
length of sample i, (xi, yi, zi) represents the coordi-
nates of the center point, and v represents the voxel
space. The ore grade of voxels that do not include
samples is obtained by kriging interpolation.

In this study, the explanatory variables were
selected to represent the determinants of mineral-
ization. The variables are a series of quantified ore-
controlling factors based on various geological con-
ditions and were originally chosen for Pb–Zn deposit
metallogenic prognosis in which high accuracy was
obtained by comparison with the measured data
(Shao et al. 2010; Zhang et al. 2011; Mao et al. 2016).
A detailed description of all the variables is given in
Table 1.

A comprehensive analysis of the distribution of
macroscale mineralization and emplacement of ore
deposits and orebodies together with information on
metallogenic evolution, ore genesis, and source of
ore-forming materials shows that the Dingjiashan
Pb–Zn deposit is jointly controlled by magmatic
activities associated with the emplacement of gran-
itoid rocks, stratigraphic fabrics and lithology, tec-
tonic deformation, and important geological
interfaces in the early and late Yanshanian period
(Shao et al. 2010). The ore-controlling factors are
selected mainly according to the stratigraphy ex-
pressed as the quantified factor dZ1L3_Z1L2,
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unconformity surface structure described by the
quantified factors dU, gU, aU_S, waU, and wbU,
and folds and buried uplifts of ore-bearing rock
series under volcanic caprock, which are represented
by the quantified factors waZ1L3_Z1L2 and
wbZ1L3_Z1L2. These quantified ore-controlling
factors are described as follows (Mao et al. 2016;
Shao et al. 2010):

dU, the distance field of the unconformity sur-
face, is measured as the minimum distance from the
voxel to the unconformity surface.

waU and wbU, the trend–undulation factors of
the unconformity surface, which represent the effect
of the undulation on its surrounding geological
space, are measured by the Euclidean distance from
the voxel to the trend of the nearest unconformity
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Figure 1. Geological map of the Dingjiashan Pb–Zn deposit (Zhang et al. 2011).
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surface. Variable waU is the first-level undulation
factor while wbU represents the second-level
undulation factor (Mao et al. 2016; Shao et al. 2010).

gU is the slope of the unconformity. A steeply
dipping unconformity is the most favorable structure
for the late-stage reformation of strata-bound Pb–
Zn deposits. As ore bodies on both sides of the steep
unconformable structure show a trend of thickening
and enrichment, the slope of the unconformity is
very important to the mineralization. The variable
gU is measured by the slope from the voxel to the
nearest place on the unconformity surface.

aU_S is the angle of the unconformity. A large
angle of intersection of the unconformity surface
with the underlying greenschist strata is a favorable

condition for mineralization. The angle of the
unconformity is an important factor in metallogen-
esis, and the unconformity can intersect with multi-
ple strata. The variable aU_S is measured with the
closest angle between the voxel and the nearest
distance to the unconformity surface.

dZ1L3_Z1L2 is the distance to the stratigraphic
interface. The transition zone between the green-
schist belt (Z1L3) and the light schist belt (Z1L2) is
the most favorable ore-containing position of the
strata-bound ore. This kind of ore-controlling factor
of the stratum can be described by the distance to
the Z1L3_Z1L2 stratigraphic interface. The variable
dZ1L3_Z1L2 is measured as the minimum distance
from the voxel to the Z1L3_Z1L2 stratigraphic

Figure 2. Spatial distribution of ore grade: (a) Zn and (b) Pb.

Table 1. Description of variables

Variable Definition Number of

data points

Minimum Maximum Mean Standard

deviation

Zn Grade of zinc ore 5944 .0000 13.7083 3.0364 2.5003

Pb Grade of lead ore 5944 0.0000 11.7583 0.9352 1.0785

dU Distance to the unconformity surface 5944 � 153.3820 158.1579 � 31.8236 41.1199

dz1L3_Z1L2 Distance to the stratigraphical boundary 5944 � 68.9773 184.4332 31.9992 39.7008

aU_S Angle of the unconformity surface 5944 14.1148 75.8935 33.5551 19.3764

gU Slope of the unconformity surface 5944 .9041 73.4875 26.4079 14.2816

waU First-degree trend–undulation factor of

the unconformity surface

5944 � 36.6321 27.9674 � 1.5189 7.2718

wbU Second-degree trend–undulation factor

of the unconformity surface

5944 � 28.4701 12.8811 -.3519 6.3120

waZ1L3_Z1L2 First-degree trend of the

stratigraphical boundary

5944 � 20.5956 20.4773 .8451 5.880

wbZ1L3_Z1L2 Second-degree trend of the

stratigraphical boundary

5944 � 14.1421 18.3306 -.4116 4.6067

X X coordinate 5944 39,620,936 39,621,816 39,621,267 177.525

Y Y coordinate 5944 2,903,415 2,904,145 2,903,779 142.569

Z Z coordinate 5944 � 75 285 102.37 61.200
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interface. The voxel value located above the
Z1L3_Z1L2 stratigraphic interface is positive and
below is negative.

waZ1L3_Z1L2 and wbZ1L3_Z1L2 are the
trend–undulation factors of the stratigraphic inter-
face (Mao et al. 2016; Shao et al. 2010). Folds and
concealed uplift of ore rock under the volcanic rock
can be expressed by the bending and fluctuating
form of the interlayer interface of the ore rock. The
variables waZ1L3_Z1L2 and wbZ1L3_Z1L2 repre-
sent the first-level and second-level degree of
undulation of Z1L3_Z1L2 stratigraphic interface
and are measured as the Euclidean distance from
the voxel to the trend of the nearest place of the
Z1L3_Z1L2 stratigraphic boundary.

Data Analysis Procedure

Five stages of analysis are undertaken in this
study. In the first stage, an ordinary least-squared
(OLS) regression model associating ore grade with
eight explanatory variables is calibrated to generate
a baseline global set of results and to examine
potential multi-collinearity effects among any of
the predictor variables. In the second stage, the
GWR model is calibrated by using different kernel
functions to explore possible spatial variation in the
processes affecting ore concentration. In the third
stage, the OLS and GWR results are analyzed and
compared and an examination of spatial depen-
dency in 3D space of the regression residuals from
both models is presented. In the fourth stage, a
spatial stationarity test is performed and the non-
stationarity of different variables is demonstrated.
Finally, the influences of the degree of non-sta-
tionarity of controlling factors on mineralization
are discussed.

METHODS

Geographically Weighted Regression in 3D Space

In this paper, OLS regression and GWR were
used to investigate the relationships between ore
concentration and its determinants. GWR is an
extension of the OLS model that allows local
parameters to be estimated (Fotheringham et al.
2001, 2002; Brunsdon et al. 2002; Yao and Fother-

ingham 2015). The standard GWR formulation can
be represented as:

yi ¼ b0 ui; við Þ þ
Xk

j¼1

bj ui; við Þxij þ e ui; við Þ i ¼ 1 . . . n

ð1Þ

where (ui, vi) is the 2D coordinate location of ith
point, yi is the estimated value of the dependent
variable at point i, xij is the value of the variable xj at

point i, b0 ui; vi;ð Þ is the constant estimated for point
i, bj(ui, vi, ) represents the local parameter estimate
for independent variable xj at point i, and e(ui, vi) is
the ith value of a normally distributed error vector
with mean equal to zero.

In this paper, this model is extended to three-
dimensional space as follows:

yi ¼ b0 ui; vi;wið Þ þ
Xk

j¼1

bj ui; vi;wið Þxij þ e ui; vi;wið Þ

i ¼ 1 . . . n

ð2Þ

where (ui, vi, wi) denotes the 3D coordinate location
of ith point.

Parameter estimates in GWR are obtained by
weighting all observations around a specific point i
using a distance decay function, which based on their
spatial proximity to it. The observations closer to
point i have a greater influence on the local
parameter estimates for the location and are
weighted more than data located farther from point
i. The parameters are estimated from:

b̂ l; v;wð Þ ¼ XTW l; v;wð ÞX
� ��1

XTW l; v;wð Þy ð3Þ

where the bold type denotes a matrix, b̂ l; v;wð Þ
represents the unbiased estimate of b, and W l; v;wð Þ
is the weighting matrix, which acts to ensure that
observations closer to the specific point have a
higher weight. It can be determined by a kernel
function.

There are two types of kernels. The fixed kernel
assumes that the bandwidth at each regression point
is a constant across the study area while the adaptive
kernel permits use of a variable bandwidth and can
adapt the bandwidth size to variations according to
data density. As the data used in this study are un-
evenly distributed, the following two adaptive ker-
nels are employed:
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bi-square:wij ¼ 1 � dij=b
� �2

h i2

if dij\b

¼ 0 otherwise
ð4Þ

tri-cube:wij ¼ 1 � d2
ij=b2

� �3
� �3=2

if dij\b

¼ 0 otherwise

ð5Þ

where wij represents the weight of observation j for

point i, dij expresses the Euclidean distance between

points i and j, N is the optimal number of nearest
neighbors, and b is the distance to the Nth nearest
neighbor, which governs the decay rate of wij and
the degree of locality of the regression model. An
appropriate number of nearest neighbors can be
determined by minimizing the cross-validation (CV)
or Akaike information criterion (AIC) scores
(Fotheringham et al. 2002).

Non-stationarity Tests

Stationary Index

In this paper, we calculate the stationary index
(Brunsdon et al. 1998) which is designed to measure
the spatial non-stationarity of each variable. Values
smaller than one indicate stationarity (Brunsdon
et al. 2002).

The calculation includes three steps: First, the
interquartile range of GWR local parameter esti-
mates for each explanatory variable is computed;
second, twice the standard error of the global esti-
mates is obtained; finally, the ratio of these two
factors is calculated as the stationary index. If the
interquartile range is bigger than twice the standard
error of the global mean, it may suggest that the
relationship is non-stationary (Brunsdon et al. 2002).

Monte Carlo Stationarity Test

The Monte Carlo significance testing procedure
employs a pseudo-random number generator to
reallocate the observations across the spatial voxels.
The Monte Carlo stationarity test is an approach to
examine the validity of any inferences drawn from
the local results (Fotheringham et al. 2002). The test
result depends on the rank of the observed data
relative to the random samples.

Given the number of local model calibrations n,
the specific process in this paper is as follows (Yao
and Fotheringham 2015):

(1) For each variable, obtain the local param-
eter estimates and compute the variance of
the estimates.

(2) Rearrange data randomly and at the same
time keep yix1ix2i…xni together.

(3) Perform the GWR calculation and compute
a new set of local parameter estimates
based on rearranged data.

(4) For each variable, calculate the variance of
the local parameter estimates.

(5) Repeat steps (2) to (4) n times.
(6) For each variable, compare the variance of

local parameter estimates in step (1) with
those from steps (2) to (4), and calculate the
p value associated with (1) which is the
proportion of variances that lie above that
for (1) in a list of variances sorted high to
low.

RESULTS

Statistical Hypothesis tests and OLS Diagnosis

Data should be examined before further anal-
ysis. The results of statistical hypothesis testing are
shown in Tables 2 and 3. All values of the variance
inflation factor (VIF) in Table 2 are less than 7.5,
which demonstrate that multi-collinearity among the
explanatory variables does not exist. The indices for
explanatory variables in Table 2, including the OLS
model intercepts, indicate that the regression coef-
ficients are statistically significant at the 95% confi-
dence level, suggesting that all the explanatory
variables are important in the regression model. The
OLS model diagnostic results are demonstrated in
Table 3. The joint F-statistic and joint Wald statistic
listed in Table 3 indicate that the regression model is
significant. The value of the Jarque–Bera statistic in
Table 3 shows the abnormal distribution of residu-
als. The multiple R-squared of the model for Zn
grade is 0.150 and that for Pb grade is 0.165. These
values indicate that both models can only explain
about 15% or 16.5% of the variation and cannot
express the relationship between the distribution of
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mineralization and its affecting factors very well.
The Koenker (BP) statistic in Table 3 indicates that
the model has statistically significant heteroscedas-
ticity or inequalities.

All of these results show that the OLS model
needs to be extended using the GWR model in order
to describe better the non-stationary relationship
between mineralization and its determinants.

Comparison between GWR and OLS Results

In this study, tricube and bisquare kernel func-
tions of the GWR model are employed in 3D space,
and both CV and AIC methods are adopted to
determine the optimal nearest neighbors. The sim-
ulation calculation is implemented using MATLAB
and the Econometrics Toolbox 7.0 (LeSage and
Pace 2009) with modifications and extension to 3D
made by us.

Comparison of Model Performance Between OLS
and GWR

In this study, we measure the performance of
models using R-squared (R2) and adjusted R2 values,
which show how well the local regression model fits
the dependent value (Lee and Schuett 2014). The R2

and adjusted R2 values of GWR and OLS are shown
in Table 4. It is obvious that the GWR models
perform better than the OLS model. All adjusted R2

values in the GWR models for Zn grade are bigger
than 0.70, far bigger than 0.15, the adjusted R2 value
in the OLS model for Zn grade. Similarly, all ad-
justed R2 values in GWR models for Pb grade are

also much bigger than that in OLS model. It can be
concluded that the GWR models provide more
specific and reliable information than the OLS
model (Table 4). This shows that models consider-
ing local differences of factors can achieve higher
reliability and, therefore, that spatial non-stationary
between the mineralization and its affecting factors
does exist. However, there may be some other fac-
tors not considered in our models.

Table 4 also shows the GWR results of two
different kernel functions. The adjusted R2 values of
the GWR model for Zn grade with tricube and
bisquare kernels are about 0.71 and 0.74, respec-
tively, and those of the model for Pb grade are 0.68
and 0.77. It is obvious that the bisquare kernel
function performs better than the tricube kernel
function. These results demonstrate that the bis-
quare kernel function can reflect better the attenu-
ation law of affecting factors with distance, and
illustrate that the spatial non-stationary between the
mineralization and its affecting factors is very
prominent. Because the bisquare kernel performs
better than the tricube kernel, the former is selected
for GWR models in the subsequent analysis.

Comparison of Residuals Obtained by OLS
and GWR

Residuals are the differences between the ob-
served y values and the predicted y values. They
provide a simple way to detect the spatial varying
relationships between mineralization and its related
factors for GWR or OLS model. Figure 3a and b
depicts the residuals distribution of the OLS and
GWR models for Zn grade, and Figure 3a and b

Table 3. OLS diagnosis

Zn Number of observations 5944 Akaike�s information criterion (AICc) [d]: 26815.8506

Multiple R-squared [d]: 0.1500 Adjusted R-squared [d]: 0.1488

Joint F-statistic [e]: 130.9000 Prob(>F), (8,10800) degrees of freedom: 0.000000*

Joint Wald statistic [e]: 1667.8146 Prob(>Chi-squared), (8) degrees of freedom: 0.000000*

Koenker (BP) statistic [f]: 579.0796 Prob(>Chi-squared), (8) degrees of freedom: 0.000000*

Jarque–Bera statistic [g]: 514.8886 Prob(>Chi-squared), (2) degrees of freedom: 0.000000*

Pb Number of observations 5944 Akaike�s information criterion (AICc) [d] 16712.16432

Multiple R-squared [d] 0.165207 Adjusted R-squared [d] 0.164082

Joint F-statistic [e] 146.818393 Prob(>F), (8,5935) degrees of freedom 0.000000*

Joint Wald statistic [e] 1286.157371 Prob(>Chi-squared), (8) degrees of freedom 0.000000*

Koenker (BP) statistic [f] 454.780416 Prob(>Chi-squared), (8) degrees of freedom 0.000000*

Jarque–Bera statistic [g] 9445.065151 Prob(>Chi-squared), (2) degrees of freedom 0.000000*
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depicts the residuals distribution of OLS and GWR
for Pb grade. The residuals derived of the GWR
models are relatively small (Fig. 3b and d), indicat-
ing better performance in predicting the dependent
variable, whereas the larger residuals of the OLS
model (Fig. 3a and c) indicate lower performance in
predicting the dependent variable.

Moreover, the spatial distribution of residuals
of GWR models may provide some useful clues
for the factors affecting mineralization in Dingji-
ashan Pb–Zn deposit. If the residual equals zero, it
may indicate that the eight independent variables
can fully describe the mineralization; otherwise, it
can be inferred that the mineralization might be
affected by other geological processes and more
factors should be taken into consideration (Zhao
et al. 2013).

The sizes of the residuals change with the spa-
tial position. Larger residuals are present in two
regions (the red elliptical regions in Fig. 3), which
may be another indication of the existence of spatial
non-stationarity between the mineralization and the
factors that affect it.

Comparison of Spatial Autocorrelations of Residuals
Obtained by OLS and GWR

If an OLS model has a spatial autocorrelation
problem, GWR can help reduce it. On the other
hand, if an OLS model does not have this problem,
the application of GWR may increase spatial auto-
correlation (Tu and Xia, 2008). The global Moran�s I
and local Moran�s I of residuals for both the OLS

Table 4. Performance comparison of different models

MODEL Min_nNNs Max_nNNs Step R2 Adjusted R2 Optimal nNNs

Zn OLS 0.1500 0.1488

GWR (tricube) 30 1000 2 0.7076 0.7072 70

GWR(bisquare) 30 1000 2 0.7450 0.7447 90

Pb OLS 0.165 0.164

GWR (tricube) 30 1000 2 0.6838 0.6834 64

GWR(bisquare) 30 1000 2 0.7693 0.7690 108

nNNs represents number of nearest neighbors

Figure 3. Residuals of (a) OLS and (b) GWR models for Zn, (c) OLS and (d) GWR models for Pb.
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and GWR model are computed to measure the
ability to deal with the spatial dependence.

Table 5 shows global Moran�s I statistics on the
residuals from OLS and GWR models. The global
Moran�s I of OLS is 0.0725 for Zn and 0.0650 for Pb,
which indicates a slight positive spatial autocorre-
lation. Moran�s I statistics of residuals from GWR is
0.0296 for Zn and 0.0286 for Pb, which shows a very
weak spatial autocorrelation. The global Moran�s I
obtained in the GWR model is less than half of that
in the OLS model, which illustrates that GWR
models reduce the autocorrelation in comparison
with OLS models.

Global autocorrelation is a general description
of the whole space, but is only valid for homoge-
neous space. It becomes unreliable when the spatial
process is heterogeneous. Local autocorrelation can
solve this problem. Table 6 displays the statistical
result for local Moran�s I, in which the indices of
OLS models indicate that the distribution is not
uniform. Figure 4 shows local Moran�s I distribu-
tions in the OLS and GWR models for Zn and Pb.
The Moran�s I distributions in the OLS model
(Fig. 4a and c) show the spatial variability through
space. Despite that the Moran�s I is small in the
global models, some regions with high values (e.g.,
the red elliptical regions in Fig. 4a and c) are con-
sistent with the distribution of ore grade. The spatial
distribution of Moran�s I in the GWR model (Fig. 4b
and d) is clearly more even than that in the OLS
model.

All of the above-described results illustrate that
the GWR models represent better the relationships
by reducing the spatial autocorrelations in residuals.

Spatially Varying Relationships Between
Mineralization and its Determinants

The local R2 values and the values of t tests on
the local parameter estimates for the GWR model
can be calculated to explore the spatial variability
between the mineralization and the controlling fac-
tors (Tu and Xia 2008). The local R2 values for
GWR change with the spatial position, ranging from
� 0.2826 to 0.9992 (Fig. 5), which may be an indi-
cation of the existence of spatial variability between
the mineralization and the factors that affect it.
Higher R2 values are mainly present in two regions
(the red elliptical regions in Fig. 5), which are con-
sistent with the mineral concentrations.

In statistics, the t-statistic is the ratio of the
departure of the estimated value of a parameter
from its hypothesized value to its standard error.
Generally, a t-value that is greater than 1.96 or less
than � 1.96 indicates a significant difference at the
95% confidence level. In this study, the t-statistic
values for GWR exhibit an obvious spatial vari-
ability. The differences are mainly significant in two
regions (the red elliptical regions in Fig. 6), and not
significant in most of the other sites, suggesting that
these controlling factors are less important for
mineralization outside of the two concentrated
areas.

Spatial Stationarity Test

Spatial Stationary Index Test

A spatial stationary index test of local param-
eter estimates was conducted to determine whether
each explanatory variable shows significant geo-
graphical variability. The results of the test are
presented in Table 7. The values are far bigger than
1, which confirms that the relationships between the
mineralization and the eight explanatory variables
are not uniform across space, and therefore, these
variables should be modeled as local terms.

Table 5. Global spatial autocorrelation of residuals

Data object Global Moran�I value Z-score

Zn Residuals of OLS 0.0725 15.7777

Residuals of GWR 0.0296 6.4489

Pb Residuals of OLS 0.0650 14.1425

Residuals of GWR 0.0286 6.2386

Table 6. Local spatial autocorrelation of residuals

Model Mean Median Mode Variance First quantile Third quantile Quartile deviation

Zn OLS 1.47 0.2013 0.25 22.1362 � 0.0756 1.3631 1.4387

GWR 0.01 0.0057 � 1.62 0.5839 � 0.0397 0.1177 0.1574

Pb OLS 0.0000 � 0.1849 � 1.8605 0.9986 � 0.6389 0.4536 1.0925

GWR 0.0163 0.0125 0.0000 0.2680 � 0.0920 0.1425 0.2345
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Monte Carlo Non-stationarity Test

Monte Carlo significance test procedures con-
sist of the comparison of the observed data with
random samples generated by the hypothesis being
tested (Hope 1968). As a Monte Carlo significance
test is rather computationally intensive, we select a
relatively inefficient Zn grade model with lower R2

value to complete the test. In this paper, we consider
the practical dataset as the observed value. The
randomized dataset is generated by randomly
changing the corresponding orders of the coordi-
nates and variables. In Table 8, we report the results

of a Monte Carlo test on the local parameter esti-
mates for 1000 random samples. The p values of all
the variables are less than 0.05, which indicates that
there is significant spatial variation in the local
parameter estimates for all the variables.

Figure 7 shows the comparison of GWR results
between the practical dataset and the randomized
dataset. The results shown in Figure 7a are for
GWR simulations on the randomized dataset that
are performed with different maximum bandwidths
of 100, 300, 2000, and 5900, which can generate
different results. Simulations 1, 2, 3, and 4 corre-
spond to maximum bandwidths of 100, 300, 2000,

Figure 4. Comparison of local Moran�s I: (a) OLS and (b) GWR models for Zn; (c) OLS and (d) GWR models for Pb.

Figure 5. Local R2 of GWR models for (a) Zn and (b) Pb.
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and 5900. From the radar chart in Figure 7a, we can
see that the calculated optimal bandwidth increases
synchronously with the increasing maximum band-
width on the randomized dataset. The optimal
bandwidth is almost equal to the given maximum

bandwidth on the randomized dataset while it is
fixed on the practical dataset. As the bandwidth
tends to the maximum, the local model will tend to
the global model. We interpret this to be because the
relationships in the randomized dataset are uniform

Figure 6. T-statistic of the parameter estimates (a) dU, (b) waU, (c) wbU, (d) gU, (e) aU_S, (f) dZ1L3_Z1L2, (g) waZ1L3_Z1L2, (h)

wbZ1L3_Z1L2.
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in space while they are non-stationary in the prac-
tical dataset.

As the maximum bandwidth should be set to n
in order to obtain an optimal bandwidth in a GWR

simulation, simulation 4 is adopted for comparison
in the following analysis. Figure 7b shows the R-
squared values for the randomized dataset and
practical dataset. Obviously, the practical dataset

Table 7. Stationary index of explanatory variables

Variables Intercept dU waU wbU gU aU_S dZ1L3_Z1L2 waZ1L3_Z1L2 wbZ1L3_Z1L2

Zn Tricube 41.56 69.31 32.21 39.09 11.19 24.20 66.07 42.73 48.42

Bisquare 42.80 61.82 28.60 34.82 10.53 20.15 59.20 39.20 41.29

Mean 42.18 65.57 30.40 36.95 10.86 22.17 62.63 40.97 44.86

Pb Tricube 29.04 39.36 27.17 31.16 8.72 13.94 39.31 43.26 38.43

Bisquare 37.17 36.12 25.21 29.06 8.34 12.07 36.91 39.91 37.20

Mean 33.10 37.74 26.19 30.11 8.53 13.00 38.11 41.59 37.82

Table 8. Monte Carlo test for spatial non-stationarity on Dingjiashan practical data

Variance Intercept dU waU wbU gU aU_S dZ1L3_Z1L2 waZ1L3_Z1L2 wbZ1L3_Z1L2

p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(a)
(b)

(c)

Figure 7. Monte Carlo simulation results of (a) optimal bandwidth, (b) R-squared, and (c) stationary index.
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has a better performance, which demonstrates that
non-stationary relationship is greater in the practical
dataset than a randomized dataset. From Figure 7c,
we can find that the stationary indexes of all the
explanatory variables on the randomized dataset are
less than 1, which proves their spatial stationarity.
On the other hand, the indexes of all the explanatory
variables are far greater than 1 on the practical da-
taset, which illustrates their non-stationarity in the
practical dataset.

All these results reinforce the above conclusion
of the existence of non-stationarity between the
mineralization and its controlling factors in the
Dingjiashan practical dataset.

DISCUSSION AND FUTURE WORK

Local parameter estimates of the GWR analysis
indicate the relationships between the mineraliza-
tion and its controlling factors. The results described
above demonstrate the existence of non-stationary
influence between the mineralization and the ore-
controlling factors in the Dingjiashan practical da-
taset. Here we will further discuss the degree of non-
stationary influence. Because of space limitations,
we only take the Zn grade model for an example.

Table 9 shows the statistics for local parameter
estimates in the GWR model. The parameter esti-
mates of all the variables vary considerably from
negative to positive values, which underline the non-
stationary influence on mineralization by the ore-
controlling factors. Figure 8 displays the spatial
distribution of each explanatory variable and its
parameter estimates. From these data and figures,
we can find:

(1) Different from the explanatory variables,
the corresponding parameter estimates of
each variable vary through space from
negative to positive. The larger values of
most parameter estimates are concentrated
in two areas (the red elliptical regions in
Fig. 8) which are mostly consistent with the
mineral concentrations. This reflects that
the ore-controlling factors have more
influence on the mineralization in these two
areas.

(2) The parameter estimates of each variable
vary in size. Generally, the larger values
represent a closer relationship and a larger
influence. In Table 9, both inner and outer
interquartile ranges are employed to ex-
plore further the distribution trends of
parameter estimates. The inner interquar-
tile range is defined as the distance from the
first to the third quartile, which is used to
evaluate the less influential non-concentra-
tion areas. On the other hand, the outer
interquartile range, which is the summed
distance from the minimum to the first
quartile and from the third quartile to the
maximum, is used to evaluate the highly
concentrated areas.

In the areas of high mineral concentration, the
eight ore-controlling factors can be roughly divided
into three classes by the outer interquartile range.
The first class includes waZ1L3_Z1L2,
wbZ1L3_Z1L2, which represent the trend–undula-
tion of Z1L3_Z1L2 stratigraphic interface. The
second class includes wbU, waU, and aU_S, which
represent the trend–undulation of unconformity and

Table 9. Statistics of local parameter estimates for the GWR model

dU waU wbU gU aU_S dZ1L3_Z1L2 waZ1L3_Z1L2 wbZ1L3_Z1L2

Number 5944 5944 5944 5944 5944 5944 5944 5944

Mean 0.0047 � 0.0083 � 0.0786 � 0.0051 0.0301 � 0.0169 0.0950 � 0.0810

Variance 0.0830 0.3160 0.8410 0.0070 0.2020 0.0790 1.6660 1.2950

Minimum � 1.4791 � 6.3309 � 8.3746 � 4.0909 � 7.9436 � 1.7152 � 10.3244 � 19.8220

Maximum 1.7978 4.7654 6.0717 0.3291 9.9847 1.6234 17.4016 7.1119

First quartile � 0.1145 � 0.1350 � 0.2875 � 0.0278 � 0.0317 � 0.1091 � 0.1816 � 0.3939

Median � 0.0090 0.0115 � 0.0019 � 0.0002 0.0027 � 0.0020 0.0107 � 0.0614

Third quartile 0.0984 0.1708 0.2439 0.0252 0.0341 0.0980 0.2473 0.2280

Interquartile range_inner 0.2129 0.3058 0.5314 0.053 0.0658 0.2071 0.4289 0.6219

Interquartile range_outer 3.4898 11.4021 14.9777 4.473 17.9941 3.5457 28.1549 27.5558
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Figure 8. Spatial distribution of explanatory variables (a-1) dU, (b-1) waU, (c-1) wbU, (d-1) gU, (e-1) aU_S, (f-1) dZ1L3_Z1L2, (g-1)

waZ1L3_Z1L2, (h-1) wbZ1L3_Z1L2 and the parameter estimates (a-2) dU, (b-2) waU, (c-2) wbU, (d-2) gU, (e-2) aU_S, (f-2)

dZ1L3_Z1L2, (g-2) waZ1L3_Z1L2, (h-2) wbZ1L3_Z1L2.
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Figure 8. continued.
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the angle of unconformity. The third class consists of
dU, dz1L3_Z1L2, and gU, which are the distance to
the Z1L3_Z1L2 stratigraphic interface, distance to
the unconformity, and the slope of the unconfor-
mity. From these analyses, we can conclude that the
trend–undulation of the stratigraphic interface has
the greatest influence and trend–undulation of the
unconformity and angle of the unconformity come
second, while the distance to the stratigraphic
interface, distance to the unconformity, and the
slope of the unconformity are the weakest.

In the low mineral concentration areas, the ore-
controlling factors are classified by the inner
interquartile range. The first class includes
waZ1L3_Z1L2, wbZ1L3_Z1L2, and wbU; the sec-
ond class waU, dZ1L3_Z1L2, and dU; the third class
includes gU and aU_S. These indicate to some de-
gree that the trend–undulation of Z1L3_Z1L2
stratigraphic interface and the second-degree trend–
undulation factor of the unconformity have the most
influence on the mineralization while the slope and
angle of the unconformity might not be as important
in low mineral concentration areas. Through the
whole space of Dingjiashan Zn deposit, we can find
that waZ1L3_Z1L2 and wbZ1L3_Z1L2, the trend–
undulation of Z1L3_Z1L2 stratigraphic interface,
always attribute the most impact to the mineraliza-
tion, but the slope of the unconformity has the
weakest influence on the mineralization.

All the results and discussion presented here en-
hance our understanding of the formation of Zn de-
posits. Although the GWR model achieves better
performance than other models, there still exist defi-
ciencies. In the variable selection, there may exist other
factors, which may contribute to the mineralization
more appropriately. In the model application, the main
defect may lie in the deep analysis and reasonable
interpretation of the spatial variability of the regres-
sion coefficients in space from the GWR model. An
appropriate solution would be to associate the regres-
sion coefficients with the metallogenic mechanism.

One suggestion for future research can be to
enhance the interpolation and prediction abilities of
GWR by introducing a kriging method for describ-
ing the structure of spatial variation in the GWR
weight function. Another approach can focus on
improving the predictions through integration with
machine learning methods such as discriminant
analysis, support vector regression, kernel regres-
sion, or neural networks.

CONCLUSIONS

Geographically weighted regression, which
incorporates spatial location information into the
regression model, is more conducive to exploring
the interaction of spatial relations within geologi-
cally complex regions than ordinary linear regres-
sion. In this study, the results of statistical
hypothesis tests and OLS fitting reveal that the ore-
controlling factors selected in this study are highly
statistically significant for the mineralization and
that spatial non-stationarity between mineralization
and its determinants does exist. Results of model
comparisons prove that the GWR model has a
better fit and higher prediction accuracy than the
OLS model.

Quantitatively understanding the spatially
varying relationships between geological factors
and mineralization is crucial to metallogenic pre-
dictions. The regression coefficients obtained by
GWR provide more information for geological
interpretation. In this study, the parameter esti-
mates indicate that the most influential controlling
factor for the mineralization is the trend of the
Z1L3_Z1L2 stratigraphic interface, and the weak-
est factor is the slope of the unconformity. The
results reveal that the influence of the ore-con-
trolling factors on mineralization varies consider-
ably across the whole three-dimensional space, and
it is stronger closer to the ore bodies and weaker
further away.

In summary, this study described a new case
study for the application of GWR in a three-di-
mensional area of geological significance. The con-
clusions from this study provide a reference for
further research in predictive modeling.
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