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Procedures are discussed to construct target maps ranking the likelihood of future discov-
eries: for instance, of gold occurrences, knowing location and spatial context, of a set of
genetically related gold vein deposits. A favorability modeling process is iterated with a
subset of the known occurrences, i.e., the locations of the deposits. The resulting prediction
patterns are cross-validated with the distribution of the left-out occurrences, considered as
representing the future discoveries. The target map originates from integration of all pre-
diction patterns from the iterations. Rank-based statistics related to the target maps provides
measures of quality, robustness and uncertainty of the classification of a study area into
likelihood of discovery. Much of this is a relatively new area of research, so that to interpret
such uncertainty is still a challenge. Four critical questions are formulated that identify areas
in need of extensive research for any modeling procedure. They relate to the quality of
prediction patterns, their associated uncertainty of class membership, their sensitivity to
redundancy and to congruity within the database. A spatial database developed for ad-
vanced training is used to generate target maps. It comes from a study in the Red Lake area
in northern Ontario, Canada. It contains information on 37 gold vein deposits. Their
neighborhood distribution is instrumental to establishing spatial relationships with the units
of categorical thematic maps and continuous field maps. The experimental results point at
the extraction of significant properties of the spatial data that cannot be ignored but that we
have yet to master to substantiate the reliability of prediction patterns.

KEY WORDS: Target mapping, Iterative strategy, Prediction patterns, Mineral exploration, Favora-
bility modeling, Uncertainty patterns.

INTRODUCTION

It is now common practice in the geosciences to
use spatially distributed data and model mineral
potential maps to guide in further resource explo-
ration. Within a study area, the data relate to the
spatial distribution of mineral occurrences of known
and uniform genetic type and possibly of the size of

mineral deposits, whose locations we have termed as
occurrences. Moreover, they relate to the corre-
sponding geologic mapping units and geochemi-
cal/geophysical continuous field values hopefully
representing the spatiotemporal conditions of the
occurrences.

Within a conveniently selected and delimited
study area, spatial relationships between the occur-
rences, sets of mapping units and continuous field
values are established and integrated by mathemat-
ical models. Seldom can the occurrences be sepa-
rated into time intervals to allow using an older set
to obtain a map with classes ranking the likelihood
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of future occurrence. The map is validated by the
distribution of the younger set. Instead, convenient
partitioning of the known occurrences is used to
have a subset for modeling and another subset for
validation as the ‘‘next’’ occurrences. By validation,
we mean that the distribution of the ‘‘next’’ occur-
rences is used for capturing the corresponding like-
lihood ranks in the modeled map (Fabbri and Chung
2008). The higher is the rank containing the occur-
rences, the better is the validation. To do this, the
data should preferably be part of a digital database
with consistent resolution.

Modeling the future mineral occurrence dis-
coveries, however, is a complex task. At present,
much needs to be done to satisfy such a task. This
contribution points at its complexities to propose
ways to resolve them.

In our analyses, a spatial database developed
for advanced training is used to generate target
maps. It comes from a study in the Red Lake area in
northern Ontario, Canada. The processing of the
database is described with the purpose of identifying
issues that are generally ignored or bypassed in
many modeling applications. The following section
introduces definitions and assumptions implicit in
favorability modeling. It is followed by a brief
description of the study area database. Next,
experiments leading to a set of questions are dis-
cussed that are critical to the interpretation of the
modeling results. Conclusions follow on the rele-
vance of providing answers to the questions.

DEFINITIONS AND ASSUMPTIONS
FOR FAVORABILITY FUNCTION
MODELING

What we term as favorability function modeling
is the generation of digital maps or better prediction
patterns. They are to show the classification of all
points of a study area into ranks of similarity with
the neighborhoods of mineral occurrences, in terms
of the corresponding presence or absence of units
and continuous field values. Such a classification
within the study area is usually based on the
empirical likelihood ratios between the distribution
of units and continuous field values in the presence
of the occurrence neighborhoods and those in their
absence. Commonly, the occurrences are a few tens
to a few hundred in number, while their neighbor-
hoods cover a few picture elements or pixels (say
3 9 3 or 5 9 5) of a given uniform resolution (e.g.,

10 m, 30 m or 50 m). The resolution depends on the
assumed spatial support of the occurrences. The
entire study area generally consists of hundreds of
thousands to millions of pixels. It means that the
data corresponding to a few hundreds of pixels are
used to classify possibly millions of pixels. Hope-
fully, the relationships established in the presence of
the occurrences are contrasting those established
outside the occurrence neighborhoods. This holds
even if we expect or assume that more occurrences
will be found there.

The task of spatial prediction modeling the
location of new discoveries is far from simple insofar
that it requires, besides a relevant database, a vari-
ety of definitions, assumptions, mathematical models
for integrating spatial relationship, procedural
strategies and validations of the results of the mod-
eling, the prediction patterns. The complexity of
generating and interpreting the patterns has moti-
vated the generation of target mapping as cautious
general-purpose modeling based on rank-based
statistics and iterative cross-validation. Target maps
are ranking the likelihood of future discoveries: for
instance, of discoveries like gold occurrences,
knowing location and spatial context, of a set of
genetically related gold vein deposits.

A unified mathematical framework for favora-
bility function modeling was introduced (Chung and
Fabbri 1993; Chung 2003; Chung et al. 2003) indi-
cating several spatial prediction models, their inter-
pretation and estimation procedures. In particular,
for the two models applied here, the empirical
likelihood ration function, ELR, and the logistic
discriminant function, LOG, theoretical and appli-
cation backgrounds were discussed by Chung (2006)
(see also Chung 1978; Davis et al. 2006). The ELR
model is based on the multivariate frequency dis-
tribution function under the assumption of condi-
tional independence of the spatial context. If the
empirical distribution function appears non-normal,
the LOG model can be used. It is based on a logistic
estimation under the assumption of conditional
independence.

A spatial prediction model is defined as a logi-
cal or analytical procedure to construct a prediction
image. A prediction pattern is a thematic represen-
tation of the prediction image to visualize and per-
ceive it. Let us consider a proposition, i.e., a
mathematical statement that can be supported as
true or false by spatial evidence:
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Tp: that a point p in the study area contains a
mineral deposit of specific type|the presence of
spatial evidence.

To support such a proposition, we need a spatial
database that provides such evidence and a mathe-
matical model to convert spatial data into evidence
by establishing and integrating spatial relationships.
The spatial database relates to a study area and
contains the distribution of mineral deposits of a
distinct and uniform genetic type. Along with it, it
contains the distribution of categorical map units
and continuous field value maps related to the
mineral deposits, i.e., representing the conditions of
deposition. We have termed as direct supporting
pattern, DSP, of the proposition the binary map
(presence/absence) of the mineral deposits. We have
also termed indirect supporting patterns, ISPs, the
other maps that hopefully represent the conditions
or settings of the deposits. The DSP occupies a very
small part of the study area, SA, and is the known
part of the target pattern, i.e., of all the existing de-
posits in the SA. While the SA is defined as the area
in which we wish to predict the unknown part of the
target pattern, the training area, TA, is the area
where the quantitative characteristics and properties
of the target pattern will be established in the spatial
prediction analysis. In an ideal TA, the target pattern
should have been completely discovered, but in a
real situation only a portion, possibly most, of the
target pattern is known.

We are after estimating the likelihood of dis-
covering the remaining deposits. We use the term
pattern because in the modeling all spatial data are
transformed from the initial mapping units and val-
ues into spatial evidence, thus becoming measures of
spatial relationships between DSP and ISPs. Such
terminology will be used in the remainder of this
contribution.

For modeling, a favorability function at each
point in the SA must have two properties:

(1) be able to measure a relative level of like-
lihood that point p contains a part of
undiscovered deposits of the given type, so
that the prediction image can be generated;
and

(2) be able to provide measures of uncertainty
associated with the function by using the
known part of the target pattern in the TA,
i.e., the DSP.

Furthermore, three assumptions must be rea-
sonably satisfied (Chung and Fabbri 2004): (a1) the
known deposits, the DSP, are a random selection of
all existing ones, known and unknown (allowing to
extend the function to the entire SA from the TA);
(a2) the ISPs are correlated with the target pattern
(allowing to estimate the function using the known
part of the target pattern in the TA); and (a3) the
process of deposition is not random and follows a
certain rule (allowing to model the favorability
function).

The next section shows how the Red Lake da-
tabase provides the inputs to the modeling process.

THE RED LAKE STUDY AREA
AND SPATIAL DATABASE

The spatial database used in the prediction
experiments to follow was developed at the Geo-
logical Survey of Canada. It was used for the pur-
pose of training professionals in advanced courses
on spatial data integration for mineral exploration
target mapping (GSC 2000; Chung and Fabbri 2008;
Hillary et al. 2008). The database uses information
collected for the Red Lake study area in north-
western Ontario, whose location is shown in Fig-
ure 1a.

The database contains digital maps and their
interpretation for mineral potential evaluation. One
map contains the locations of 37 gold deposits. Their
distribution is shown in Figure 1b as black and red
dots on a background of the study area in light gray.
The darker gray areas fall outside the study area.
The remainder of the database that consists of three
categorical and twelve continuous field maps is
shown in Figure 2. Their description is given in Ta-
ble 1. All 16 (1 + 3 + 12) digital maps use the res-
olution of 40 m and are spatially co-registered so as
to maintain a point-to-point or pixel-to-pixel corre-
spondence. This is to facilitate the computation of
spatial relationships.

The database also contains additional magnetic
and electromagnetic geophysical data not used in
the present analyses: total magnetic field, resistivity,
horizontal gradient, analytical signal, susceptibility,
tilt and vertical gradient. Of these, only resistivity
shows a relatively strong support, however, masked
by those of the three categorical maps.

While the mineral deposit map in Figure 1b is
indicating the presence of mineral occurrences, the
other 15 digital maps are to represent the geologic
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settings of the occurrences. The 37 gold occurrences
comprise vein gold deposits, namely gold-bearing
‘‘cherty quartz with banded Fe-carbonate’’; ‘‘sulfide-
poor veins,’’ ‘‘sulfide-rich replacement zones,’’ high-
grade zones; strata-bound dissemination of gold in

sulfide-bearing tuffaceous rocks and gold-bearing
veins in granitoid intrusions. Tentatively, they will
be considered as a uniform type of deposit. For
subsequent modeling, the locations were converted

Figure 1. Location of the Red Lake study area, northern Ontario, Canada, in (a), and distribution of the 37 gold deposit

occurrences in (b), as black and red dots of exaggerated size to represent 3 9 3 pixel neighborhoods for visibility. For

modeling, they have been termed direct supporting pattern, DSP. See ‘‘How Congruous are the Mineral Occurrences Used

in Modeling?’’ section for the separation of black and red occurrences.

Figure 2. Categorical and continuous field maps converted into indirect supporting patterns, ISPs, by their spatial relationships with the

distribution of the 37 Au occurrence neighborhoods used for spatial prediction modeling, shown in Figure 1b.
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into 3 9 3 neighborhoods of pixels with the initial
pixel location at the center.

The mineral deposit map with the distribution
of the 37 gold deposits, considered as occurrences,
used initially single pixels to represent their location.
The 37 3 9 3 pixel neighborhoods of gold occur-
rences were used as DSP in the modeling and ter-
med au37. Using single pixels or 3 9 3, 5 9 5 or
7 9 7 pixels neighborhoods led to identical spatial
relationships. Their locations are shown in Fig-
ure 1b. The purpose is to establish their spatial
relationships with the 15 ISPs, termed agmCNT12
(carbonate alteration, bedrock geology, metamor-
phism and the 12 continuous field maps) shown in
Figure 2. While the study area, SA, is contained
within a rectangular raster of 1250 pixels 9 700

lines, it occupies only 746,085 pixels of 40 m reso-
lution. The 37 gold occurrence neighborhoods in-
stead occupy 333 pixels of the same resolution. It
means that the SA covers an area three orders of
magnitude larger than that of the DSP. In the
analyses to follow, the entire study area was con-
sidered as TA. In other situations, when assuming
that a wider neighborhood of the occurrences has
been thoroughly explored, the TA could be selected
as larger neighborhood, say 25 9 25 or 51 9 51
pixels.

For the Red Lake study area, the spatial rela-
tionships between the DSP and the ISPs are repre-
sented by empirical likelihood ratios that are
summarized in Table 2. For instance, an ELR value
of 2 indicates that the normalized frequency in the

Table 1. Categorical and continuous field ISPs, a1–3, g1–17, m1–5 and CNT1–12, respectively, in the Red Lake area

Carbonate alteration,

a1–3
1. Proximal alteration (brown dominated by ferroan dolomite)

2. Distal alteration (blue dominated by calcite)

3. No alteration

Continuous field maps,

CNT1–12

1. dalter, lithogeochemical data: Hashimoto alteration_index

(pink_> 0.58, blue< 0.58)

2. dbif, distance from iron formation

3. decay, electromagnetic decay constant: the time required for an

electromagnetic field to decay to a value of 1/e of the original

value. In time- domain electromagnetic data, the time constant is

proportional to the size and conductance of a tabular conductive

body, also called the time constant

4. dfault, distance from faults (unsubdivided)

5. dfvol, distance from felsic and Intermediate volcanic rocks (un-

subdivided)

6. dg14, distance from rock unit 14 (granitoid rocks, circa 2720 Ma)

7. dg16, distance from rock unit 16 (late granitoid rocks, circa

2700 Ma)

8. dm_oran, distance from lower amphibolite vs. transition zone

isograd as measured from higher-grade rocks

9. dm_oryw, distance from upper greenschist vs. transition zone iso-

grad as measured from higher-grade rocks

10. dm_oyg3, distance from upper greenschist vs. lower greenschist

isograd as measured from higher-grade rocks

11. dultra, distance from ultramafic rocks

12. dunconf, distance from the unconformity between Balmer and

Confederation assemblage

Geology,

g1–17
1. Balmer Mafics
2. Early Felsic-Intermediate

Volcanics

3. Huston Assemblage
4. Graves Assemblage

5. Graves Felsic Pluton

6. PostVolcanics Mafic Plutonics

7. PostVolcanics Felsic Pluton (unit 14)

8. Late Intrusive (unit 16)

9. Early Cherty + Siltstone

10. Early Mafic Plutonics

11. Ball MaficVolcanics
12. Slate Bay Metasediments

13. Trout Bay Mafic Volcanics

14. Trout Bay Mafic Pluton

15. Confederation Assemblage

16. Early Komatiite Flows

17. Fe Fm + Chert

Metamorphism,
m1–5

1. Lower greenschists;

2. Upper greenschists;

3. Transition zone;

4. Lower amphibolite;

5. Upper amphibolite.

In bold are the more supportive ones as indicated by the ELR values ‡ 2 in Table 2
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presence of the occurrences is twice that in the
remainder of the SA. For categorical ISPs, the ELR
values are ratios between normalized frequencies of
units within the presence of the au37 with the ratios
in the remainder of the SA. For continuous ISPs, we
have the corresponding density functions and ELR
functions. Two examples are shown in Figure 3. The
ratios provide a measure of contrast between the
areas of au37 and the remainder of the SA assumed
to be devoid of known occurrences. Identical ratios
were obtained for the different neighborhoods from
1 9 1 to 7 9 7 pixels.

The Red Lake study area database was also
used to document SPM, a spatial prediction model-
ing software (Fabbri and Chung 2012), which was
later developed further into the spatial target map-
ping program, STM, used here (Fabbri et al. 2017),
and to highlight the likely effect of conditional
dependence (Chung and Fabbri 2013).

FOUR CRITICAL QUESTIONS
IN PREDICTION MODELING

Of the many mathematical models used to
establish and integrate spatial relationships to gen-

erate prediction patterns, we have used two in our
study: the empirical likelihood ratio function, ELR,
and the logistic discriminant analysis function, LOG,
mentioned in ‘‘Definitions and Assumptions for
Favorability Function Modeling’’ section. The four
critical questions discussed here, however, do apply
to any kind of model and modeling procedure. They
are as follows: (1) ‘‘How �good� is my prediction
pattern?’’; (2) ‘‘How uncertain is the rank member-
ship in the prediction pattern?’’; (3) ‘‘What is the
impact of existing redundancy in the indirect sup-
porting patterns?’’; and (4) ‘‘How congruous are the
settings of mineral occurrences used as direct sup-
porting patterns?’’.

Those questions are considered as fundamental
for realistic evaluation of prediction patterns and for
their use in decision making in further mineral
exploration. We will discuss each one in the analysis
of the database for the Red Lake study area antici-
pated in the previous section.

How ‘‘Good’’ is My Prediction Pattern?

Mathematical models integrate empirical like-
lihood ratios for each pixel of all ISPs into prediction

Table 2. Empirical likelihood ratios to be used in predictions with the distribution of the 37 gold occurrences, au37 as DSP and with

agmCNT12 as ISPs

DSP

and ISPs

Empirical likelihood ratios

au37
c. alteration

geology

metamorphism

dalter (0.1–268.0)

dbif (1–398)

decay (32–698)

dfault (1–261)

dfvol (1–250)

dg14 (1–243)

dg16 (1–250)

dm_oran (1–125)

dm_oryw (1–109)

dm_oyg3 (1–60)

dultra (1–436)

dunconf (1–336)

a2 = 6.29, a2 = 1.67, a3 = 0.19;

g1 = 2.21, g2 = 2.00, g3 = 3.27, g7 = 1.65, g10 = 1.78, g11 = 2.32, g12 = 0.65, g15 = 0.38;

m1 = 4.05, m2 = 2.29, m3 = 0.89, m4 = 0.43;

‡ 2: 0.10–23.62, (max 5.31);
‡ 1: 1.00–51.44, (max 1.83); 120.95–174.58, (max 1.63);

‡ 1: 61.97–207.10, (max 1.76);

‡ 2: 1.00–12.98, (max 2.54);

‡ 1: 1.00–63.52, (max 1.76);

‡ 2: 1.00–6.32, (max 2.05);

‡ 1: 12.97–41.42, (max 1.59);

‡ 2: 25.98–47.84, (max 2.90); 68.60–78.91, (max 2.28); 94.93–98.29 (max 2.12)
‡ 2: 14.42–41.80, (max 2.69); 61.07–86.93, (max 4.41);

‡ 2: 13.41–30.29, (max 7.79);

‡ 2: 1.00–34.95, (max 3.43);

‡ 2: 1.00–39.15, (max 2.36).

Abbreviations for categorical ISPs are as in Table 1: a1–3 carbonate alteration units, g1–17 bedrock geological units and m1–5 metamorphism

units. The continuous field ISPs, CNT12, are also listed in Table 1. Next to abbreviation of continuous ISPs is, in italics, the value range

within brackets. Values are bold if ELR ‡ 2.00. In italics is the corresponding range of classes, with maximum ratio in brackets
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scores that make up a prediction image. The image
itself and its scores are not interpretable as such. The
scores generated by different models, here ELR and
LOG, are also not directly comparable due to their
different meanings. However, comparability and
interpretability are obtained at the level of equal
area ranking of the scores once sequenced in
decreasing order from maximum to minimum. Such
ranks provide what we have termed a prediction
pattern. We have found it convenient to generate 200
equal area ranks, each of 0.5% of the SA, i.e., of
approximately 3730 pixels (0.5% of
746,085 � 3730). Figure 4 shows the relationships
between the integrated scores in the prediction im-
age and the 200 corresponding equal area ranks of
the prediction pattern.

A fixed set of rank classes permits the visual
comparison of prediction patterns from the two
models as shown in Figure 5. In the illustration, the
classes are narrower for the higher and more inter-

esting classes: top 1%, next 1.5%, next 2.5%, …,
next 12.5%. We can observe spatial variations in the
equal area classes and in the corresponding location
of the au37 shown as black points. Some occurrences
fall on high ranks, while others fall on low ranks.

There are indeed some differences in the spatial
configurations of classes of the two prediction pat-
terns in Figure 5. However, we do not know yet the
effectiveness of the patterns as predictors, i.e., as
representing the likelihood of future occurrences.
For that, we need to know the distribution of future
gold occurrences. This is done by pretending not to
know the location of one of the 37 occurrences in
order to use the remaining 36 to generate another
prediction pattern and use the 37th to validate its
classification obtaining its prediction rank. Iterating
such sequential exclusion of one occurrence pro-
vides 37 prediction patterns and the respective 37
prediction ranks, one for each validation occurrence
(each representing 1/37 = 2.7% in proportion of

Figure 3. Two examples of empirical frequency distribution and density functions in (a) and (c) for bedrock lithologies and

electromagnetic decay values, respectively, and corresponding likelihood ratio functions in (b) and (d).
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occurrence neighborhoods). Prediction rate curves
are obtained by plotting the ordered cumulative
equal area ranks on the horizontal axis vs. the cor-
responding cumulative proportion of occurrence
pixels in each rank.

Figure 6a shows such curves for the patterns
resulting from the two models using the same iter-
ative procedure of sequential exclusion of one
occurrence and the same 15 ISPs. The patterns are
short named as ELR_au37m1_agmCNT12 and LO-
G_au37m1_agmCNT12, respectively, where m1 sig-
nifies minus one. The LOG curve shows a somewhat
better prediction, particularly for the top rank
intervals from 5% to 15%. The top 5, 10, 15, 20 and
30% ranks contain 32, 46, 62, 78 and 92% of the gold

occurrences for the ELR curve, while the LOG
curves show 38, 57, 64, 81 and 92%, respectively.

The two curves show meaningful parts for the
top 30% ranks, and we can explore further those
ranks looking at the respective histograms shown in
Figure 6b and c. There, each short column corre-
sponds to one individual occurrence or 2.7% in area
proportion of the 333 pixels. Only 17 of those are
located within the top 10% in the ELR pattern,
while there are 20 in the LOG pattern. That explains
the higher values in the LOG curve of Figure 6a.
The top 30% ranks contain 34 of the 37 occurrences
in either prediction pattern so that altogether the
curves show a strong similarity of ‘‘goodness’’ of
patterns.

Figure 4. Relationships between 746,085 prediction image scores and prediction pattern ranks for ELR

modeling in (a) and LOG modeling in (b).
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Another aspect of interpreting the prediction
patterns is that of generating by aggregation equal
area ranks to represent monotonically decreasing
histograms, considering the monotonic property as
implicit assumption in the classification. An example
is shown in Figure 7 for the two prediction patterns
using classes of 7.5% of the SA for the top 30%. The
property is visible for the ELR pattern�s histogram
with a gentler decreasing sequence, but it is not
obtained for the steeper LOG pattern histogram�s
decreasing sequence.

The ‘‘goodness’’ of the patterns is only a rela-
tive measure of predictability within the database,
and it remains to be interpreted not only in
numerical terms but also in geological terms. How
many classes can we identify in our prediction pat-
terns? How to name them as very high, high, inter-
mediate, low, etc.? These are still open questions
requiring specific and extensive research going be-

yond the arbitrariness of our selection of classes and
their evaluation used here.

In addition, the differences in spatial expres-
sions that we can observe in the prediction patterns
of Figure 5 easily lead to suspect the existence of
spatial instability caused by the uncertainty in rank
membership. We are going to consider this uncer-
tainty in the next subsection.

How Uncertain is the Rank Membership
in the Pattern?

To obtain the ELR and the LOG prediction
rate curves of Figure 6a, 37 prediction patterns were
generated by the au37m1 procedure of sequential
exclusion of one occurrence. The two curves show
some small differences but also show an overall
similarity of prediction capability. We can explore
further the properties of the two sets of patterns to

Figure 5. Prediction patterns of mineral occurrences in the Red Lake study area. In (a) using the ELR

model, the au37 occurrences as DSP and the 15 ISPs, agmCNT12; in (b), using the LOG model and the

same ISPs. The size of the 37 3 9 3 pixel neighborhoods, in black, is exaggerated for visibility.
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Figure 6. Prediction rate curves and histograms. In (a) are the curves for ELR and LOG modeling with

au37m1 and agmCNT12 as ISPs. In (b) is the top 30% rank histogram for ELR and in (c) for LOG

modeling.
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assess the uncertainty of rank membership. By sta-
tistical analysis, we can produce what we have
named as target and uncertainty patterns. The target
pattern is the combination of the prediction patterns
for each set of 37 iterations. Using rank-based
statistics, for instance, the target patterns contain for
each pixel the median rank of the 37 ranks. The
corresponding ELR and LOG uncertainty patterns
rank the ranges around the median of the 37 ranks.
Rank-based statistics is very robust, and the corre-
sponding uncertainty patterns are shown in Figure 8a
and c. The two target patterns are not shown here
because they are undistinguishable from the pre-
diction patterns of Figure 5 that uses the same le-
gend and threshold colors. Figure 8b and d shows
the 50% combination patterns of uncertainty and
target patterns. It is one way to interpret and classify
the uncertainty of rank membership: We arbitrarily
selected a percentage of lower uncertainty ranks, say
50%, to visualize the ranks in the target pattern.

In Figure 8b and d, we have 50% combination
patterns so that we can see that several gold occur-
rences are located in areas of uncertainty higher
than the lower 50% ranks of the uncertainty pattern.
Prediction, target and uncertainty pattern ranks for
the 37 gold occurrences are shown in Table 3 in
units of 1000*.

In our case, while 18 occurrences rank ‡ 900
(top 10% ranks) for the ELR modeling in column 2,
PELR, 20 occurrences are in that rank in the LOG
modeling in column 5, PLOG. The corresponding
target ranks (median) show 25 occurrences with
ranks ‡ 900 for both TELR and TLOG in columns 3
and 6, respectively.

As to the uncertainty ranks, UELR and ULOG
in columns 4 and 7, we have that 15 occurrences are
in lower uncertainty zones in the ELR target pat-
tern, £ 500, and 27 in the LOG target pattern,
respectively. Figure 9 compares visually as his-
tograms the same ranks for the two models, ELR
and LOG, using the values in Table 3. It appears
that the target pattern from the LOG prediction is
affected by less uncertainty than that from the ELR
prediction.

It is not possible, however, to compare such
uncertainties due to the relative significance of these
measures. Effectively, it becomes a new area of re-
search to identify ways to measure such differences.
For instance, if instead of using rank-based statistics
with median rank for target and rank of range for
uncertainty patterns, we use basic statistics such as
average and variance, the 50% combination pattern
would show that all the 37 occurrences are located in
areas of higher uncertainty. It means that, although
there are similarities between the two combination
patterns in Figure 8b and d for the ELR and the
LOG models, we can also detect the spatial insta-
bility of the less uncertain ranks.

What is the Impact of Strong Data Redundancy
(Conditional Dependence)?

The ISPs are to represent the geologic conditions
of mineralization. Thus, they all relate to the process
leading to the occurrences so that, naturally and
potentially, they contain redundant information. The

Figure 7. Prediction rate histograms of 7.5% classes for the top 30% ranks. In (a) is the histogram for ELR and in (b) that for the LOG

modeling.
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Figure 8. Uncertainty patterns and 50% combination patterns of mineral occurrences

in the Red Lake study area in (a), for ELR using the au37m1 iterative cross-

validation and the 15 ISPs, agmCNT12. In (b), the corresponding 50% combination

pattern of uncertainty and target. In (c) is uncertainty as in (a) but for LOG and in (d)

combination as in (b) but for LOG. The size of the 37 3 9 3 pixel neighborhoods in

black is exaggerated for visibility.
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presence of a particular geologic unit, for instance,
whose normalized frequency within the occurrence
neighborhoods is well higher than that in the remain-
der of the SA cannot be conditionally independent
fromthedistance from its contacts, theboundaryof the
same unit. Consider the empirical likelihood ratio for
categorical unit g7 in Table 2, 1.65, and continuous
value field dg14 with ratios ‡ 2 between distances 1.00
and 6.32, with a maximum value of 2.05.

Such redundancy helps in the recognition of
important features in the classification, but it might
also put anomalous weight on the intensity of the
spatial relationship between the DSP and the ISP.
On the other hand, the ISPs integrated in the mod-
eling can also compensate one another, thus con-
tributing to a better classification of the SA.

The experiments made are exploring how ex-
tremely exaggerated redundancy can affect the

Table 3. Ranks in 1000* units for prediction, target and uncertainty for the 37 gold occurrences, Red Lake area

Au occurrences Rank-based statistics: rank, median rank and rank of range

1 2 3 4 5 6 7

ID PELR TELR UELR PLOG TLOG ULOG

1 694 734 673 688 712 425

2 842 880 670 924 944 177

3 843 893 768 870 895 359

4 958 985 406 980 986 48

5 998 999 3 988 991 39

6 982 990 132 956 967 103

7 905 947 706 834 861 416

8 939 955 273 997 998 30

9 707 732 463 671 709 666

10 953 976 371 954 964 76

11 854 928 854 794 847 757

12 974 985 137 993 994 34

13 747 844 926 797 939 930

14 996 997 4 998 998 28

15 963 992 241 969 980 77

16 992 996 6 944 961 83

17 906 940 635 934 957 230

18 731 753 468 703 725 343

19 1000 1000 1 997 998 29

20 998 999 3 999 999 27

21 969 987 220 945 958 97

22 991 997 9 960 974 99

23 938 976 592 936 962 300

24 875 942 842 851 909 775

25 793 972 981 877 909 563

26 896 977 865 897 939 676

27 876 949 853 848 909 796

28 811 891 879 859 896 681

29 852 909 811 952 967 119

30 918 968 737 981 989 53

31 868 909 699 940 966 313

32 900 942 691 967 979 90

33 751 785 661 777 803 451

34 813 865 778 786 843 725

35 791 833 729 809 839 455

36 700 765 842 720 754 520

37 592 652 830 586 612 352

# ‡ 900 18 25 20 25

# £ 500 15 27

Iterative prediction process au37m1 with ELR and LOGmodels: P is for prediction, T is for target and U for uncertainty ranks. Uncertainty

values £ 500 indicate the 50% lower ranks
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rankings of high and low classes of prediction pat-
terns and whether the redundancy observed leads to
still acceptable prediction patterns. The categorical
ISPs, agm, show high ELR values for units a1, g1 to
g3, g11, m1 and m2 (i.e., 6.29, 2.21, 2.00, 3.27, 2.32,
4.05 and 2.29, respectively, as shown in Table 2).
ELR and LOG target patterns with iterating process
au37m1 were generated adding duplicate categorical
ISPs, ag2 m, ag2m2 and a2g2m2, with the continu-
ous field ISPs CNT12. Figure 10 shows the predic-
tion rate curves for the corresponding top 30%
ranks. In the illustrations, the threshold ranks used
for pattern visualization are shown as red tick marks.
As can be seen, the impact in those curves is mini-
mal, hardly noticeable in the histograms from both
the sets of cross-validations in Figure 11a, ELR, and
b, LOG, that can be compared with the corre-
sponding histograms of Figure 6b and c. As it turns
out, the two corresponding top 30% histograms for
predictions using a2g2m2 show slight shifts for
individual 0.5% ranks, but the overall ranking se-
quence is little affected, particularly for higher
ranks. The authors have noticed such a weak impact
in several studies (cf. Chung 2006; Fabbri et al.
2014). Possibly, this occurs with some generality
within earth science databases and is certainly

something worth some research efforts. Much work
on attempting to lessen or to eliminate conditional
dependence might prove ineffective or counterpro-
ductive in spatial modeling.

How Congruous are the Mineral Occurrences Used
in Modeling?

We have assumed in our modeling until now
that the 37 3 9 3 pixel neighborhoods used as DSP
all belong to a congruous or cohesive type of setting.
However, we know by now that out of the iterative
cross-validation process, au37m1, part of the occur-
rences are distributed in high-rank classes and part
in low-rank classes in the prediction patterns from
either model. Do they belong to a broad type of
setting or do they represent a mixture of more than
one setting?

One way to explore such a situation is of
applying the iterative process of sequential selection
of one occurrence neighborhood. The result of such
a modeling strategy is a set of 37 prediction patterns
each using only one occurrence neighborhood as
DSP and generating the prediction ranks for the
remaining 36. This produces a 37 9 37 array of

Figure 9. Prediction, target and uncertainty ranks in 1000* units for the au37 occurrences using iterative cross-validation au37m1 with

model ELR in (a) and with model LOG in (b).
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ranks with null values in the diagonal. By arbitrarily
choosing a threshold rank in units of 1000*, say 900
(i.e., the top 10%), we can count how many occur-
rences are predicted well with rank ‡ 900 and at the
same time we can predict well occurrences with
rank ‡ 900.

We have used the ELR function model for this
and considered as well predicted/predicting, Wpp,
those predicted well by at least eight as DSP and
predicting well at least five occurrences. The
remaining ones were considered as poorly predicted/

predicting, Ppp. They are termed 19Wpp and 18Ppp,
respectively, occupying 171 and 162 pixels. Their
characteristic signature in terms of ELR values is
given in Tables 4 and 5, while their distribution in
the SA is shown in Figure 2b as black dots and red
dots, respectively. For ELR_au19Wpp-
m1_agmCNT12 and ELR_au18Pppm1_agmCNT12,
the target patterns are shown in Figure 12 and their
prediction rate curves are shown in Figure 13.

As we can see in Table 4, most of the categor-
ical support is due to units a1, g1 and m1 (10.43, 3.24

Figure 10. Prediction rate curves for patterns generated with and without duplicate categorical ISPs in

addition to the continuous fields. In (a) the ones from the ELR model and in (b) those from the LOG

model. The red tick marks indicate the threshold values for visualizing the prediction pattern top 30%

ranks.
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and 6.20) using au19Wpp. From au18Ppp in Table 5,
we can see that the categorical support is from the
units: a1, a2, g2, g3, g7, g10, g11 and m2.

DISCUSSING THE RESULTS

The iterative process au37m1 used in ‘‘How
�good� is My Prediction Pattern?’’ section had been
selected after a set of sequential exclusions of 1, 3, 5,
7, 9 and 18 occurrences, all providing cumulative
prediction rate curves running below the first one.
Given their relatively small number, choosing
au37m1 appeared a robust way of evaluating the
prediction rates of all 37 occurrences by cross-vali-
dation. Instead of having hundreds of occurrences, it

is preferable to have a greater number of sequen-
tially eliminated occurrences. Additional iterative
analyses with random selection of 24 occurrences of
the 37 iterated 1 and 3 times showed higher pre-
diction rate curves than those of au37m1 but when
iterated 9, 17 and 37 times showed similar curves for
either model.

Concerning the prediction rate curves in Fig-
ure 6a, model curves could be fitted or a threshold
selected to identify the rank at the start of an
inconvenient cost–benefit situation in which the
distribution of occurrences becomes erratic, or di-
rectly proportional to the area increment (cf. Chung
and Fabbri 2003). Furthermore, the strong similarity
of the two prediction rate curves for ELR and LOG
in Figure 6 is suggestive of a stronger influence of

Figure 11. Prediction rank histogram for patterns with duplicated categorical ISPs: a2g2m2CNT12, for

ELR model in (a) and LOG model in (b). Only the top 30% ranks are shown. Histograms are to be

compared with the ones in Figure 6b and c.
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the database characteristics over that of the type of
prediction model. The problem of interpreting the
cross-validation and the prediction rate curve re-
mains open to date.

As to the uncertainty patterns of range of ranks
obtained, they revealed 15 and 27 occurrences with

uncertainty rates below 500 in Table 3. The associ-
ated 50% combination patterns in Figure 8 showed
much of the target patterns of median ranks with
uncertainty rate below 500. However, when using
different statistics, for example basic statistics,
sample average and variance, or sample median and

Table 4. ELR values are shown for predictions using as DSP the distribution of the au19Wpp gold occurrences, with agmCNT12 as ISPs

DSP

and ISPs

Empirical likelihood ratios

au19Wpp

c. alteration

geology

metamorphism

dalter (0.1–268.0)

dbif (1–398)

decay (32–698)

dfault (1–261)

dfvol (1–250)

dg14 (1–243)

dg16 (1–250)

dm_oran (1–125)

dm_oryw (1–109)

dm_oyg3 (1–60)

dultra (1–436)

dunconf (1–336)

a1 = 10.43, a2 = 0.82, a3 = 0.88;

g1 = 3.24, g2 = 1.51, g3 = 1.06, g7 = 0.92, g10 = 1.54, g11 = 0.00, g12 = 0.57, g15 = 0.25;

m1 = 6.20, m2 = 1.71, m3 = 0.87, m4 = 0.14;

‡ 2: 0.10–28.48, (max 5.43);

‡ 2: 1.00–39.53, (max 3.24);
‡ 1: 61.31–217.10, (max 1.89);

‡ 2: 1.00–21.31, (max 2.95);

‡ 1: 8.95–68.23, (max 1.88);

‡ 2: 6.80–16.45, (max 2.10);
‡ 1: 8.98–39.17, (max 1.65); 62.12–69.36, (max 1.01); 91.82–142.22, (max 1.43);

‡ 2: 18.28–50.73, (max 4.30);

‡ 2: 14.12–44.50, (max 4.42);
‡ 2: 7.36–8.83, (max 2.22); 12.95–31.60, (max 10.94);

‡ 2: 1.00–39.32, (max 4.46);

‡ 2: 15.72–44.49, (max 2.65).

Abbreviations for categorical ISPs are as in Table 1. The continuous field ISPs, CNT12, are also listed in Table 1. Next to abbreviation of

continuous ISPs is in italics the value range within brackets. Values are in bold if ELR ‡ 2.00. In italics is the corresponding range of classes,

with maximum ratio in brackets

Table 5. Empirical likelihood ratios are shown for predictions using as DSP the distribution of the au18Ppp gold occurrences, with

agmCNT12 as ISPs

DSP
and ISPs

Empirical likelihood ratios

au18Ppp

c. alteration

geology

metamorphism

dalter (0.1–268.0)

dbif (1–398)

decay (32–698)

dfault (1–261)

dfvol (1–250)

dg14 (1–243)

dg16 (1–250)

dm_oran (1–125)

dm_oryw (1–109)

dm_oyg3 (1–60)

dultra (1–436)

dunconf (1–336)

a1 = 2.21, a2 = 2.53, a3 = 0.32;

g1 = 1.11, g2 = 2.52, g3 = 5.60, g7 = 2.42, g10 = 2.03, g11 = 4.77, g12 = 0.73, g15 = 0.53;

m1 = 1.79, m2 = 2.89, m3 = 0.92, m4 = 0.74;

‡ 2: 0.10–16.71, (max 5.18);

‡ 2: 123.35–173.39, (max 3.10);

‡ 1: 63.33–197.94, (max 1.89);

‡ 2: 1.00–3.82, (max 2.12);

‡ 1: 1.00–56.12, (max 1.67);

‡ 2: 1.00–6.32, (max 2.39);
‡ 1: 16.99–42.97, (max 1.64); 71.69–89.93, (max 1.17); 115.16–164.62, (max 1.85);

‡ 2: 58.92–103.19, (max 5.05);

‡ 2: 54.23–89.57, (max 9.73);

‡ 2: 14.61–26.00, (max 4.49);
‡ 2: 1.00–18.85, (max 2.46);

‡ 2: 1.00–27.76, (max 3.38).

Abbreviations for categorical ISPs are as in Table 1. The continuous field ISPs, CNT12, are also listed in Table 1. Next to abbreviation of

continuous ISPs is in italics the value range within brackets. Values are in bold if ELR ‡ 2.00. In italics is the corresponding range of

classes, with maximum ratio in brackets
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range (or even Jackknife statistics with average and
variance), the resulting uncertainty patterns showed
very high ranks all well above 500 so that all 37
occurrences fall on high uncertainty rates. Such a
condition has been found also with target patterns of
natural hazard, in spite of the difference in meaning
they have. The future mineral occurrences are yet to
take place differently from the mineral deposit
occurrences, which have been deposited but are not
yet discovered (if not destroyed by erosion or other
processes). Nevertheless, one would be inclined to
believe that uncertainty of class membership in
natural hazard prediction modeling is less than that
in modeling mineral deposit discoveries. A situation
to be studied should such a comparison be possible!
Can we model a target pattern minimizing the
uncertainty of class membership or is the uncertainty
a property of the database? How to manage such

uncertainty? These additional questions need
attention.

The prediction rate curves in Figure 10 and the
histograms in Figure 11 reveal a minimal impact of
data redundancy or strong conditional dependence
on the prediction pattern (cf. Chung 2006). This kind
of result has encountered objections by Schaeben
(2014) in his analyses of artificial databases in which
the impact of conditional dependence could not be
linked to the ranking of natural categorical or con-
tinuous map units. As to our findings, instead, could
it be that the stronger the dependence the weaker is
the effect on the prediction pattern and vice versa the
weaker is the dependence the stronger is the effect?
Such a suspicion would be worth exploring and
experimenting on. Should it be possible to hide or to
lessen the conditional dependence within a data-
base, we may wonder if the prediction pattern ob-

Figure 12. Target patterns of mineral occurrences in the Red Lake study area. In (a) using the ELR

model, the au19Wppm1 occurrences as DSP and the 15 ISPs, agmCNT12; in (b), using the au18Pppm1 as

DSP and the same ISPs. Size of 3 9 3 pixel neighborhoods in black is exaggerated.
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tained would be preferable to the one generated
with conditionally dependent data. This comparison
was made by Fabbri et al. (2014) on a database for
landslide hazard prediction. They observed that
using also the conditionally dependent supporting
pattern improved the geological interpretability and
quality of the prediction pattern.

The separation of ELR values in Tables 4 and 5
shows that the support of ISPs differs strongly be-
tween the two groups of occurrences, au19Wpp and
au18Ppp, in terms of the specific database charac-
teristics, so do the two corresponding prediction
patterns, ELR_au19Wppm1_agmCNT12 and
ELR_au18Pppm1_agmCNT12, shown in Figure 12.
This could lead to reconsider the soundness of the
group of au37 occurrences as a uniform genetic type
or style of deposit. Other groupings could be for-
mulated either by expert�s knowledge or by the
modeling statistics. This we deem as a worthwhile
analytical challenge.

We believe that the four questions proposed
concern critical aspects of prediction modeling using
spatially distributed data. In order to offer addi-
tional grounds for recommending further focused
research, let us consider just two examples of recent
studies revealing the actual status of prediction
modeling practice in the field of natural hazards. In
that field, studies have probably intensified more
than in mineral resource exploration. A comparative
analysis of 565 peer-review papers published be-
tween 1983 and 2016, made by Reichenbach et al.
(2018), discovered many inconsistent approaches,
databases, models and modeling result evaluations.

A chaotic situation was found that affects the cred-
ibility of prediction modeling. Furthermore, a study
by Vakhshoori and Zare (2018) showed serious
doubts about the use of ROC curves and AUC
measures to evaluate and compare the results of
prediction modeling. Unfortunately, such a use is
common practice in most applications to date.

CONCLUDING REMARKS

A favorability modeling process is iterated with
a subset of the known occurrences, and the resulting
prediction patterns are cross-validated with distri-
bution of the left-out occurrences. The target map,
we termed it target pattern, originates from integra-
tion of all prediction patterns from the iterations.
Rank-based statistics related to the target maps
provides measures of quality, robustness and
uncertainty of the classification of a study area into
likelihood of discovery. We consider this a general
analytical strategy. Much of this is a relatively new
area of research, so that to interpret that uncertainty
is still a challenge.

The four questions proposed point at funda-
mental problems of spatial prediction modeling. The
application example discussed here exposes what is
poorly known or even unknown about prediction
patterns, and it demands further research. In con-
clusion, the experiments performed point at the
extraction of significant properties of the spatial data
that cannot be ignored but that we have yet to

Figure 13. ELR prediction rate curves for iterative cross-validations using au37m1, au19Wppm1

and au18Pppm1 all with agmCNT12 as ISPs.
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master to substantiate the reliability of prediction
patterns.
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Mètodes Numèrics en Enginyeria (CIMNE).

Fabbri, A. G., Poli, S., Patera, A., Cavallin, A., & Chung, C.-J.
(2014). Estimation of information loss when masking condi-
tional dependence and categorizing continuous data. Further
experiments on a database for spatial prediction modeling in
Northern Italy. In E. Pardo-Igúzquiza, C. Guardiola-Albert,
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