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Flyrock is one of the most important environmental issues in mine blasting, which can affect
equipment, people and could cause fatal accidents. Therefore, minimization of this envi-
ronmental issue of blasting must be considered as the ultimate objective of many rock
removal projects. This paper describes a new minimization procedure of flyrock using
intelligent approaches, i.e., artificial neural network (ANN) and particle swarm optimization
(PSO) algorithms. The most effective factors of flyrock were used as model inputs while the
output of the system was set as flyrock distance. In the initial stage, an ANN model was
constructed and proposed with high degree of accuracy. Then, two different strategies
according to ideal and engineering condition designs were considered and implemented
using PSO algorithm. The two main parameters of PSO algorithm for optimal design were
obtained as 50 for number of particle and 1000 for number of iteration. Flyrock values were
reduced in ideal condition to 34 m; while in engineering condition, this value was reduced to
109 m. In addition, an appropriate blasting pattern was proposed. It can be concluded that
using the proposed techniques and patterns, flyrock risks in the studied mine can be sig-
nificantly minimized and controlled.
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INTRODUCTION

In mining and civil engineering projects, drilling
and blasting are used for rock mass removal. Previ-
ous researches mentioned that over 85% of explo-
sion energy is wasted in the ground and could have
several negative environmental impacts on sur-
rounding areas such as flyrock, back-break, ground
and air vibrations (Singh and Singh 2005; Khandel-
wal and Singh 2009; Verma and Singh 2011;
Faradonbeh et al. 2016a; Hasanipanah et al. 2016;
Nguyen and Bui 2018). One of the most dangerous
and harmful issues of blasting is flyrock that can
affect equipment and people and could cause fatal
accidents (Hustrulid 1999; Raina et al. 2007; Moha-
mad et al. 2013).
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Flyrock is the sudden flying or moving pieces of
rocks caused by blasting energy (Roth 1979; Arma-
ghani et al. 2016a; Faradonbeh et al. 2016b). The
shapes and sizes of flown rocks can vary over a large
range. Flyrock has a direct relation with hole
diameter, which means that an increase in blast-hole
diameter can cause farther flyrock distance (Lund-
borg et al. 1975). Figure 1 shows the most important
flyrock generation mechanisms namely face burst-
ing, cratering and rifling (Bhandari 1997; Kecojevic
and Radomsky 2005; Khandelwal and Monjezi 2013;
Monjezi et al. 2013; Raina et al. 2014; Koopialipoor
et al. 2018a). Little and Blair (Little and Blair 2010)
suggested that inadequate burden could cause face
bursting. Smaller ratio of stemming to hole diameter
and not suitable stemming material can cause cra-
tering and rifling (Lundborg et al. 1975; Ghasemi
et al. 2012; Armaghani et al. 2015). There are two
major categories of the most effective factors of
flyrock distance, i.e., controllable and uncontrol-
lable. Controllable parameters are mostly blasting
pattern factors such as burden, spacing, stemming,
powder factor, maximum charge per delay, total
charge, blast-hole diameter, blast-hole depth and
sub-drilling. On the other hand, poor and indefinite
geological conditions in rock mass are the key
uncontrollable parameters (Armaghani et al. 2016b).
Controllable parameters can be designed by blasting
engineers, but uncontrollable parameters are con-
sidered to be natural (Bajpayee et al. 2004; Khan-
delwal and Monjezi 2013; Zhou et al. 2019).

Since the late 1970s, empirical models/equa-
tions have been used to predict and evaluate flyrock
induced by blasting (Roth 1979; Little and Blair
2010). Previous studies have found that a compli-
cated condition is associated with flyrock occurrence
(Khandelwal and Monjezi 2013; Trivedi et al. 2014).
The prediction performance of the empirical equa-
tions is not suitable according to several researchers
(Armaghani et al. 2014). This is due to the fact that
the empirical equations use few effective parameters
of flyrock. In addition, empirical equations consider
only simple linear and nonlinear relationships for
prediction of flyrock. However, accurate estimation
of flyrock is necessary to determine blast safety area
(Rezaei et al. 2011).

Many studies highlighted the successful use of
soft computing techniques to solve mining and
geotechnical problems as well as flyrock prediction
(Shi et al. 2012; Zhou et al. 2016; Armaghani et al.
2017; Wang et al. 2018, 2019; Koopialipoor et al.
2019a; Bui et al. 2019; Nguyen et al. 2019a, b).
Monjezi et al. (2013) collected datasets from Sungun
copper mine in Iran and used those data in artificial
neural network (ANN) and statistical models to
estimate flyrock. Their study showed better perfor-
mance in terms of accuracy of ANN compared to
statistical models. In another research, ANN and
fuzzy interface system (FIS) were developed to
predict flyrock in Gol-E-Gohar iron mine, Iran
(Ghasemi et al. 2014). According to the outputs
obtained by this study, FIS performed better than

Figure 1. Three mechanisms for creation of flyrock.
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ANNmodel. Adaptive neuro-fuzzy inference system
(ANFIS) and ANN were applied to estimate flyrock
in a research by Trivedi et al. (2015). The results
showed that ANFIS is able to predict flyrock more
accurately than ANN. Faradonbeh et al. (2016c)
investigated blasting operations at six granite mines
in Malaysia. They developed genetic programming
(GP) and nonlinear multiple regression (NLMR) to
estimate flyrock. They concluded that GP can per-
form better in predicting flyrock compared to
NLMR. Regression tree (RT), as one of the most
powerful methods in solving geotechnical problems,
has been utilized by Razi and Athappilly (2005) and
Tiryaki (2008) to predict flyrock induced by blasting.
They successfully showed that their developed RT is
able to provide better prediction performance in
comparison with ANN and statistical techniques.

An effective method of computation that can
solve optimization problems involves use of meta-
heuristic algorithms (MAs). MAs are inspired either
by nature (Gandomi and Alavi 2012) or by art
(Gandomi 2014). MAs use a set of pre-determined
rules and a �candidate solution� and then carry out a
series of iterative improvement calculations to arrive
at the optimum solution. These algorithms do not
start with any �initial solution� but can arrive at a
�candidate solution� by searching through a popula-
tion of solutions. However, these algorithms are
stochastic in nature; hence, their final solution may
not be a globally optimum solution. In order to
overcome this limitation, several MAs are applied to
generate an algorithm that is truly robust and better
than other techniques. MAs can be grouped into two
types, namely (Gandomi et al. 2013): (1) evolution-
ary and (2) swarm intelligence, SI.

Particle swarm optimization (PSO) is consid-
ered as one of the SI techniques that has been widely
developed in solving engineering problems (Talata-
hari et al. 2013; Alavi Nezhad Khalil Abad et al.
2016; Hajihassani et al. 2017; Koopialipoor et al.
2018b). In previous related studies, few optimization
tasks have been conducted to solve flyrock predic-
tion and design blasting pattern. Hence, in this re-
search, the environmental risk of flyrock has been
assessed through a combination of ANN (for pre-
diction) and PSO (for optimization). Then, blasting
pattern parameters were designed using PSO to
minimize flyrock.

In the following sections, the background of
ANN and the PSO algorithms is described in detail.
Then, data collection and the most important
parameters on flyrock are explained. Afterward,

prediction and optimization phases are implemented
to predict and optimize flyrock by ANN and PSO
techniques, respectively. Lastly, using PSO model,
the plans are developed to design the appropriate
blast pattern parameters to reduce flyrock.

APPLIED METHODS

Artificial Neural Network (ANN)

ANN simulates the working methodology and
principles of the human nervous system. What
makes the ANN unique is that it is able to learn
from patterns to find an approximate relationship
between data and output values (Zurada 1992). In a
classic ANN system, artificial neurons establish
parallel processing of information just as in human
brains. The modeling of neural networks was pio-
neered by McCulloch and Pitts (1943). In this model,
the artificial neuron behavior is represented by a
neural net area using binary threshold logic, called
the binary decision unit. A specific node in ANN
captures incoming signals and creates a weighted
aggregate, which is passed through an activation
function. This activation function then processes the
signals to generate an estimated output. ANNs are
structured in parallel systems, consisting of multiple
layers of neurons or nodes. Each layer of neurons
has an impact on the network behavior, depending
on their pattern of connection. ANN networks
should be trained, and during training, outputs from
the network are repeatedly analyzed. In each itera-
tion, the architecture of every output layer is mod-
ified with changes in the connection weights by
minimizing the system error. The system error can
be obtained as:

E ¼ 1

2

Xp

i¼1

ðtðiÞ � yðiÞÞ2 ð1Þ

where, t is the target value, y is the actual value and
p is the number of training patterns.

The most popular method of learning in multi-
layer feed-forward networks is the gradient-based
learning principle. It performs learning tasks using
back-propagation (BP) methodology (Simpson
1990). The signals move through the network in two
stages: forward and backward. In the forward stage,
signals are passed through the network in the for-
ward direction toward the output layer, and system
error is determined in each output layer node. Then,
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the errors encountered in every stage are fed back
into the network in the reverse direction, modifying
weights and biases created in the previous stage
(Mohandes 2012; Koopialipoor et al. 2017, 2018c,
2019b). Accordingly, the architecture of ANN is
structured to operate two distinct functions: feed-
forward and feedback. The multilayer perceptron
(MLP) is a widely used variation of the multilayer
feed-forward network. In MLP, the input signals are
exchanged and processed in units having successive
layers weights that link by activation functions
(Haykin 1999; Priddy and Keller 2005; Ahmadi and
Shadizadeh 2012; Koopialipoor et al. 2019c; Liao
et al. 2019; Zhao et al. 2019). Each activation func-
tion is carried out by a set of hidden neurons. The
input of each layer is the output obtained from the
previous layer. The activation function selected for
each problem is based on the complexity of the
problem. For example, to solve nonlinear problems,
sigmoid transfer functions such as log-sigmoid or
tangent sigmoid are considered as the best ones.
Incoming signals (xi) from one layer are multiplied
by a weight coefficient (wij) to create weighted input
signals for the next layer, which are fed into the
hidden neurons. This process is reiterated at every
layer to arrive at the total input of the system. The
overall net input for any hidden or output neuron is
obtained using the following equation:

nethj ¼
Xn

i¼1

ðwij:xi þ bjÞ ð2Þ

All neuron outputs are aggregated, and the to-
tal net input is expressed as a �squashing function�
such as the sigmoid function. In other words, the
output from all �hidden� output neurons is expressed
as:

yj ¼ 1=ð1þ expf�nethjgÞ ð3Þ

Particle Swarm Optimization (PSO)

The credit for developing the PSO goes to
Kennedy and Eberhart (1995). The idea came out of
their observation of the movements of birds in a
flock. Basically, it was a simplified map of their
movements or choreography, simulating the social
system of birds in a flock. The concept of �swarm�
was first defined by Millonas (1993), who explained
the principles and models of SI. The term �particle�
came out of the science of mechanics, due to the fact

that the position, displacement and velocity can be
applied to the movement of different sizes of the
swarms. Kennedy and Eberhart (1995) artificially
simulated the social behavior of birds in a flock, as
they flew around (search space) and reached un-
known destinations (fitness function), looking for
food sources. All problem–solutions in PSO are akin
to a flock of birds, in which each bird is a �particle.�
Each bird (particle) evolves in terms of its behav-
ior—individually and together with others—and co-
ordinates with other birds to reach their desired
destinations (Shi and Eberhart 1998). To achieve
this, a record of each bird is made in terms of its co-
ordinates as it navigates the problem. The algorithm
also simulates the communication between birds,
whereby they identify the bird whose position is the
best. The birds co-ordinate their movements in such
a way that each bird accelerates to the best possible
position. The best global position is defined as the
situation in which every bird has occupied its best
position. In this process, every bird would have ex-
plored the new search space in every location. This
process is carried out several times until one bird
reaches the best location (called the best bird). It
must be noted that this is not only intelligent
behavior on the part of each bird, but also a social
interaction between them. The process results in
evolutionary learning for each bird—both from their
own efforts (local search) and from the efforts of the
other birds in the flock (global search). In a similar
manner, PSO uses evolutionary computation tech-
niques, namely (1) assigning initial values to gener-
ate a set of random solutions, (2) optimization of
solutions through updating outputs generated and
(3) using specific growth strategies to evolve parti-
cles in the problem space. For any given problem, in
the initialization stage, a group of randomly selected
particles are assigned random solutions. The ith
particle is assigned a specific location in the s-di-
mensional space. In this, s represents the number of
variables in a given problem. Thus, in any opti-
mization problem, each particle location, repre-
sented by the value of the s variable, is one possible
solution.

As stated earlier, concurrently with this process,
every particle i is correlated with vectors of three
types:

� present location as:

Xi ¼ ðxi1; xi2; . . . ; xisÞt ð4Þ

628 J. Zhou et al.



� the improved location is arrived until the
present moment:

Pi ¼ ðpi1; pi2; . . . ; pisÞt ð5Þ
� and the velocity of particle, which facilitates

to authorize a fresh location:

Vi ¼ ðvi1; vi2; . . . ; visÞt ð6Þ

The best fit of objective function is achieved
through each cycle (iteration) of the particle. The
computation movement of the each bird�s progress is
determined by crucial location of the particle. The
particle updates are brought, and goals are reached
as stated by the subsequent equations. Updates on
space of the individual solution are carried out by:

newXi ¼ currentXi þ newVi ð7Þ

where the new velocity, new Vi, is given by

newVi ¼ x:currentVi þ c1:randðÞ:ðPi � currentXiÞ
þ c2:randðÞ:ðPg � currentXiÞ

ð8Þ

where Pg is the best position ever attained by any
particle during the flight, c1 and c2 are acceleration
constants and represent the weighting of the
stochastic acceleration terms that pull each particle
simultaneously toward its best position and the best
global position. Learning rates or factors are an
alternative name of these constants. rand() is a
function developing consistent pseudo-random
numbers between 0 and 1. It should be noted that
rand() numbers in Eq. 8 are individually developed.
Shi and Eberhart (1998) suggested x as an inertia
weight, which governs the impact of the velocities
history into the new velocity. It can be appropriately
fitted during the computation process. A balance
between local and global search criteria is achieved
through this operator and usually decreases with
time. Thus, initially global search is given prefer-
ence, but this trend is moved toward local search as
the solution process evolves. An optimal solution is
obtained through less iteration on average. Two
sociometric principles are supported by the use of
PSO. Movement of particles takes place through a
special area under examination. These particles have
significant impact due to the leading particle in the
community and establish the most excellent special
solution at any time (Voss 2003). The second term in

Eq. 8 shows intelligence of individual thinking of a
particle that is performed by comparing its current
position, Xi, with the best position it has ever had,
Pi. Particles� velocities on each dimension are re-
stricted to minimum and maximum velocities:

Xmin � Vi � Vmax ð9Þ
This velocity is evidently limited to either Vmin

or Vmax, if the sum of accelerations results in the
velocity on a specific dimension to fall out of the
accepted range. These are very critical parameters.
If Vmax is too high, particles might fly through good
solutions. On the other hand, if Vmax is too small,
particles may not explore adequately with satisfac-
tion beyond locally good regions. In fact, in this case,
they could easily be caught in a trap in local optima
and are not able to move far enough to reach a
better position in the problem space. The algorithm
starts with randomly generated swarms; then, it
classifies the particles according to the fitness values.
Afterward, it updates the number of particles to find
an optimum solution in search space. The next
pseudo-code of the algorithm is given through the
following simplified representation:

� Create arbitrary community of particles N
(provision of solution which is hydraulic in
nature).

� Choose excellent particle as number 1.
� Repeat to adjacent block until end condition

is satisfied:
– Decide the equivalent amount of inertia

dimension x;
– Start cyclic loop particle number 1 to

many particles.

� Begin:
� Compute value of particle i using fitness

function.
� If more excellent value is obtained for parti-

cle i as compared to excellent particle based
on the history, then fix particle i as new
excellent particle.

� Compute revised particle�s velocity based on
Eq. 6.

� Bring updated location of particle based on
Eq. 5.

� End
– Present the solution provided by the

excellent particle.
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CASE STUDY

The data of this research were collected from
the Ulu Tiram quarry that is located in Johor area,
Malaysia. The latitude of the quarry is 1�36¢41¢¢N; its
longitude is 103�49¢20¢¢E. Figure 2 shows a view of
the studied site (Ulu Tiram quarry) in Johor area,
Malaysia. Because of aggregate production ranging
from 15,000 to 35,000 tons per month, blasting
operations in the quarry are carried out almost every
day. The rock in the study area is granite with rock
strength of 50-90 MPa. In addition, rock quality
designation (RQD) values were measured in the
range of 25–60%. The main explosive used in the
blasting is ammonium nitrate and fuel oil (ANFO).
An accurate estimation of flyrock distance is a crit-
ical issue because of short distance between the
blasting site and the residential area. Various
investigations have been carried out, and various
mine conditions have been evaluated during the
operations. In this research, various parameters have
been selected and considered for the design of the
models. The research also identifies and selects the
most important parameters that are mentioned in
previous studies (Monjezi et al. 2012; Marto et al.
2014; Armaghani et al. 2016a; Koopialipoor et al.
2018c).

To solve the flyrock prediction problem, values
of many effective parameters of flyrock like blast-
hole depth (HD), maximum charge per delay (MC),
burden (B), spacing (S), stemming (ST) and powder
factor (PF) were measured for 65 blasting events.
During data collection, two cameras were installed
to record the operations where explosion parts were
colored and marked to make their detection easy
after explosion and rock particles throw. Then, the
maximum horizontal distance between the free face
and landed fragments was measured using GPS and
considered as flyrock distance in our database.

It should be noted that a range of 4-6 cm was
observed for the flown rocks. Table 1 shows the
details of input and output parameters and other
statistical information (maximum, minimum and
average). Microsoft Excel 2016 was used for
obtaining this statistical information. Additionally,
the relationship between the flyrock and six input
parameters is shown in the correlation matrix plot
(Fig. 3), from which it can be observed the pairwise
relationship between parameters with corresponding
correlation coefficients for each indicator. The con-
clusion that some pairs of parameters have relatively
satisfactory correlations is obtained.

Figure 2. Ulu Tiram quarry site, Johor, Malaysia.
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PREDICTION OF FLYROCK

Kanellopoulos and Wilkinson (1997) and Hush
(1989) mentioned that ANN architecture plays an
important role on ANN results. Hence, optimum

design of ANN architecture is a critical task for
developing a suitable ANN model. Architecture of
ANN would depend on the total number of hidden
layer(s) and the number of hidden neurons in hidden
layer(s). Based on many studies, it has been estab-

Table 1. Statistical information of data used in this study

Variable Unit Min Max Average

Blast-hole length (HD) m 10 23 16.71

Maximum charge used per delay (MC) kg 93.51 245.2 173.86

Burden (B) m 1.5 3.4 2.46

Spacing (S) m 2.2 4.1 3.38

Stemming (ST) m 1.9 3.7 2.77

Powder factor (PF) kg/m3 0.34 1.08 0.72

Flyrock m 71.68 328 238.58

Figure 3. Correlation matrix plot of the database.
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lished that any nonlinear function can be solved
using one hidden layer (Hornik et al. 1989; Koopi-
alipoor et al. 2019d). Therefore, a hidden layer is
used in this study to solve flyrock prediction prob-
lem. Table 2 shows several suggested equations in
the literature for calculating hidden neuron in a
hidden layer. The ANN training function in this
study was the Levenberg–Marquardt as highlighted
by several scholars (Armaghani et al. 2019; Koopi-
alipoor et al. 2019b; Koopialipoor et al. 2019e).
According to the equations presented in Table 2, a
range of 2–20 should be considered for possible
number of hidden neurons with six model inputs and
one output. Then, many ANN models, created for
selecting the optimum number of hidden neurons
based on coefficient of determination (R2), are pre-
sented in Table 3. It is worth mentioning that for

each hidden neuron, five ANN models were run and
their average results are shown in the last column of
Table 3. In addition, Figure 4 shows the average R2

results of different ANN models with various neu-
rons. According to the obtained results of both
training and testing datasets, model No. 7 with 14
nodes (average R2 values of 0.900 and 0.906 for
training and testing, respectively) gave more accu-
rate performance as compared to other models.
Therefore, 6 9 14 9 1 was chosen as optimum ANN
architecture for flyrock estimation. In the following
section, PSO technique was applied on the selected
ANN model (model No. 7) for minimizing flyrock
induced by blasting.

OPTIMIZATION OF FLYROCK

After obtaining the relationship between input
data and flyrock, PSO algorithm was used to mini-
mize flyrock. As mentioned in the previous section,
the best ANN model in terms of prediction perfor-
mance was selected for PSO. PSO needs some initial
requirements to increase efficiency and accuracy. As
discussed earlier, number of iteration, number of
particle, c1 and c2 and x can influence on the per-
formance of PSO. Given that these parameters have
different values for optimal conditions in each
problem, the optimal values should be determined
using recommendations of previous studies and the
method of trial-and-error. The best intervals of these
parameters are number of iteration 50–1000, num-

Table 2. Suggested equations for number of hidden neurons in a

hidden layer

Heuristic References

£ 2 9 Ni + 1 Hecht-Nielsen (1987)

(Ni + N0)/2 Ripley (1993)

2þN0�Niþ0:5N0� N2
0
þNið Þ�3

NiþN0
Paola (1994)

2Ni/3 Wang (1994)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni �N0

p
Masters (1993)

2Ni Kaastra and Boyd (1996),

Kanellopoulos

and Wilkinson (1997)

Table 3. Training and testing results of ANN models for predicting flyrock

Model no. Neuron in hidden layer Network result

R2

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Average

TR TS TR TS TR TS TR TS TR TS TR TS

1 2 0.597 0.775 0.855 0.376 0.364 0.725 0.825 0.687 0.789 0.576 0.686 0.628

2 4 0.873 0.383 0.590 0.621 0.553 0.515 0.793 0.849 0.367 0.526 0.635 0.579

3 6 0.928 0.831 0.834 0.809 0.906 0.812 0.858 0.818 0.874 0.692 0.880 0.792

4 8 0.912 0.820 0.898 0.497 0.647 0.614 0.843 0.563 0.626 0.581 0.785 0.615

5 10 0.814 0.921 0.785 0.863 0.871 0.728 0.858 0.818 0.778 0.801 0.821 0.826

6 12 0.914 0.757 0.799 0.872 0.902 0.884 0.856 0.829 0.901 0.831 0.874 0.835

7 14 0.929 0.897 0.908 0.894 0.869 0.917 0.889 0.901 0.906 0.921 0.900 0.906

8 16 0.843 0.751 0.787 0.680 0.785 0.804 0.838 0.868 0.862 0.794 0.823 0.779

9 18 0.913 0.779 0.832 0.806 0.798 0.878 0.916 0.868 0.852 0.899 0.849 0.846

10 20 0.840 0.822 0.880 0.825 0.844 0.808 0.876 0.846 0.858 0.789 0.860 0.818

TR training, TS testing
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ber of particles 5–400, c1 and c2 coefficients 1–3 and
x 0.25–1, according to previous researches (Mo-
hamad et al. 2016; Koopialipoor et al. 2018b; Ar-
maghani et al. 2019). Therefore, different models
were constructed to gain the best possible parame-
ters (Table 4). According to this table, values of
1000, 50, 1.75, 2 and 0.75 were obtained for number
of iteration, number of particle, c1, c2 and x,
respectively, of the best PSO model.

Minimization of Flyrock

The optimum blasting pattern parameters can
be obtained by developing a PSO model. In fact,
PSO, by changing its most important parameters,
seeks a pattern to minimize flyrock distance. PSO
was allowed to change blasting pattern parameters
within their minimum and maximum ranges in order
to get the optimum results. The results of the best
PSO model in minimizing flyrock distance are pre-
sented in Figure 5. The best PSO model was ob-
tained based on minimization of the best cost (or
flyrock). In addition, Figure 6 shows a comparison of
real, minimum, maximum, mean and optimized
values of flyrock. The optimum value of flyrock was

obtained as 34 m. This value represents an appro-
priate improvement in the different conditions of
blasting pattern parameters. While the average fly-
rock value is closer to their maximum value, it can
be concluded that the old design of the blast pattern
parameters was not optimum. Therefore, there is a
need to find the most appropriate blasting pattern
parameters. The real flyrock value presented in
Figure 6 indicates high risk level of this environ-
mental issue in the studied site. Hence, with the new
optimal design, it is possible to reduce the risk level
of flyrock induced by blasting.

The suggested blasting pattern parameters to
minimize flyrock distance are presented in Table 5.

Figure 4. Average R2 results of different ANN models for training and testing datasets.

Table 4. Values of the important parameters of PSO in flyrock

minimization

Parameter Value

Number of iteration 1000

Number of particle 50

c1 1.75

c2 2

x 0.75
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These parameters were obtained by PSO for an
optimum value of flyrock equal to 34 m. In fact, PSO
found the best parameters in the search space based
on the developed ANN model (model No. 7). The
system continued to search until reaching the de-
sired conditions. When the optimal value is ob-
tained, the values of the input parameters are

recorded (Table 5). The values of 12.47 m, 4.06 m,
1.79 m, 3.64 m, 0.57 kg/m3 and 102.22 kg were ob-
tained as optimum for the parameters HD, S, B, ST,
PF and MC, respectively. As mentioned before, it is
assumed that different variables can be changed
within the range of minimum and maximum values
in the entire mine. The proposed PSO model can be

Figure 5. Minimization of flyrock by developing PSO under ideal condition.

Figure 6. Different values of flyrock distance under ideal conditions.
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applied with caution if the input parameters are in
the range of the mentioned inputs in the present
study.

Engineering Design of Flyrock

Since the design of blasting pattern parameters
depends on different environmental, geological
conditions and equipment used in the mine, engi-

Table 5. Optimum values of blasting pattern parameters obtained

by PSO under ideal conditions

Parameter Unit Value

HD m 12.47

S m 4.06

B m 1.79

ST m 3.64

PF kg/m3 0.57

MC kg 102.22

Figure 7. Minimization of flyrock by applying PSO under engineering design conditions.

Figure 8. Different values of flyrock under engineering design conditions.
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neering constraints were applied in this step. In this
study, using the blasting design data, the parameters
HD, S and B were assumed constant. These
parameters were designed in initial patterns before
conducting blasting operations. The values of these
parameters were determined according to common
conditions considering average values of the blast
patterns. It should be noted that these parameters
were limited due to the used drilling machine�s fac-
tors and the distance between each hole. Therefore,
after this step, other parameters (ST, PF and MC)
can be changed by the designer in order to have the
lowest amount of flyrock.

Accordingly, the PSO algorithm was applied to
obtain the best conditions for minimization of fly-
rock. Figure 7 presents the best optimization results
for flyrock. In addition, Figure 8 shows different

results of flyrock based on engineering design. As it
can be seen, the value of flyrock in the mine under
engineering conditions is about 109 m. Considering
the application of PSO, flyrock distance (risk level)
can be reduced significantly. This indicates the
importance of carefully designing blast patterns to
minimize flyrock. The suggested blasting pattern
parameters to minimize flyrock distance (in engi-
neering design condition) are presented in Table 6.
To obtain a flyrock distance of 109 m, values of
16.71 m, 3.38 m, 2.45 m, 3.01 m, 0.38 kg/m3 and
157.69 kg were used as optimum values for HD, S,
B, ST, PF and MC, respectively.

Finally, the different optimization results of
flyrock together with mean values of flyrock were
compared as shown in Figure 9. According to this
figure, 35 flyrock values are higher than the average
value, indicating inappropriate pattern design and
high-risk conditions in the mine. If blasting pattern
parameters are designed based on engineering con-
straints in the studied site, a significant improvement
will be observed. There are two acceptable flyrock
values less than flyrock value obtained based on
engineering constraints. As a result, when applying
an appropriate optimization system, the blast pat-
terns can be designed for high optimization perfor-
mance to reduce risk associated with flyrock as the
main environmental issues of blasting. It is worth

Table 6. Optimum values of blasting pattern parameters obtained

by PSO under engineering design conditions

Parameter Unit Value

HD m 16.71

S m 3.38

B m 2.45

ST m 3.01

PF kg/m3 0.38

MC kg 157.69

Figure 9. Sorted occurrences of flyrock for comparison purposes.
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stating that all flyrock values are less that the value
obtained by PSO under ideal conditions.

CONCLUSIONS

In prediction phase of this study, an ANN
model with architecture of 6 9 14 9 1 and average
R2 values of 0.900 and 0.906 for training and testing,
respectively, was developed to predict flyrock and
then it was used in optimization phase. The results of
the engineering design and ideal conditions showed
that the value of flyrock can be reduced to 109 m
and 34 m, respectively. For these two conditions, the
matched blasting pattern parameters were also
introduced. The values of (12.47 m, 4.06 m, 1.79 m,
3.64 m, 0.57 kg/m3 and 102.22 kg) and (16.71 m,
3.38 m, 2.45 m, 3.01 m, 0.38 kg/m3 and 157.69 kg)
were obtained as optimum for the parameters HD,
S, B, ST, PF and MC, respectively, for engineering
design and ideal conditions. The results indicated
that the measured flyrock values in blasting site have
a high potential of risk almost for all blasting oper-
ations. The developed models in this study are able
to minimize/control risk associated with flyrock, and
they can be utilized in the similar condition with
caution.
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