
Original Paper

Predicting Total Dissolved Gas Concentration on a Daily
Scale Using Kriging Interpolation, Response Surface Method
and Artificial Neural Network: Case Study of Columbia River
Basin Dams, USA

Salim Heddam ,1,5 Behrooz Keshtegar,2,3 and Ozgur Kisi4

Received 3 February 2019; accepted 18 July 2019
Published online: 26 July 2019

Total dissolved gas (TDG) is an important factor for aquatic life and can cause gas bubble
trauma in fish if the concentration is higher than 110%. Dissolved gas is entrained in the
water over the spillways of dams. Generally, total dissolved gas is simulated and predicted
using models based on fluid mechanics, hydrodynamics and mass exchange processes. In the
present study, two novel data-driven techniques, namely kriging interpolation method
(KIM) and response surface method (RSM), were proposed for predicting total dissolved
gas, measured on a daily scale at the upstream and downstream of spillways at four different
dams� reservoir sites located in Columbia River, USA. For developing models, we selected
several input variables, namely water temperature, barometric pressure, spill from dam and
discharge; in addition, total dissolved gas measured as percent of saturation (%) was selected
as the predicted variable. Results obtained from the newly proposed models were compared
with those obtained with the standard feedforward neural networks (FFNN) model to assess
their performances. The proposed models were developed and compared with each other
based on several input combinations. Four statistical indexes were utilized to evaluate
models� performances: coefficient of correlation (R), Nash–Sutcliffe efficiency (NSE), root-
mean-squared error (RMSE) and mean absolute error (MAE). The results obtained clearly
show that: (1) the KIM model is better than the RSM and FFNN models at three dams and
FFNN is the best for the fourth; (2) the RSM model is ranked in the third place and provided
the lowest accuracy; and (3) the highest R and NSE in addition to the lowest RMSE and
MAE are obtained when the models include all the four input variables. The R, NSE, RMSE
and MAE of the best KIM model among the four dam�s reservoirs are 0.973, 0.941, 1.462 and
1.122 while the corresponding values of the best FFNN (RSM) model are 0.962 (0.952), 0.926
(0.906), 1.643 (1.848) and 1.297 (1.426), respectively.

KEY WORDS: Total dissolved gas, Feedforward neural networks, Kriging interpolation method,
Response surface method, Dam�s reservoir.
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INTRODUCTION

Over the past few years, measurement and
control of total dissolved gas (TDG) concentration
in water upstream and downstream of spillways at
hydropower dams have received great importance.
TDG concentration expressed as a percentage (%)
or pressure measured in millimeters of mercury
(Witt et al. 2017a) is a mixture of several gases such
as oxygen, nitrogen, argon and carbon dioxide
(Schneider 2012). TDG concentration > 110% of
saturation has a negative effect on aquatic life and is
a serious environmental problem (Colt 1986). TDG
elevation causes ‘‘gas bubble trauma’’ (GBT) that
can lead to fish mortality (Weitkamp and Katz
1980). According to Colt and Westers (1982), one of
the major disadvantages caused by elevated TDG is
the limitation of the utility of highly efficient sub-
merged aerators. Consequently, the negative im-
pacts of elevated TDG could be greatly minimized.
According to research findings conducted by Poli-
tano et al. (2007) and later confirmed by Schneider
(2012), spillway deflectors contribute significantly to
the reduction in TDG supersaturation at the tailrace
of the dams (Witt et al. 2017b). Over the years, the
effects of several environmental factors such as wa-
ter temperature and atmospheric pressure, spill from
dam and discharge on TDG formation and devel-
opment at hydropower dams were studied and
highlighted. Spillway and powerhouse discharges
fluctuations could have a strong impact on TDG in
downstream of a dam (Tanner et al. 2013; Politano
et al. 2017). Recently, Li et al. (2019) conducted an
investigation to demonstrate and to explore the ef-
fect of TDG supersaturation on the hatchability of
Chinese sucker. The authors demonstrated that the
hatching rate decreased with increasing TDG levels.

Various studies have made use of many mod-
eling approaches such as mass transfer theories
(Roesner and Norton 1971), numerical hydrody-
namic and mass exchange processes (Weber et al.
2004) and polydisperse two-phase flow and unsteady
3D two-phase flow approaches (Politano et al. 2007,
2009, 2012; Fu et al. 2010; Ma et al. 2016). Using data
collected at hourly time step from hydropower dams
at mid-Columbia River, USA, Witt et al. (2017a)
proposed at the first time a model for predicting
mean TDG travel time from the tailrace of one dam
to the forebay of the next downstream dam. The
proposed model was formulated using cross-corre-
lation of hourly TDG data and based on the idea of
relating mean TDG to mean discharge. Witt et al.

(2017b) proposed a simple model for predicting
TDG uptake that is the difference between the TDG
concentration in the forebay and the TDG in the
tailwater of the dams. His proposed model is a
simple reduced-order TDG uptake equation. Re-
cently, Ma et al. (2018) investigated the effect of the
cascade hydropower stations on water TDG super-
saturation and demonstrated that concentration of
TDG can be significantly increased and become
oversaturated in the forebay and transported via the
tailwater with the development of cascade hydro-
power stations. The cumulative effect of cascade
hydropower stations is also investigated by Feng
et al. (2018). Using data from several power stations
located at the Dadu River, the largest tributary of
the Min River, China, they demonstrated that the
cascade contributes to an important increase in
TDG level due to the elevated discharge and water
depth. Yuan et al. (2018) investigated the effect of
the vegetation on the dissipation of supersaturated
TDG and demonstrated that as the density of veg-
etation increased, the dissipation rate of the super-
saturated TDG became higher. Deng et al. (2017)
demonstrated that the addition of baffle bocks to the
spillway chute would likely reduce the TDG pro-
duced by spill flow into the tailrace. Stewart et al.
(2015a, b) proposed a simplified model for predict-
ing TDG level using four input variables: power-
house flow, spillway flow, tailwater depth and the
calculated entrainment of powerhouse flow into
spillway flow, and they obtained high accuracy with
a coefficient of determination better than 92%. Shen
et al. (2019) proposed at the first time a three-di-
mensional supersaturated TDG model, based on the
Reynolds-averaged Navier–Stokes (RANS) equa-
tions at the confluence zone during discharge period
of dam. The proposed model combines experimental
and numerical study. The authors demonstrated that
the utilization of a low-TDG saturation region at the
confluences helps significantly improve the river
ecosystem and reduce the amount of GBT.

Studies on characterization of TDG using di-
rectly measured hydraulic, climatic and water qual-
ity variables, such as water temperature and
barometric pressure, are scarce. However, models
based on a combination of direct measurement of
such variables could provide a more complete
description of TDG process and can help accurately
predict TDG. Data-driven techniques have played a
key role in many areas of hydrological and envi-
ronmental sciences, especially with the recent pro-
liferation of high-quality data available worldwide.
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Previously, data-driven methods have been used for
modeling pan evaporation at different timescales
(Wang et al. 2016a, 2017a, b, c), prediction of diffuse
photosynthetically active radiation (Wang et al.
2017d), prediction of solar radiation (Wang et al.
2016b), estimation of daily aerosol optical depth and
aerosol radiative effect (Qin et al. 2018), high-den-
sity photosynthetically active radiation (Qin et al.
2019). On the other hand, several researchers
worldwide have demonstrated that data-driven
methods have significantly contributed to the
advancement of research, and a number of compu-
tational models have been proposed, including
forecasting monthly rainfall with uncertainty (Ya-
seen et al. 2019), streamflow simulation (Al-Sudani
et al. 2019), precipitation pattern modeling using
cross-station perception (Sulaiman et al. 2018) and
forecasting air temperature using geographic infor-
mation as model predictors (Sanikhani et al. 2018).
In this study, we present a novel method to predict
TDG concentration using a combination of water
quality and climatic variables, in addition to the
measured spill from dams and discharge. To the best
of the author�s knowledge, only one study has re-
ported the application of the data-driven techniques
for modeling TDG concentration. Heddam (2017)
applied the generalized regression neural network
(GRNN) for predicting TDG uptake using six input
variables, namely total dissolved gas measured in the
forebay of the dam (TDG_F), water temperature,
barometric pressure, spill from dam, sensor depth
and total flow. The author demonstrated that inclu-
sion of TDG_F significantly improves the perfor-
mances of the model, and the GRNN is more
accurate than the standard multiple linear regres-
sion. This paper aims to develop new data-driven
models for predicting TDG concentration using
kriging interpolation method (KIM) and response
surface method (RSM). These two models were

compared with the standard feedforward neural
networks (FFNN).

MATERIAL AND METHODOLOGY

Case Studies

The historical water temperature (TE), baro-
metric pressure (BP), spill from dam (SFD) and
discharge (DIS) measured on a daily scale were se-
lected as predictor�s variables to predict TDG mea-
sured as percent of saturation (%). The data were
collected at four different dams� reservoir sites lo-
cated in Columbia River, USA. The data were ob-
tained from the USGS Web site: https://waterdata.
usgs.gov. Latitude, longitude and stations codes are
reported in Table 1. Figure 1 shows the location of
the four dams� sites. The John Day Dam is a con-
crete gravity dam spanning the Columbia River in
the northwestern United States. John Day Dam is
part of the Columbia River Basin system of dams, its
length is 2327 m, altitude above sea level is 81 m and
the total height was about 56 m. The spillway has a
structure with 20 gates; its length is 374 m (https://
www.nwp.usace.army.mil/John-Day/). The Dalles
Dam is a concrete gravity dam spanning the Co-
lumbia River, two miles east of the city of The
Dalles, Oregon, USA, its length is 2693 m, altitude
above sea level is 24 m and the total height was
about 61 m. The spillway has a structure with 23
gates; its length is 441 m, (https://www.nwp.usace.a
rmy.mil/The-Dalles/). For the first three stations
(TDDO, TDA and JHAW), we selected a period of
record from 1998 to 2017, and for the fourth station
(JDY), the period of record running from 2004 to
2017 (Table 2). However, it is worth noting that the
selected stations have incomplete dataset from year
to year and nearly half of data are missing. Periods
of records with total, incomplete and final pattern

Table 1. Description of the selected stations

Station name Station

code

Station number Latitude Longitude

Columbia River at The Dalles, Oregon (The Dalles TailWater) TDDO4 14105700 45�36¢27¢¢ 121�10¢20¢¢
Columbia River at The Dalles Dam Forebay, Washington (The Dalles Forebay) TDA3 453712121071200 45�37¢12¢¢ 121�07¢12¢¢
Columbia River, right bank, near Cliffs, Washington (John Day TailWater) JHAW2 454249120423500 45�42¢49¢¢ 120�42¢35¢¢
Columbia River at John Day Navigation Lock, Washington (John Day Navi-

gation Lock)

JDY1 454314120413701 45�43¢14¢¢ 120�41¢37¢¢
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are summarized in Table 2. Detailed statistics for
the variables selected (TE, BP, SFD and DIS) as
inputs for modeling TDG are provided in Table 3,
where Xmean, Xmax, Xmin, Sx and Cv denote the
mean, the maximum, the minimum, the standard
deviation and the coefficient of variation, respec-
tively. There is an inverse proportion between TE
(BP) and TDG. Among the input variables, SFD has
the highest variation (see CV) while the BP has the
lowest variation in all stations. According to the
correlation values in Table 3, the SFD is the most
effective variable on TDG, closely followed by the
DIS variable, whereas the BP has the lowest corre-
lation which means that it is the least effective
variable on TDG. The dataset was randomly divided
into two sub-datasets: (1) training set (70%) and (2)
validation set (30%). In order to show the relative

importance of the four input variables, we compared
several scenarios, each and every one of them has
several combinations of the four input variables.
Scenarios� description is reported in Table 4.

Modeling Approaches

Feedforward Neural Network (FFNN)

Artificial neural network (ANN) has been
mainly adopted for developing and providing non-
linear relation between a set of input and output
variables, using a learning process for optimization
of the model parameters. The purpose of an ANN is
to provide accurate predictions for an output re-
sponse, i.e., TDG, based on the input dataset such as

Fig. 1. Map showing the location of the four dams� sites and total dissolved gas monitoring stations, lower Columbia River,

Oregon and Washington, USA (Tanner et al. 2009, 2011, 2012, 2013).

Table 2. Period of records for the USGS stations selected in the present study

Station number Begin date End date Total pattern Incomplete pattern Final pattern

14105700 01/01/1998 09/07/2017 7190 3637 3553

453712121071200 01/01/1998 09/07/2017 7190 3755 3435

454249120423500 01/01/1998 09/07/2017 7198 3803 3395

454314120413701 01/01/2004 09/07/2017 4999 2480 2519
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TE, BP, DIS and SFD. FFNN is one of the most
used ANN models and can be used to estimate the
TDG by the following mathematical relation:

ŷðXÞ ¼ f2 B0 þ
XM

j¼1

wjkf1 Bj þ
Xn

i¼1

wijxi

 !" #
ð1Þ

where B0 is the bias of the output neuron, wij de-
notes the weights of jth neuron in the hidden layer
with respect to ith input variable, wjk represents the
weights of output neuron corresponding to jth neu-

ron in the hidden layer and f is an activation function
adopted for each of the hidden and output neurons.
The sigmoid function is commonly used for the
neurons in the hidden layer (Minns and Hall 1996):

f Xð Þ ¼ 1

1þ expð�XÞ ð2Þ

The structure of the FFNN is plotted in Fig-
ure 2. It can be seen that the model has n input
variable (i.e., n = 4) and M hidden neurons which is
10, determined using trial and error, for this study. A
best learning approach for the weights of the FFNN
is obtained when the designed network produces
predictions with the minimum errors between the
desired and predicted values of TDG in the training
data. The most common learning approach is the
backpropagation which is used to calibrate the
FFNN model using iterative approach. The Leven-
berg–Marquardt (LM) backpropagation algorithm
used in the present study for the FFNN showed the
best performance with efficient predictions (Esfe
et al. 2015). The input and output datasets were
normalized between � 1 and 1 for better scale of the
variables to just with sigmoid functions.

Table 3. Statistical parameters of the used datasets for all stations

Station Dataset Unit Xmean Xmax Xmin Sx Cv R

USGS 14105700 TE �C 16.553 23.4 6.50 4.567 0.276 � 0.238

BP mm Hg 759.43 778 746 3.560 0.005 � 0.102

DIS kcfs 207.26 529 63.4 93.79 0.453 0.745

SFD feet 70.824 341 0.00 53.65 0.758 0.869

TDG % sat. 112.51 126 97.0 5.975 0.053 1.000

USGS 453712121071200 TE �C 16.431 23 2.50 4.605 0.280 � 0.399

BP mm Hg 757.54 778 743 3.621 0.005 � 0.134

DIS kcfs 200.54 498 58.3 89.08 0.444 0.814

SFD feet 73.358 341 0.00 52.85 0.720 0.824

TDG % sat. 108.08 126 97.0 4.711 0.044 1.000

USGS 454314120413701 TE �C 15.780 23.7 4.40 5.258 0.333 � 0.262

BP mm Hg 754.29 768 741 3.665 0.005 � 0.200

DIS kcfs 209.70 518 56.2 95.22 0.454 0.821

SFD feet 62.411 255 0.00 48.56 0.778 0.798

TDG % sat. 107.40 130 97.0 4.902 0.046 1.000

USGS 454249120423500 TE �C 16.362 23.2 6.10 4.668 0.285 � 0.265

BP mm Hg 757.51 776 744 3.780 0.005 � 0.126

DIS kcfs 205.21 518 56.2 93.54 0.456 0.790

SFD feet 58.954 255 0.00 46.53 0.789 0.879

TDG % sat. 112.45 136 97.0 6.537 0.058 1.000

TDG, total dissolved gas; TE, water temperature; BP, barometric pressure; SFD, spill from dam; DIS, discharge; Xmean, mean; Xmax,

maximum; Xmin, minimum; Sx, standard deviation; Cv, coefficient of variation; R, correlation coefficient with TDG; kcfs, thousands of cubic

feet per second; and mm Hg, millimeter of mercury

Table 4. Input combinations of different models

Models

KIM RSM FFNN Inputs combinations

KIM1 RSM1 FFNN1 SFD, DIS, TE, BP

KIM2 RSM2 FFNN2 SFD, DIS, TE

KIM3 RSM3 FFNN3 SFD, DIS, BP

KIM4 RSM4 FFNN4 SFD, TE, BP

KIM5 RSM5 FFNN5 SFD, DIS

KIM6 RSM6 FFNN6 SFD, BP

KIM7 RSM7 FFNN7 SFD, TE

KIM, kriging interpolation method; FFNN, feedforward neural

network; RSM, response surface method
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Response Surface Method (RSM)

The RSM provides a nonlinear prediction based
on simple predictor basis second-order polynomial
functions as follows (Keshtegar and Kisi 2017):

ŷðXÞ ¼ b þ
Xn

i¼1

wixi þ
Xn

i¼1

Xn

j¼i

wijxixj ð3Þ

where ŷ(X) is the predicted TDG, n is the number of
input variables including TE, BP, DIS or SFD and b,
wi and wij are unknown coefficients. Least square
estimator is generally implemented to compute
these unknown coefficients. Detailed information
about this method can be obtained from the previ-
ous studies (Keshtegar and Kisi 2017; Keshtegar and
Heddam 2018).

Kriging Interpolation Method (KIM)

The kriging model is a well-known interpolation
framework for estimating geostatistics problems
(Lucy 1977). It was recently implemented for opti-
mum design (Li et al. 2017), structural reliability
analysis (Jian et al. 2017) and the predictions of solar
radiation (Keshtegar et al. 2018). The kriging model
is given as follows:

ŷðXÞ ¼ ðb;XÞ þ UðXÞ ¼ GðXÞTbþ UðXÞ ð4Þ

where b is the vector of unknown coefficients, C(b,
X) is the deterministic term and U(X) represents the
random part of the models which is generally con-

sidered based on Gaussian process. C(b, X) involves
the data of the basic functions of G(X) and their
relative coefficients b. G(X) can be given as a scalar
or polynomial basis functions that the second-order
function was selected in the current study. The
stochastic term of kriging model, i.e., U(X), should
follow the stationary Gaussian process. The covari-
ance between U(Xi) and U(Xj) is computed as:

covðUðXiÞ;UðXjÞÞ ¼ r2RðXi;Xj; hÞ ð5Þ

where r2 denotes the variance, R(Xi, Xj, h) repre-
sents the correlation function for U(X), and h is
unknown correlation parameters h> 0. It can be
realized from the kriging model in Eq. 4 that the
predicted data ŷ(X) is obtained using the mean
function of C(b, X) and covariance function cov(.,.).
The correlation matrix R, which is n 9 n matrix, can
be improved by the flexibility of modeling approach
to obtain the accurate predictions using nonlinear
relation by the following form:

R ¼

1 rðX1;X2Þ . . .
rðX2;X1Þ 1

..

. . .
.

rðXn;X1Þ rðXn;X1Þ � � �

rðX1;XnÞ
rðX2;XnÞ

..

.

1

2
6664

3
7775 ð6Þ

where r(Xi, Xj) is the covariance basis function be-
tween a prior sample of Xi and Xj, and it can be
computed as:

r Xi;Xj

� �
¼ eh r2

ij ð7Þ

where rij is distance as Xi � Xj. The unknown cor-
relation parameter h can strongly affect the accuracy

 Input Layer  Hidden Layer  Output Layer  

Wij
Wjk

TDG

Bj

B0BP

TE

DIS

SFD

Fig. 2. Schematic view of feedforward neural network (FFNN).

1806 Heddam, Keshtegar, and Kisi



of model predictions. Different values for h may be
conducted to get different accuracies for the pre-
diction of TDG. Consequently, the maximum like-
lihood estimator can be applied to optimize the
parameter vector h as follows (Jian et al. 2017):

h ¼ argMax � logðdetRÞn logðr̂2Þ
� �

ð8Þ

where n is the number of points for training and r̂2 is
estimated variance of the model, which can be
computed as:

r̂2 ¼ ðY � GðXÞTbÞT
R�1ðY � GðXÞTbÞ
n

ð9Þ

Based on computing the unknown correlation
parameter, the predictive model of kriging can be
easily obtained as:

ŷðXÞ ¼ GðXÞTbþ rðXÞTc ð10Þ

where

b ¼ ðGTR�1GÞ�1GTR�1Y ð11Þ

c ¼ R�1ðY � GTbÞ ð12Þ

G ¼ ½GðX1Þ; GðX2Þ; . . . ;GðXnÞ�T ð13Þ

rðXÞ ¼ ½RðX1;X; hÞ; RðX2;X; hÞ; . . . ;RðXn;X; hÞ�T

ð14Þ
The kriging-based meta-modeling approach is

structured based on the polynomial basis function as
well as RSM for G(X), while the random part using
Gaussian process in terms of correlation function R
is added into the predicted models. Consequently,
the flexible predictive tool using kriging may provide
a highly nonlinear relation in complex engineering
problems. ANN has several linear functions in hid-
den neurons while the RSM has polynomial terms
with second-order functions. The ANN can provide
an accurate prediction for nonlinear problems with
low cross-correlation between input data, but the
predictions of problems having input data with high
cross-correlation may be improved by applying RSM
with high cross-terms or kriging. Consequently, the
nonlinear forms achieved using an ANN model
using an activated function in the hidden layer can
enhance the ability of the ANN for predicting highly
nonlinear problems having input data with low
cross-correlation.

Performances Indices

To evaluate and compare the accuracy of the
developed models, we used four performance in-
dices. The indices are the coefficient of correlation
(R), the Nash–Sutcliffe efficiency (NSE), the root-
mean-squared error (RMSE) and the mean absolute
error (MAE):

R ¼
1
N

P
Oi � Omð Þ Pi � Pmð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Pn
i¼1 Oi � Omð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Pn
i¼1 Pi � Pmð Þ2

q

2

64

3

75

ð15Þ

NSE ¼ 1�
PN

i¼1 Oi � Pi½ �2
PN

i¼1 Oi � Om½ �2
ð16Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

Oi �Pið Þ2
vuut ð17Þ

MAE ¼ 1

N

XN

i¼1

Oi �Pij j ð18Þ

where N is the number of data points, Oi is the
measured value, Pi is the corresponding model pre-
diction and Om and Pm are the average values of Oi

and Pi. More details can be found in (Ghorbani et al.
2018a, b; Yaseen et al. 2018; Tao et al. 2018).

Models Development

In the present study, the FFNN, RSM and KIM
models were developed using MATLAB software.
All models were first calibrated during the training
phase and later validated using the validation data-
set. The parameters of the models were optimized
during the training phase using a trial and error
approach to identify suitable structures of the
models. Various hidden node numbers were tried for
FFNN models, and the optimal values were found to
vary from 5 to 13 for the best models.

RESULTS AND DISCUSSION

The estimated TDG for the selected period of
record was compared to the measured data collected
at four USGS stations. A total of seven models with
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different input combinations were developed and
evaluated with the KIM, RSM and FFNN methods,
to determine the most effective approach. Accord-
ing to the obtained results, the measured TDG val-
ues are in a good agreement with the estimated
values using the applied models. We evaluated the
quality of our results using RMSE, MAE, R and
NSE, showing that the overall fit between the mea-
sured and calculated data is good (Tables 5, 6, 7, and
8). During the validation phase, RMSE and MAE in
all stations are below 3%. The average RMSE and
MAE of all validations sets are 2.212% and 1.741%,
respectively, and the best results with lower RMSE
and MAE are 1.462% and 1.122%, respectively. The
best performing TDG station is the USGS 14105700
showing the average RMSE and MAE of 1.741%
and 1.362%, respectively. However, the worst per-
forming station is the USGS 454314120413701 sta-
tion whose average RMSE and MAE are 2.687%
and 2.094%, respectively. In overall, by analyzing
the results obtained at all the four stations, we
conclude that there is no dominant model that works
as the best at all stations, but on the contrary, RSM
is the worst method at three stations when compared
to the KIM and FFNN. KIM models showed better
fitting results compared to FFNN and RSM as
shown in Table 5 for the USGS 14105700 station;
however, FFNN estimates TDG more accurately
than the other two methods in validation phase in
terms of R, NSE, RMSE and MAE at the USGS
453712121071200 station, and it estimates TDG
equally with the KIM models at the USGS
454249120423500 and USGS 454314120413701 sta-
tions. In the following, the performances of the
models are assessed through the comparison with
in situ measurement and modeled data at each sta-
tion separately.

For the USGS 14105700 station (Table 5), for
which a more robust and high accuracy was ob-
tained, preliminary analysis revealed that the best
accuracy was obtained using the KIM models fol-
lowed by the FFNN models and the RSM was
ranked in the third place (Table 5). During the
validation phase, the KIM1 has the highest R and
NSE (R = 0.973, NSE = 0.941) and the lowest
RMSE and MAE (RMSE = 1.462%, MAE =
1.122%). With regard to the FFNN models, FFNN1
has the highest R and NSE (R = 0.966, NSE =
0.933) and the lowest RMSE and MAE (RMSE =
1.562%, MAE = 1.198%). Finally, RSM1 has the
highest R and NSE (R = 0.952, NSE = 0.906) and
the lowest RMSE and MAE (RMSE = 1.848%,

MAE = 1.426%). In Table 5, the R and NSE values
and the corresponding RMSE and MAE between
the measured and estimated TDG values using the
modeling approaches are analyzed. The average
RMSE and MAE of the KIM models are quite low
and equal to 1.617% and 1.265%, respectively.
FFNN models provided the second lowest average
RMSE and MAE with values equal to 1.682% and
1.321%, respectively. Finally, RSM models possess
the largest average RMSE and MAE with values
equal to 1.924% and 1.498%, respectively. With re-
spect to the R and NSE values, the average R and
NSE using KIM models are quite high and equal to
0.969 and 0.928, respectively. FFNN models pro-
vided the second highest average R and NSE with
values equal to 0.961 and 0.922, respectively. Finally,
RSM models possess the lowest average R and NSE
with values equal to 0.948 and 0.898, respectively.
Using only three input variables, the best accuracy
varies from one model to another. KIM4 with SFD,
TE and BP input variables is the best model
(R = 0.966, NSE = 0.933), slightly higher than
FFNN2 with SFD, DIS TE input variables
(R = 0.961, NSE = 0.922), while the RSM4 possess
the lowest accuracy and ranked in the third place
(R = 0.950, NSE = 0.903). KIM1 decreased the
RMSE and MAE of the KIM4 by 10.47% and
12.55%, respectively. FFNN1 decreased the RMSE
and MAE of the FFNN2 by 7.13% and 8.97%,
respectively. Finally, RSM1 decreased the RMSE
and MAE of the RSM4 by 1.38% and 2.57%,
respectively. Hence, it is clear from the analysis re-
ported above that KIM models are the best, not only
by providing the best accuracy, but also they present
the best improvement when more input variables are
included as inputs to the models. Finally, we analyze
the performances of the models using only two input
variables. From the results reported in Table 5, it is
clear that using only two input variables, the best
accuracy was obtained using KIM5 (R = 0.968,
NSE = 0.936) with SFD and DIF inputs, FFNN7
(R = 0.966, NSE = 0.932) and RSM7 (R = 0.946,
NSE = 0.895), having only SFD and TE as input
variables; however, KIM5 is the best compared to
FFNN7 and RSM7. Figure 3 shows the scatterplot of
measured vs. calculated values of TDG, the fre-
quency distribution histogram of the predicting er-
rors and the boxplots for the USGS 14105700
station. As evident from the scatterplots, the fit line
equation of the KIM1 model is closer to the exact
line (y = x line) compared to other two models. It is
obviously observed from the relative error his-
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Table 5. Performances of different models in modeling TDG at USGS 14105700 station

Models Training Validation

NSE R RMSE MAE NSE R RMSE MAE

KIM1 0.939 0.972 1.472 1.157 0.941 0.973 1.462 1.122

KIM2 0.911 0.970 1.771 1.426 0.914 0.969 1.767 1.418

KIM3 0.924 0.969 1.636 1.293 0.926 0.970 1.637 1.277

KIM4 0.927 0.971 1.608 1.271 0.927 0.971 1.633 1.283

KIM5 0.931 0.965 1.561 1.242 0.936 0.968 1.520 1.194

KIM6 0.914 0.963 1.744 1.361 0.917 0.964 1.732 1.325

KIM7 0.930 0.967 1.580 1.248 0.932 0.969 1.568 1.237

RSM1 0.904 0.951 1.848 1.430 0.906 0.952 1.848 1.426

RSM2 0.895 0.946 1.932 1.502 0.895 0.946 1.949 1.517

RSM3 0.898 0.948 1.901 1.478 0.901 0.949 1.892 1.467

RSM4 0.902 0.950 1.867 1.459 0.903 0.950 1.874 1.464

RSM5 0.888 0.942 1.992 1.556 0.890 0.944 1.995 1.550

RSM6 0.894 0.945 1.940 1.534 0.895 0.946 1.954 1.536

RSM7 0.894 0.945 1.941 1.518 0.895 0.946 1.954 1.529

FFNN1 0.927 0.963 1.608 1.258 0.933 0.966 1.562 1.198

FFNN2 0.916 0.957 1.727 1.358 0.922 0.961 1.682 1.316

FFNN3 0.916 0.958 1.724 1.353 0.920 0.960 1.709 1.335

FFNN4 0.906 0.952 1.823 1.442 0.913 0.956 1.779 1.408

FFNN5 0.903 0.950 1.854 1.467 0.908 0.953 1.829 1.451

FFNN6 0.922 0.960 1.659 1.315 0.926 0.962 1.643 1.297

FFNN7 0.926 0.963 1.615 1.272 0.932 0.966 1.568 1.245

Table 6. Performances of different models in modeling TDG at USGS 453712121071200 station

Models Training Validation

NSE R RMSE MAE NSE R RMSE MAE

KIM1 0.830 0.913 2.816 2.359 0.808 0.900 2.944 2.426

KIM2 0.805 0.900 2.510 2.036 0.780 0.888 2.625 2.053

KIM3 0.802 0.898 2.526 2.053 0.801 0.896 2.524 2.067

KIM4 0.816 0.904 2.020 1.579 0.781 0.886 2.206 1.620

KIM5 0.738 0.884 2.411 1.894 0.745 0.884 2.447 1.902

KIM6 0.750 0.867 2.686 2.170 0.745 0.869 2.650 2.154

KIM7 0.728 0.882 2.456 1.924 0.731 0.867 2.607 1.956

RSM1 0.794 0.891 2.138 1.681 0.790 0.889 2.162 1.693

RSM2 0.758 0.870 2.318 1.842 0.757 0.871 2.325 1.831

RSM3 0.774 0.880 2.240 1.770 0.779 0.883 2.220 1.741

RSM4 0.781 0.884 2.201 1.720 0.779 0.883 2.217 1.728

RSM5 0.745 0.863 2.376 1.898 0.752 0.868 2.349 1.865

RSM6 0.729 0.854 2.450 1.935 0.750 0.867 2.359 1.879

RSM7 0.738 0.859 2.411 1.896 0.742 0.862 2.397 1.879

FFNN1 0.832 0.912 1.928 1.504 0.827 0.909 1.964 1.534

FFNN2 0.795 0.891 2.133 1.692 0.791 0.890 2.156 1.715

FFNN3 0.801 0.895 2.098 1.670 0.803 0.896 2.092 1.664

FFNN4 0.787 0.888 2.174 1.708 0.789 0.889 2.167 1.706

FFNN5 0.779 0.883 2.212 1.764 0.780 0.883 2.212 1.763

FFNN6 0.750 0.866 2.355 1.875 0.760 0.872 2.313 1.838

FFNN7 0.763 0.873 2.292 1.787 0.778 0.882 2.223 1.750
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Table 7. Performances of different models in modeling TDG at USGS 454314120413701 station

Models Training Validation

NSE R RMSE MAE NSE R RMSE MAE

KIM1 0.742 0.872 2.472 1.900 0.725 0.869 2.610 2.038

KIM2 0.718 0.853 2.584 2.013 0.712 0.846 2.670 2.080

KIM3 0.728 0.862 2.538 1.971 0.721 0.864 2.629 2.063

KIM4 0.731 0.856 2.524 1.948 0.723 0.850 2.618 2.024

KIM5 0.691 0.836 2.708 2.120 0.688 0.839 2.780 2.165

KIM6 0.686 0.828 2.730 2.139 0.654 0.832 2.926 2.278

KIM7 0.679 0.824 2.759 2.136 0.682 0.826 2.806 2.172

RSM1 0.735 0.857 2.508 1.962 0.738 0.861 2.544 1.982

RSM2 0.695 0.833 2.690 2.112 0.706 0.841 2.699 2.107

RSM3 0.730 0.854 2.531 1.985 0.734 0.858 2.568 2.008

RSM4 0.703 0.838 2.655 2.082 0.706 0.842 2.697 2.102

RSM5 0.691 0.831 2.708 2.126 0.701 0.839 2.718 2.125

RSM6 0.659 0.812 2.843 2.260 0.680 0.826 2.812 2.221

RSM7 0.657 0.810 2.853 2.240 0.673 0.821 2.845 2.219

FFNN1 0.750 0.866 2.434 1.883 0.753 0.869 2.471 1.930

FFNN2 0.727 0.853 2.544 1.974 0.725 0.852 2.609 2.013

FFNN3 0.741 0.861 2.478 1.937 0.741 0.862 2.529 1.987

FFNN4 0.723 0.850 2.562 1.979 0.723 0.851 2.619 2.018

FFNN5 0.701 0.837 2.663 2.095 0.701 0.838 2.719 2.143

FFNN6 0.686 0.828 2.730 2.139 0.686 0.829 2.788 2.186

FFNN7 0.689 0.830 2.714 2.091 0.690 0.831 2.771 2.117

Table 8. Performances of different models in modeling TDG at USGS 454249120423500 station

Models Training Validation

NSE R RMSE MAE NSE R RMSE MAE

KIM1 0.927 0.964 1.781 1.371 0.923 0.962 1.780 1.357

KIM2 0.921 0.960 1.853 1.440 0.917 0.958 1.848 1.419

KIM3 0.920 0.961 1.856 1.409 0.918 0.960 1.834 1.402

KIM4 0.909 0.958 1.987 1.510 0.905 0.956 1.976 1.519

KIM5 0.906 0.957 2.020 1.612 0.902 0.952 2.008 1.612

KIM6 0.901 0.950 2.066 1.623 0.902 0.950 2.015 1.605

KIM7 0.910 0.954 1.974 1.531 0.906 0.956 1.967 1.556

RSM1 0.883 0.940 2.252 1.811 0.875 0.936 2.273 1.833

RSM2 0.878 0.937 2.294 1.859 0.862 0.932 2.387 1.964

RSM3 0.871 0.933 2.364 1.933 0.869 0.929 2.326 1.899

RSM4 0.870 0.933 2.376 1.918 0.860 0.928 2.401 1.973

RSM5 0.866 0.931 2.408 1.985 0.856 0.925 2.439 2.026

RSM6 0.851 0.923 2.539 2.098 0.843 0.918 2.547 2.154

RSM7 0.865 0.930 2.415 1.953 0.854 0.925 2.456 2.025

FFNN1 0.916 0.964 1.912 1.539 0.924 0.962 1.772 1.371

FFNN2 0.927 0.963 1.780 1.364 0.912 0.958 1.906 1.536

FFNN3 0.915 0.957 1.913 1.513 0.909 0.953 1.940 1.524

FFNN4 0.919 0.959 1.871 1.435 0.916 0.960 1.856 1.445

FFNN5 0.916 0.957 1.902 1.483 0.914 0.956 1.881 1.474

FFNN6 0.903 0.950 2.053 1.590 0.904 0.951 1.990 1.564

FFNN7 0.902 0.950 2.061 1.607 0.895 0.946 2.084 1.645
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tograms that the error variation of the KIM1 model
is less than that of the FFNN1 and RSM1 models.
The TDG prediction errors of the KIM1 are gen-
erally accumulated between � 3 and + 3 while those
of the FFNN1 and RSM1 are in the range [� 5, + 5].

Results at the USGS 453712121071200 station
are reported in Table 6. It can be seen from Table 6
that the FFNN method guaranteed high-accuracy
prediction results using the combination of four in-
put variables (with R = 0.909 and NSE = 0.827),
performed better than the KIM and RSM methods.
Taking into account the R and NSE values, RSM
models performed the worst compared to the KIM
and FFNN models. Further analysis of Table 6 for
the individual prediction results indicated that the
RMSE and MAE indices of the FFNN models are
the lowest, equal to 2.161% and 1.710%, in average.
The RMSE and MAE errors of KIM models were
the greatest in average (RMSE = 2.572%, MAE =
2.025%). The average values of the RMSE and
MAE of the RSM models are relatively high com-
pared to the FFNN models, reaching 2.290% and
1.802%, respectively. According to Table 6, the best
accuracy with high R and NSE was obtained using
the four variables as inputs (SFD, DIS, TE and BP)
and the KIM1, RSM1 and FFNN1 performed the
best compared to the other six models. FFNN1 de-
creased the RMSE and MAE of the KIM1 by
33.28% and 36.77%, respectively, and decreased the
RMSE and MAE of the RSM1 by 9.15% and 9.40%,
respectively. The accuracy of the models was ana-
lyzed according to different input combinations as
reported in Table 6. We mainly evaluated the
accuracy based on RMSE, MAE, R and NSE. It is
clear from Table 6 that using only three input vari-
ables, the best accuracy was obtained using KIM4,
RSM4 and FFNN3, taking into account the RMSE
and MAE values. All the RMSE and MAE values
range from 2.092% to 2.524%, and 1.664% to
2.067%, respectively. However, the values of R and
NSE for all models show marginal differences.
FFNN3 increased the R of the KIM3 by 0.2%, and
there is no improvement in the NSE value, and
FFNN3 increased the R and NSE of the KIM3 by
2.4% and 1.3%, respectively. Using only two input
variables, the FFNN5 had the highest estimation
accuracy and its R and NSE values are 0.883 and
0.780, and RMSE and MAE values are 2.212% and
1.763%, respectively. The KIM5 model also main-
tained higher estimation accuracy with the R and
NSE values of 0.884 and 0.745 and the RMSE and
MAE values of 2.447% and 1.902%, respectively. It

can be also concluded from Table 6 that using the
three models, the estimation accuracy showed a
certain increase with the increase in the input vari-
ables from two to four. Figure 4 shows the scatter-
plot of measured vs. calculated values of TDG, the
frequency distribution histogram of the predicting
errors and the boxplots for the USGS
453712121071200 station. As clearly seen from the
scatterplots, FFNN1 model has the scattered TDG
estimates and its error fit line is closer to the ideal
line compared to the RSM1 and KIM1. As clearly
observed from the scatterplots, boxplots and error
histograms, KIM1 considerably overestimates TDG
for this station and FFNN1 has the least standard
deviation or variance in error distribution.

Accuracies of the proposed models at the
USGS 454314120413701 station are summarized in
Table 7. It shows that the KIM1, RSM1 and FFNN1
are the best models and provide relatively similar
accuracy with marginal difference, regarding the
four statistical indices, and the best accuracy was
obtained when the four input variables were used
together. The FFNN1 had the best accuracy with the
R and NSE of 0.869 and 0.753, respectively. The
RSM1 has the second best accuracy. The KIM1
provided the lowest accuracy and explained TDG
less than the FFNN1 and RSM1. The FFNN1 model
reduces daily RMSE from 2.610% to 2.471%
(compared to the KIM1), and from 2.544% to
2.471% (compared to the RSM1), indicating that the
FFNN1 predicted the TDG better than the RSM1
and KIM1 models. When using only three input
variables, KIM3, RSM3 and FFNN3 are the best
models and perform slightly worse than the KIM1,
RSM1 and FFNN1, with marginal decrease in per-
formances. For example, it was observed that the
RMSE and MAE of the KIM3 were increased to
2.629% and 2.063%, respectively, which are negli-
gible when compared to the values obtained using
KIM1 (RMSE = 2.610%, MAE = 2.038%), while
the RSM3 approach gave RMSE and MAE of
2.568% and 2.008%, respectively. Finally, the
FFNN3 approach provided RMSE and MAE of
2.529% and 1.987%, respectively. This shows that
inclusion of water TE as input variable slightly im-
proves the accuracy of the models. Analysis of the
models having only two input variables reveals that,
in general, TDG concentration predicted using only
two input variables agrees well with measured data
and three models (KIM5, RSM5 and FFNN5) pro-
vided relatively high accuracy; although there is a
clear discrepancy in TDG estimation accuracy be-
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tween the models with three and four inputs and
those using only two input variables. Nevertheless,
the most striking result is that the three models
(KIM5, RSM5 and FFNN5) provided the same
accuracy with very marginal differences. The R and
NSE ranged from 0.688 to 0.701 and from 0.838 to
0.839, respectively. Figure 5 shows the scatterplot of
measured vs. calculated values of TDG, the fre-
quency distribution histogram of the predicting er-
rors and the boxplots for the USGS
454314120413701 station. From the scatterplots, it is

clear that the FFNN1 and KIM1 estimates are sim-
ilar to each other and they are less scattered than the
RSM1. Boxplots also provided that the both FFNN1
and KIM1 have similar estimates and distributions.

Accuracies of the models at the USGS
454249120423500 station are summarized in Table 8.
In summary, the KIM models provided relatively
similar accuracy compared to FFNN models and
they both have better accuracies compared to RSM
models. The statistical results of the KIM models
during the validation phase showed that TDG was

Fig. 3. A scatterplot (left), boxplot (center) and frequency distribution histogram of the predicting errors (right) for USGS

14105700 station during the validation phase.
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estimated with an average RMSE and MAE equal
to 1.918% and 1.500%, respectively. R and NSE,
however, were from 0.950 to 0.962 and from 0.902 to
0.923, respectively, considerably higher than the
RSM models. Further comparisons of the accuracy
obtained with the three models demonstrated that
the best accuracy was obtained using the models
having the four input variables (KIM1, FFNN1 and
RSM1). During the validation phase, KIM1 and
FFNN1 provided the same accuracy, and they are
significantly better than the RSM1 model. KIM1

decreased the RMSE and MAE of the RSM1 by
21.67% and 25.97%, respectively. The KIM3 model
using SFD, DIS, BP as input was also able to suc-
cessfully predict TDG, with a good accuracy during
the validation phase with R of 0.960 and NSE of
0.918 (Table 8). The FFNN4 performed worse well
compared to the KIM3 with R of 0.960 and NSE of
0.916. The KIM3 slightly decreased the RMSE and
MAE of the FFNN4 by 1.18% and 2.98, respectively.
The RSM3 was worse than the KIM3 and FFNN4
with R of 0.929 and NSE of 0.869. However, there

Fig. 4. A scatterplot (left), boxplot (center) and frequency distribution histogram of the predicting errors (right) for USGS

453712121071200 station during the validation phase.
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are much larger differences in the RMSE and MAE
between the RSM3 and the KIM3. The KIM3 de-
creased the RMSE and MAE of the RSM3 by
21.15% and 26.17%, respectively. Results obtained
by the models having only two input variables
demonstrated that the KIM7 and FFNN5 performed
well and the KIM7 was slightly worse than the
FFNN5, and the RSM5 was less accurate compared
to the KIM7 and FFNN5. Figure 6 shows the scat-
terplot of measured vs. calculated values of TDG,
the frequency distribution histogram of the predict-

ing errors and the boxplots for the USGS
454249120423500 station. Taylor diagram showing
the performance of different FFNN1, KIM1 and
RSM1 models in terms of correlation coefficient and
standard deviation between measured and calcu-
lated TDG (%) during the validation phase for the
four stations is shown in Figure 7. It is obvious from
the scatterplots that the fit line equation of the
KIM1 is closer to the ideal line (450 line) compared
to FFNN1 and RSM1. From Figure 6, it is observed
that the KIM1 model has the closest standard devi-

Fig. 5. A scatterplot (left), boxplot (center) and frequency distribution histogram of the predicting errors (right) for USGS

454249120423500 station during the validation phase.
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ation to the observed TDG in three stations. In this
station, however, the RSM1 is better than the other
two models. In two stations (USGS
454249120423500 and USGS 454314120413701), the
FFNN1 and KIM1 indicators overlap.

Finally, for practical application, our proposed
models have their own weaknesses and advantages
and they must be properly applied. Firstly, the
models are only appropriate when input variables
are available simultaneously at the same station.
Secondly, the models can provide rapid and robust

estimation of TDG if correctly calibrated. Thirdly
and finally, we believe that there is a need for
alternative modeling approaches that can be more
readily implementable for modeling nonlinear
problems with high-cross-correlation input data.

CONCLUSION

We presented and compared the ability of new
modeling tools (KIM, RSM and FFNN) to predict

Fig. 6. A scatterplot (left), boxplot (center) and frequency distribution histogram of the predicting errors (right) for USGS

454314120413701 station during the validation phase.
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total dissolved gas (TDG) concentration using water
temperature, barometric pressure, spill from dam
and discharge data as input variables. The proposed
models were trained (calibrated) over a dataset
collected at four USGS stations located in Columbia
River, USA. The validation of the proposed models
over the four sites and using data measured on daily
scale revealed a remarkable estimation accuracy of
the KIM models as compared to RSM models and
relatively similar accuracy compared to the FFNN.
For example, direct comparison between the models

demonstrated that at USGS 14105700 station, KIM1
model was more accurate (R = 0.973 and RMSE =
1.462) than RSM1 (R = 0.952 and RMSE = 1.848)
and FFNN1 (R = 0.962 and RMSE = 1.643). The
accuracy of the proposed models is limited by the
available dataset. Important effort should therefore
be undertaken to improve the accuracy of the
models. To draw more reliable conclusions about
the proposed models, it is mandatory to extend the
present investigations by using more data from more
sites.

Fig. 7. Taylor diagram showing the performance of different FFNN1, KIM1 and RSM1 models in terms of correlation

coefficient and standard deviation between measured and calculated TDG (%) during the validation phase for the four

stations.
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