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This study tested and compared the mineral potential mapping capabilities of the random
forest (RF) and maximum entropy (MaxEnt) algorithms using gold deposit occurrences
within the Hezuo–Meiwu district, West Qinling Orogen, China. Eighteen orogenic gold
deposits in this district and associated regional exploration datasets were used to construct
data-driven predictive models to identify locations prospective for gold mineralization. The
18 orogenic gold deposits used in the modeling can be divided into magmatic-hydrothermal
gold deposits and mesothermal gold deposits in terms of metallogenic characteristics and
nine evidential maps associated with Au deposit occurrences (i.e., distance to intrusions and
faults; Au, As, Ag, Cu, and Sb singularity indices; and principal component scores (PC1 and
PC2) based on isometric logratio-transformed geochemical data were selected as inputs to
the models). The PC1 represents a primary geochemical signature of tectonic process or
their products (i.e., fault system), whereas PC2 represents a secondary geochemical signa-
ture. Both RF and MaxEnt models were then used to quantitatively rank the importance and
identify the sensitivity of the evidential maps based on their spatial relationships to the
known gold deposits in the study area. The two groups of populations in the response curves
and marginal effect curves indicate that the mineral potential mapping should be performed
by zones in consideration of different metallogenic characteristics of gold deposits. The
accuracy of the resulting models was then assessed, and the results of the mineral potential
mapping were examined using receiver operating characteristic (ROC) analysis, capture-
efficiency curve, and success rate curve. Both mineral potential mapping by zones with RF
and MaxEnt models have higher area under the ROC curve (AUC) values than the models
performed in the study area and delineate 19% of the study area containing> 88% of the
known deposit occurrences. Finally, according to the concentration–area (C-A) thresholds
for prospectivity maps, two ternary prospectivity maps were generated for further mineral
exploration. The results indicate that the RF and MaxEnt algorithms can be used effectively
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for mineral potential mapping and represent machine learning algorithms that can be used in
areas with a few known mineral occurrences.

KEY WORDS: Random forest, MaxEnt model, Gold deposits, West Qinling Orogen, Mineral
potential mapping.

INTRODUCTION

Mineral potential mapping is a tool used in
mineral exploration that involves establishing a
conceptual model of the targeted type of deposits or
mineral system, translating mineralization-related
processes into exploration criteria, deriving eviden-
tial or predictive maps by combining these criteria
with mineral exploration datasets, and finally
obtaining and integrating weighted spatial evidential
maps to delineate exploration targets (Bonham-
Carter 1994; Carranza 2008; Porwal and Carranza
2015). The formulation of appropriate targeting
criteria and the application of innovative and robust
techniques for the derivation and weighting of evi-
dential features associated with exploration criteria
are the key points in mineral potential mapping
(Joly et al. 2012).

Previous research on mineral potential mapping
has used traditional mineral deposit models (Cox
and Singer 1986) for the formulation of exploration
criteria to be used in the construction of input evi-
dential layers. However, the fact that mineral de-
posit models focus mostly on deposit-scale
characteristics means that larger but probably
prospective regional- or camp-sized targets that lack
deposit-scale features will be identified as non-
prospective (McCuaig et al. 2007; McCuaig and
Hronsky 2014). In addition, the significant differ-
ences between regional- and deposit-scale datasets
mean that mineral deposit models are not ideally
suited for use in mineral potential mapping (Sillitoe
2004; Simmons et al. 2005; Sillitoe and Thompson
2006). These problems led to the development of the
mineral systems approach to mineral potential
mapping (Wyborn et al. 1994), which emphasizes
that mineral deposits form foci of much larger
mineral systems that involve energy and mass
transfer as a result of various relevant Earth pro-
cesses that operate in time and space (Wyborn et al.
1994; Hronsky and Groves 2008; McCuaig and
Hronsky 2014). This concept shifts the focus from
deposit-scale features to those present within gen-
eric mineral systems that are based on mineralizing

processes that operate at different scales, suggesting
that mineral system models can be used to define
predictive maps that portray processes at certain
scales (Knox-Robinson and Wyborn 1997; McCuaig
et al. 2010; Porwal and Kreuzer 2010). In practice,
the formulation of mineral system models involves
identifying the following components: sources of
energy, fluids, ligands, and metals, pathways for fo-
cused fluid flow, physical throttles involved in trap-
ping of fluids, and chemical scrubbers needed for the
precipitation of metals. Although the formulation of
exploration criteria for each component and the
generation of evidential map(s) per criterion com-
prise an approach that has been widely (or even
unconsciously) used previously in mineral potential
mapping, McCuaig et al. (2010) translated this
mineral system approach into an effective explo-
ration targeting system.

Therefore, mineral potential mapping is based
on the identification and derivation of geologically
representative evidential maps based on a mineral
system model, meaning that the first step in this
modeling is the development of a thorough under-
standing of the geology of the mineral system in
question as well as geographical information system
(GIS) and statistical skills (Porwal and Carranza
2015). The generation of evidential maps can be
complemented by empirical analysis, especially in
brownfields areas. This approach provides objective
measures of spatial associations between evidential
features and mineral occurrences, as well as new
insights into conceptual mineral system modeling
(Porwal and Carranza 2015). The widely used tech-
niques in this field include fractal and multifractal
analysis (Cheng 1999, 2007; Agterberg 2007), prin-
cipal component analysis, and factor analysis (Car-
ranza 2010; Wang et al. 2015), all of which can
advance our understanding of empirical spatial
associations between mineral occurrences and evi-
dential features. In addition to the derivation of
evidential maps, another important step is the
weighting and integration of evidential maps based
on models of the deposit or mineral system (Yousefi
and Nykänen 2017).
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There are two general approaches to mineral
potential mapping, namely data-driven and knowl-
edge-driven approaches. The former empirically
assigns weights to evidential features using training
datasets, whereas the latter is based on expert
judgment (Bonham-Carter 1994; Carranza 2008).
Both data- and knowledge-driven methods have
disadvantages. For example, the use of known min-
eral occurrences as training sites in data-driven ap-
proaches introduces stochastic bias and error. In
comparison, knowledge-driven methods are subjec-
tive and require an in-depth understanding of min-
eralizing processes and the relationships between
evidential maps and mineral occurrences. Hybrid
approaches that combine both known mineral
occurrences and expert knowledge in assigning evi-
dential weights have also been used, although these
approaches suffer from the disadvantages of the
data- and knowledge-driven methods in terms of
assigning weights to evidential maps (Yousefi and
Nykänen 2017). Numerous methods that employ
machine learning have recently been developed for
use in data-driven modeling (Lewkowski et al. 2010;
Oh and Lee 2010). The most widely used of these
methods include decision trees (DTs) (Breiman
2017; Elith et al. 2008), artificial neural networks
(ANNs) (Brown et al. 2000; Porwal et al. 2003),
support vector machines (SVMs) (Zuo and Carranza
2011; Abedi et al. 2012), and classification tree
ensembles such as random forest (RF) (Breiman
2001; Rodriguez-Galiano et al. 2014; Carranza and
Laborte 2015a; Gao et al. 2016; Zhang et al. 2016).

This paper assesses and compares the mineral
potential mapping capabilities of the MaxEnt model
and the random forest algorithm by applying these
methods to define prospective areas for gold explo-
ration within the Hezuo–Meiwu district of China.
These machine learning methods are increasingly
used in Earth Science; therefore, it is important to
compare the usefulness of these methods to make
the users aware of their strengths and weaknesses.

GEOLOGICAL SETTING AND GOLD
MINERALIZATION

The study area—the Hezuo–Meiwu district—is
located in the western part of the west Qinling
Orogen, part of the Qinling–Qilian–Kunlun oro-
genic belt that stretches across central China (Meng
and Zhang 2000). The west Qinling Orogen contains
more than 100 gold deposits, with proven reserves

of> 1200 tons of gold (Mao et al. 2002; Chen and
Santosh 2014). Of these 100 gold deposits, 18 are
located in the study area. The gold mineralization
within the west Qinling Orogeny is controlled by
NW-trending striking faults and folds that developed
during Triassic orogenic deformation related to the
convergence of the South China Block and the
North China Craton. The gold mineralization is
generally hosted by Paleozoic to early Triassic
clastic and carbonate rocks (Mao et al. 2002) and
was most likely generated as a result of the meta-
morphic devolatilization of Paleozoic sedimentary
units (Mao et al. 2002; Chen et al. 2004). The West
Qinling Orogeny has a complex geological history
that records the opening, subduction, and closure of
the proto- and paleo-Tethys, and the subsequent
Late Triassic continental collision between the
South China Block and the North China Craton
(Kröner et al. 1993; Lerch et al. 1995; Zhang et al.
2004; Dong et al. 2011). The area contains volumi-
nous early Paleozoic to early Mesozoic marine sed-
imentary rocks that have been intruded by
numerous Triassic granitoid intrusions, the majority
of which yield zircon U–Pb ages of 247–200 Ma
(Zhang et al. 2008; Dong et al. 2011). These intru-
sions formed from magmas generated in either
subduction or post-collision tectonic settings (Guo
et al. 2012; Li et al. 2013).

The Hezuo–Meiwu district is dominated by
Carboniferous to Triassic marine sedimentary units
(Fig. 1) and contains NW–SE-trending structures as
well as the Xiahe–Hezuo thrust that divides the
study area into eastern and western zones. The
eastern zone contains Carboniferous to Permian
clastic rocks and carbonates that cover parts of the
granitoid plutons. These plutons include the Meiwu
and Dewulu intrusions that were emplaced into
Permian or Carboniferous rocks, in an unknown
tectonic setting. A total of 12 deposits in this zone
are more closely related to magmatic rocks and
spatially generated within or near the contact zone
of intermediate-acidic rocks mass, such as Laodou,
Jili, and Labuzaika gold deposits. The western zone
contains a variety of dioritic to granodioritic and
granitic stocks and dikes that were emplaced into
Triassic marine clastic rocks (Sui et al. 2017). An-
other six deposits are from the western zone and
represented by the Zaozigou deposit, which is re-
lated to shallow intermediate-acidic magma intru-
sion. Although there are some difference in the main
metallogenic geological characteristics of the two
zones, there are still many similarities, such as the
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distribution of ore deposits and the occurrence of
ore bodies are strictly controlled by the regional
deep great fault zones and its secondary faults (Liu
2011).

From north to south in the study area, there are
obvious group zoning characteristics, that is, the
transition from medium–high temperature to med-
ium–low temperature (Qi et al. 2013). The north belt
elements association is: Cu, As, W, Sn; the south belt
elements association is: Pb, Zn, Ag, Au, As-Hg, Sb.
The anomalies of Au, Ag, As, Sb are well developed
in the Xiahe–Hezuo fault zone, and its distributions
are closely related to N–E-trending faults which re-
flect that the fault zone is a channel for low-tem-
perature hydrothermal activity. The elements of Au,
As, Sb, Bi have strong differentiation degree,
high dispersion and high metallogenic probability;

arsenic anomaly exists in the study area because
arsenopyrite is ubiquitous in the study area (Qi et al.
2013).

Orogenic gold deposits are associated with
intermediate to felsic intrusions, but it remains un-
clear whether the gold in these deposits and the
hydrothermal fluids that formed this mineralization
were derived from the associated igneous rocks
(Goldfarb et al. 2005). Research into the Dewulu
quartz diorite pluton led Sui et al. (2017) to suggest
that the sediment-hosted disseminated and mag-
matic-hosted vein-type gold deposits in the study
area formed broadly contemporaneously with the
Dewulu Au–Cu skarn deposit. This result, combined
with the fact that the disseminated and vein gold
deposits are thought to be genetically related to re-
duced granitoid intrusions, means that the deposits

Fig. 1. Geological map of the Hezuo–Meiwu district showing the locations of major Au deposits. (Modified from Sui

et al. 2017).
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in the study area represent intrusion-related gold
systems.

METHODS

MaxEnt Method

The maximum entropy (MaxEnt) approach is
based on statistical mechanics (Jaynes 1957) and is a
general-purpose method that can be used to make
predictions or inferences from incomplete informa-
tion. This approach is widely used in modeling the
geographical distribution of biological species using
presence-only data within environmentally variable
spaces (Elith et al. 2011). The MaxEnt approach
estimates the probability of target variables with
maximum entropy and is controlled by a set of
constraints that represent the incomplete informa-
tion available about the target distribution (Elith
et al. 2011). The incomplete information available
refers to a set of real-valued variables (in this study
evidential maps were derived from exploration da-
tasets), whereas the constraints mean that the ex-
pected values of each feature (i.e., the empirical
average values of an evidential map) should match
those of a set of sample points taken from the target
distribution. The most important feature of the
MaxEnt approach is that this method can fit highly
complex response functions by integrating several
function types (linear, quadratic, product, threshold,
hinge, and category indicators) (Phillips and Dudı́k
2008). The algorithm used can also be interpreted
from a machine learning perspective (Phillips et al.
2006). Liu et al. (2018) demonstrated its application
to mineral potential mapping.

Random Forest Method

The random forest (RF) method is an ensemble
algorithm that represents an extension of classifica-
tion and regression trees, and can be used to classify
or predict the value of a target variable based on a
number of evidential variables. It is sequentially
applied from a root node to a terminal node (leaf) to
make repeated predictions (Breiman 2001). Classi-
fication and regression trees are the basic classifiers
used in the RF method, which uses a bagging tech-
nique to ensure that training subsets are randomly
chosen, with each subset forming a decision tree
(Breiman 1996). This bagging technique means that

roughly one-third of the available training samples
are not used in the construction of RF trees; instead,
they are used to validate the prediction accuracy
(also referred to as ‘‘out-of-bag’’ or OOB samples).
The resulting OOB error is an unbiased estimate of
the generalization error during RF analysis (Brei-
man 2001). The evidential variables used for each
node in the decision tree are also randomly chosen.
The outcome of RF modeling is dependent on the
average prediction of all of the trees involved in the
model (Cutler et al. 2007).

The RF algorithm begins with splitting parent
nodes (i.e., evidential features) into binary pieces,
where child nodes are purer than the parent node.
Searching through all of the candidate splits yields
optimal splits that maximize the ‘‘purity’’ of the
resulting trees. The RF algorithm uses the Gini
impurity index to calculate the information purity of
child nodes compared with their parent nodes, with
splitting thresholds determined from the maximum
reduction in purity values (Breiman 2001). This
splitting process is repeated until a stop condition is
reached.

The advantages of the RF algorithm include the
fact that the bagging technique, which involves
random resampling and replacement, yields differ-
ent training subsets that can be subsequently used to
generate decision trees, thereby increasing the
diversity within the model and avoiding correlations
between trees during the RF process. This allows
greater stability and prediction accuracy, as some of
the input are not used, avoiding certain variations.

The best evidential features are used as splitting
points to enable tree growth during the RF process.
The random selection of evidential features to be
used as part of the overall set of input evidential
features also reduces correlations between trees,
lessening the generalization error within RF models.
The RF method has been demonstrated for mineral
potential mapping by Carranza and Laborte (2015b,
2016), McKay and Harris (2016) and Hariharan
et al. (2017).

Evaluation of Results

The results of MaxEnt and RF modeling of
mineral potential were assessed using receiver
operating characteristic (ROC) curves and area un-
der the curve (AUC). The ROC is both robust and
threshold-independent, meaning that they are ideal
for determining the accuracy of the results of clas-
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sification modeling (Chung and Fabbri 1999; Lee
and Pradhan 2007). This method plots sensitivity
(true-positive rate) against ‘‘1-specificity’’ (i.e., the
false-positive rate), and the AUC is then calculated
for all possible probability thresholds. The AUC
values range from 0.5 to 1, where 0.5 is analogous to
a completely random prediction and 1 implies per-
fect prediction (Lee and Dan 2005); AUC values
of> 0.9 denote very good model performance
(McCune et al. 2002).

The performance of the RF and MaxEnt mod-
els in producing predictive maps with floating values
ranging from 0 to 1 was further assessed using suc-
cess rate curve analysis. This approach was de-
scribed by Agterberg and Bonham-Carter (2005)
and involves the classification of a series of
prospective pixels based on 5-percentile intervals of
probability values within the modeled predictive
map. The highest (100th percentile) cutoff proba-
bility relates to the minimum proportion of the
prospective parts of the study area, whereas the
lowest (0 percentile) cutoff probability contains the
maximum prospective area. Other percentile inter-
vals have success rates that represent the proportion
of gold deposit occurrences contained within the
associated prospective area. The proportion of gold
occurrences was also compared with cumulative
probability proportion values, where the equally
divided proportions of cumulative probability values
were plotted from highest to lowest against the
cumulative proportions of gold deposits contained
within each interval.

DATASETS AND APPLICATION

Spatial Datasets

The spatial datasets used in this study include a
geological map, a map showing the locations of
faults, fractures, and Au deposit locations (Qi et al.
2013) (Fig. 1). These spatial datasets were processed
using a grid with a pixel size 150 9 150 m to prepare
the data for analysis. This pixel size was objectively
determined based on the spatial pattern of known
Au deposits and the distribution of related faults and
intrusions to ensure the pixels adequately represent
the spatial resolution of the datasets being used and
that only one deposit exists in any given pixel
(Carranza 2009). A dataset of geochemical concen-
trations of 13 trace elements (Au, As, Sb, Bi, Hg, Ba,
Co, Cu, Pb, Zn, Ag, W, and Mo) derived from 9041

stream sediment samples was also used. The ana-
lytical method used is inductively coupled plasma
mass spectrometry (ICP-MS) with relative standard
deviation (RSD) 6.1%.

Due to the fact that geochemical data are
compositional data, standard statistical treatments
are unable to deal with such datasets that are rep-
resented as summing to a unit constant (Filzmoser
and Hron 2008; Carranza 2011; Zuo 2014). Re-
stricted by the force of a constant sum, geochemical
information carried by compositions is trading off
with each other. In practice, logratio transformations
including additive logratio transformation (alr)
(Aitchison et al. 1982), centered logratio transfor-
mation (clr) (Aitchison et al. 1982), and isometric
logratio transformation (ilr) (Egozcue et al. 2003)
are commonly used in geochemical data processing
to address the constant sum (i.e., closure) problem.
However, if compositions do not add to a constant
sum, they are considered as sub-compositions and
closed by adding them to the undetermined parts or
by forcing them to sum up to a constant depending
on the unit of measurement (Otero et al. 2005). In
our case study, the data of sub-compositions of 13
trace elements determined from the samples were
closed by forcing them to sum up to 100%. Then,
principal component analysis was applied to ilr-
transformed geochemical data using the R package
‘‘robCompositions’’ version 2.0.8.

In the family of logratio transformations that
are commonly used to open a closed system, only the
ilr-transformed variables lie in orthogonal system
and standard statistics designed for Euclidean space
are consequently applicable to ilr-transformed vari-
ables (Aitchison et al. 2000; Buccianti 2013; Filz-
moser et al. 2009, 2010; Pawlowsky-Glahn and
Egozcue 2006). However, ilr transformation reduces
the number of resulting variables bringing about the
difficulty in interpretation of statistical results
(Pawlowsky-Glahn and Egozcue 2006). For the sake
of ease of interpretation, the loadings and scores
from PCA based on ilr-transformed variables are
back-transformed to clr space (Filzmoser et al.
2009).

Target Variables

Mineral deposit occurrences comprise a
dichotomous target variable that is used in data-
driven mapping of mineral potential. This variable is
represented by values of 1 and 0 for pixels contain-
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ing deposits and no mineralization, respectively. The
mineral potential mapping here used the locations of
the 18 gold deposits and 18 barren locations (here
termed non-deposits) in the study area. The latter
was generated using the following selection criteria.

1. The number of non-deposits should be equal
to the number of Au deposit occurrences to
ensure optimal regression (Breslow and Cain
1988; Schill et al. 1993). If the number of
non-deposits exceeds the number of depos-
its, then the information derived from the
evidential maps input to the model is
diminished (King and Zeng 2001).

2. Non-deposits should be distal from any
known Au deposit to avoid having similar
multivariate spatial data signatures to areas
of known mineralization.

3. Non-deposit should be randomly spatially
distributed.

These criteria were used during the selection of
the 18 non-deposits used during RF analysis.

Evidential Variables

Analysis of the mineral system associated with
the mineralization in the study area indicates that it
is worth assessing the spatial association of the tar-
get variables in terms of distances to (1) faults and
(2) intrusions.

The geochemical data used in this study were
assessed using the local singularity analysis approach
(Cheng 2007), which can discriminate between weak
anomalies and background concentrations of min-
eralization-related or pathfinder elements. Here, we
use the concentrations of Au, As, Sb, Ag, and Cu as
indicators for singularity analysis (Fig. 2), where red
zones indicate areas containing accumulations of
these elements that are considered to be either
genetically related to mineralization or directly
indicate the location of Au deposits. Local singu-
larity indices were produced in GeoDAS (Cheng
2000) with singularity indices inversely proportional
to the geochemical anomalies identified using the
techniques above.

The final step was a principal component anal-
ysis (PCA) of the geochemical dataset, yielding PC1
and PC2 scores that were used as evidential vari-
ables. The association elements and its correlations
in PC1 and PC2 are depicted in the biplot (Fig. 3).

According to the geochemical field characteristics
and biplot of the first principal component (PC1)
and second principal component (PC2) of the data
(Fig. 3), the association of Au and As in the third
quadrant indicates that the Au deposit occurrences
are closely related to As anomaly. The association of
Hg, Sb, Au, and As in the second and third quad-
rants, resulting in negative value of PC1, corre-
sponds to the geochemical signature of tectonic
process or their products (i.e., fault system). The
separation of Au from the association of Hg and Sb,
which is represented by PC2, might imply extraor-
dinary immobility of Au in the study area, as it may
not always coexist with the more mobile Sb and Hg
in the surficial environment.

MaxEnt Modeling

This study used MaxEnt software version 3.4.1
to construct a MaxEnt model including nine evi-
dential maps, with default parameters set to a
maximum of 500 iterations, a maximum convergence
threshold of 0.00001, which are conditions used to
stop training. Because MaxEnt is calculated over the
set of pixels, large number of pixels will increase
processing time without a significant improvement in
modeling performance, random samples of maxi-
mum 10,000 ‘‘background’’ pixels were used to
compute the MaxEnt distribution over the union of
‘‘background’’ pixels and samples for deposits being
modeled; also, a regulation parameter of b = 1,
which depends on the sample size was used. The
larger sample size generally leads to a smaller value
of b in terms of features types, and the logistic out-
put format was selected for ease of interpretation.
Detail of the parameters can refer to help for
Maximum Entropy Species Distribution Modeling in
the software.

Random Forest Modeling

The RF modeling used the Random Forest
package within the R statistical environment (Liaw
and Wiener 2002; R Development Core Team 2008).
The parameters set for this model were the number
of trees (k) and the number of evidential maps (m)
that were randomly sampled at each split. The m
value can be empirically determined by calculating
the fraction of the total number of evidential maps
represented by the square root of the total number
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of evidential maps (m = �n, where n indicates total
number of evidential maps). Although Breiman
(2001) and Liaw and Wiener (2002) indicated that
an m value as low as 1 can yield accurate results,
Grömping (2009) reported that the m value needs to
include at least two evidential variables.

This study used the ‘‘tuneRF’’ function to
determine optimal parameters. Multiple experi-
ments indicated that the m parameter is consistent
with the empirical value outlined above and the
minimum k value of 1000 yields both the lowest
prediction errors and the most stable predictions.
The suitable values of these parameters ensure that

the RF algorithm will find a fit between the targets
(i.e., deposits and non-deposits) and evidential maps
and that all of the evidential maps input to the
model can then be applied to the model to compute
probabilities for all locations.

RESULTS AND DISCUSSION

Results of MaxEnt Modeling

The MaxEnt modeling outputs were mapped
using ArcGIS software with continuous logistic

Fig. 2. Maps showing the distributions of evidential variables used in MaxEnt and RF modeling during this study.
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probabilities ranging from 0.000022 to 0.98. The
probability map shown in Figure 4 indicates a good
relationship between areas with high-probability
values and the locations of known Au deposits.

A jackknife analysis of the results of the Max-
Ent model provides an indication of the relative
importance of each evidential map used in the
model, as well as guidance for Au exploration in the
study area. Jackknife analysis successively excludes
an evidential map from the analysis before re-run-

ning the MaxEnt model using the rest of the evi-
dential maps and a separate model using the
excluded evidential map only. This allows the
determination of the relative importance of each
evidential map to the final probabilities determined
by the model (Fig. 5). The results show that the PC1
scores, the singularity values calculated using Ag
and As concentrations, and the distance to intru-
sions are more important evidential maps than the
rest in the MaxEnt model. The PC1 scores and the
Ag singularity indices derived from the geochemical
datasets are the two most important evidential maps
in terms of relationships to the locations of known
gold deposit occurrences, reflecting the importance
of using geochemical anomalies during exploration
in this region. The third most important evidential
map is the distance to individual intrusions, which is
consistent with the fact that the deposits in the study
area are intrusion-related gold systems (Sui et al.
2017).

Response curves indicate how each evidential
map influences the resulting probability when all
variables are used to build a full model and reflect
the spatial relationships between the evidential maps
and areas containing gold deposits. High values
along the Y axis of a response curve indicate that
these areas have a higher logistic probability of
containing a known gold deposit (Liu et al. 2017).
The PC1 scores are the most important evidential
variable and show an increase along the X axis that
leads to a decrease in the probability of gold deposit
occurrences. Variations in distance to intrusions re-
cord an increase along the X axis, leading to a de-
crease in the probability of gold deposit occurrences
with increasing distance. This result is expected, as
the mineralization in the study area is genetically
related to intrusions. The response curves for the
Ag, As, and Cu singularity indices reflect the nature
of these indices, where singularity index values
of> 2 indicate the dispersion of the corresponding
element. The response curves for these elements
indicate that all known deposit occurrences are
closely related to areas containing accumulations of
Ag, As, and Cu (Fig. 6). In comparison, the response
curves for Au singularity indices, distance to faults,
PC2 scores and Sb singularity indices are different
from the rest. According to the spatial relationship
between Au deposits occurrence and values of Au
singularity indices, most of Au deposits related to
magmatic rocks (Dewulu) have high accumulation
of Au (red zone, low values of Au singularity in
Figure 2); however, the gold deposits in the western

Fig. 3. Biplot of the first two PCs.

Fig. 4. MaxEnt-model-derived gold prospectivity map for the

Hezuo–Meiwu district.
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zone especially the Zaozigou deposit have higher
values (dispersion) of Au singularity indices. As to
the distance to faults, only three gold deposits that
near to the Dewulu have values of distance to faults
larger than 6000 m and 14 gold deposits are less than
4000 m from the faults.

Finally, although distances to faults are of lesser
importance in the MaxEnt model, the response
curve for distance to faults (< 4 km and> 6 km
from faults) suggests that these faults in the study
area might have an influence over a larger scale
(e.g., from a mineral systems viewpoint).

Results of Random Forest Modeling

The RF modeling yielded a less distinct rela-
tionship between high-probability areas and areas
containing known Au deposits. The red zones within
the RF model (Fig. 7) indicate areas of higher
probability are much larger than those within the
MaxEnt model. The RF algorithm also ranks the
importance of evidential maps using mean decrease
accuracy and mean decrease Gini indices (Fig. 8).
The first measure is computed from OOB data,
reflecting the decrease in accuracy within the entire
forest model, whereas the Gini importance index
measures the average gain of purity by using splits of
a given variable. The sensitivity of each evidential
map was determined using marginal effects (Fig. 9)
on target variables while holding all other evidential
maps constant.

The results of RF modeling indicate that the
three most important evidential maps are PC1
scores, As singularity indices, and the distance to
intrusions (Fig. 8). The positive spatial associations
between known gold deposit occurrences and the
locations of intrusions and faults mean that the
former are located proximal to the latter. This is
confirmed by the RF modeling, which yields an
optimal positive spatial association within � 1000 m
(accounting for 15 gold deposits) and � 4000 m
(accounting for 14 gold deposits) of intrusions and
faults, respectively (Fig. 9). The positive spatial
association between known gold deposits and PC1
scores also indicates that the locations of known Au
deposits are characterized by negative PC1 scores.

The spatial associations of gold deposit occur-
rences with geochemical singularity indices obtained
during the RF modeling are slightly different from
the response curves obtained from the MaxEnt
modeling. The in-depth analysis of singularity in-
dices distribution shows that gold deposits related to
Dewulu intrusions in the eastern zone usually have
low values of Au, As singularity and deposits asso-
ciated with dikes and stocks in the western zone
usually have high value of Au, As singularity which
reflects two groups of deposits in the study area. All
of the evidential maps can be interpreted from
geological viewpoints to some extent, and none of
these data have flat responses, indicating that all of
the evidential values have some spatial association
with the known gold deposit occurrences.

Fig. 5. Jackknife analysis indicating the relative importance of the individual evidential maps used in the

MaxEnt model.
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Mineral Potential Mapping by Zones

Rationale

Considering the two groups of deposits and two
populations in the response curves and marginal
effects (Figs. 6 and 9), it is necessary to investigate
uncertainty in mineral potential mapping in the
study area by zones. Therefore, the 12 deposits in
the eastern zone were used to train the MaxEnt and
RF models, and the results were cross-validated
using the six deposits in the western zone. Then, the
MaxEnt and RF models were trained using the six
deposits in the western zone, and the results were
cross-validated using the 12 deposits in the eastern
zone.

Firstly, two groups of deposits used as training
points for MaxEnt modeling to assess the changes of

regularized training gain of evidential maps (Fig. 10)
corresponding to deposits in the eastern zone (E)
and western zone (W). Compared to the jackknife of
regularized training gain for deposits in the study
area, the great increase gained from distance to
intrusions and distance to faults in the western zone
shows that the fault and intrusions (dikes and stocks)
play an important role in the formation of gold de-
posit. However, in the eastern zone, the PC1 scores
and Ag, As singularity indices indicate that geo-
chemical anomalies would contribute significantly in
prospecting for gold deposits.

Secondly, apart from the jackknife analysis of
regularized training gain, the performance of train-
ing models of MaxEnt and RF on the test data helps
to clarify the difference between the groups of gold
deposits. Figure 11 shows that the trained MaxEnt
models give different values of AUC. The training

Fig. 6. Response curves for the evidential variables used during MaxEnt modeling.
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model in the eastern zone works well with the
western test data, which can be explained by the
jackknife of regularized training gain. That is be-
cause the types of evidential maps in the eastern
zone are the same as the type of evidential maps in
the western zone, although the evidential maps in
the western zone lack the Ag and As singularity
maps (Fig. 10) leading to poor performance of
MaxEnt model trained on the western test data. The
RF model produces the confusion matrices (Ta-
ble 1) of training data and test data. The large class
errors also imply that training should indeed be di-

vided according to two zones for mineral potential
mapping, respectively.

Analysis and Results

In order to reduce the uncertainty in mineral
potential mapping, the study area was divided into
two zones by the Xiahe–Hezuo thrust. The mineral
potential mapping using MaxEnt and RF models
was then performed for each zone. Figure 12 shows
the importance of evidential maps to deposits in the
corresponding zones. The jackknife analysis of reg-
ularized training gains in the MaxEnt modeling
shows that the most important evidential maps in
the eastern and western zones are PC1 scores and
distance to intrusions, respectively, which are also
confirmed by the mean decrease accuracy and mean
decrease Gini in the RF modeling (Fig. 13). More-
over, the appearance of PC2 in the western zone
(Fig. 12) and the disappearance of Ag singularity
index in the eastern zone (Fig. 12) corresponding to
Figure 10 imply that the efficacy of the evidential
variables likely depends on a certain scale.

Discussion

The AUC values for the RF modeling by zones
(RF-EW), RF, MaxEnt modeling by zones (Max-
Ent-EW) and MaxEnt models generated during this

Fig. 7. RF-modeling-based gold prospectivity map for the

Hezuo–Meiwu district.

Fig. 8. Relative importance of evidential variables used during RF modeling.
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study are 0.958, 0.926, 0.914 and 0.864, respectively
(Fig. 14). These results indicate that the mineral
potential mapping by zones have much larger AUC
value, indicating that in-depth analysis of evidential
maps at different scales based on metallogenic
characteristics will help to reduce uncertainty in
mineral potential mapping.

The evidential map importance analysis and
ROC curves discussed above provide insights into
the predictive quality of the output of each of the
four models generated during this study. The per-
formance of the RF and MaxEnt models in pro-
ducing predictive maps with floating values ranging
from 0 to 1 was further assessed using success rate
curve analysis. The success rate curve is a capture-
efficiency curve that indicates the relationship be-

tween the probability distribution and Au deposit
locations. The derived capture-efficiency curves
(Fig. 15) indicate the following. All of known gold
deposits are located within the top 35% (i.e., high
probability) part of the RF modeling by zones and
94% of gold deposit within top � 40% (i.e., high
probability) in RF modeling in the whole study area.
Less than 45% of the known gold deposits lie within
the same top 35% section of the MaxEnt modeling
by zones and only � 39% of gold deposits within top
35% probability in MaxEnt modeling in the whole
study area. These results, combined with the fact
that both RF models contain an area representing
19% of the total study area but that contains more
than 88% of the known gold occurrences (Fig. 16),
suggest that the RF model produces a more rea-

Fig. 9. Marginal effects of evidential variables on the target variables during RF modeling.
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Fig. 10. Jackknife analysis indicating the relative importance of the individual evidential maps used in the

MaxEnt model with the western and eastern deposits, respectively.

Fig. 11. The test AUC for the eastern and western zones.
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sonable probability distribution outcome than the
MaxEnt model, given the locations of known gold
deposits in the study area.

The success rate and capture-efficiency curves
provide some insights in probability and area dis-

tribution corresponding to proportion of Au deposit
occurrences. Here, we use the correlation indices of
probabilities (Table 2) in the prospectivity map
generated by the four models to investigate the
spatial relations of the prospective area and provide
more reliable results for further exploration.

The RF modeling by zones (RF-EW) with
highest AUC value of 0.958 has a higher correlation
index of 0.82 with RF modeling in the study area,
indicating that the PC1 scores and distance to
intrusions dominate the classification efficacy. Given
that both MaxEnt and RF models performed dif-
ferently in the whole study area in the two zones
indicate that those two evidential variables play
different roles in each of group of deposits. The
correlation index of probabilities between MaxEnt
by zones (MaxEnt-EW) and RF by zones is as high
as 0.71, which means that the high potential area are
spatially related, and visual ternary class maps from

Table 1. Confusion matrices of training data and test data in RF

0 1 Class error

Eastern training 0 11 1 0.083

1 0 12 0

Western test 0 4 2 0.333

1 1 5 0.167

Western training 0 5 1 0.167

1 0 6 0

Eastern test 0 12 0 0

1 5 7 0.41

Fig. 12. Jackknife analysis indicating the relative importance of the individual evidential maps used in the

MaxEnt model by zones.
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Fig. 13. Relative importance of evidential variables in the eastern (E) and western (W) zones determined by RF modeling.

Fig. 14. ROC curves for the MaxEnt and RF models

generated during this study.
Fig. 15. Capture-efficiency curves for the MaxEnt and RF

models.
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the MaxEnt-EW and RF-EW would facilitate the
decision of exploration.

In order to distinguish the levels of potential for
gold deposits of the study area, the concentration–
area (C-A) fractal analysis (Cheng 1999) was adop-

ted to delineate three probability populations cor-
responding to high potential, moderate potential,
and low potential (Fig. 17).

Future mineral exploration in this area can be
guided by ternary class gold prospectivity maps ob-
tained from the MaxEnt-EW (Fig. 18) and RF-EW
(Fig. 19) models. According to C-A thresholds for
prospectivity maps, the thresholds of 0.47 and 0.13
were used to divide the prospectivity map into high
potential, moderate potential and low potential area
in the MaxEnt modeling by zones. The thresholds of
0.77 and 0.25 were used in RF modeling by zones.
The area delineated by the threshold 0.77 in the RF
modeling should be prioritized because it outlines
7.5% of the study area as prospective with 83%
success rate.

SUMMARY AND CONCLUSIONS

Mineral potential mapping represents an
important tool for mineral exploration in both
brownfield and greenfield environments. This study
evaluated the applicability and compared the per-
formance of the random forest (RF) and the maxi-
mum entropy (MaxEnt) models to mineral potential
mapping, both of which have been widely used in
environmental and ecological modeling but so far
have only had limited use in mineral potential
mapping. This contribution investigated the poten-
tial use of the RF and MaxEnt models in identifying
prospective areas for mineral exploration and in

Fig. 16. Success rate curves for the MaxEnt and RF models.

Table 2. Correlation of probabilities in the mineral potential

maps

Correlation MaxEnt MaxEnt-EW RF RF-EW

MaxEnt 1 0.59 0.68 0.63

MaxEnt-EW 0.59 1 0.49 0.71

RF 0.68 0.49 1 0.82

RF-EW 0.63 0.71 0.82 1

Fig. 17. C-A thresholds for prospectivity maps.

Fig. 18. Ternary class gold prospectivity map obtained from

the MaxEnt modeling by zones.
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predicting the spatial distribution of potential gold
deposit occurrences within the Hezuo–Meiwu area
of China.

Mineral potential maps were generated by
selecting and preparing evidential maps relevant to
the specific type of the mineral deposits present in
the study area as well as the associated larger min-
eral systems. These data were then examined using
innovative methods such as the singularity index
analysis of individual geochemical elements and the
commonly used principal component analysis,
yielding useful information that could be used dur-
ing prospectivity modeling. Finally, these data were
combined with RF and MaxEnt modeling to pro-
duce mineral potential maps in a GIS environment.

The accuracy of the models indicates that the
RF models in the study area or performed by zones
are slightly better than the MaxEnt model. These
two models also allow a sensitivity analysis, yielding
quantitative evaluations of the effect of evidential
maps on the resulting mineral potential maps. These
sensitivity analyses indicate that there are two
groups of deposits, and mineral potential mapping
should be carried out in terms of metallogenic
characteristics. In order to reduce the uncertainty in
prospectivity maps, both of MaxEnt and RF are
performed by zones. According to the sensitivity
analysis, the mineral potential mapping in the
western zone is most sensitive to distance to intru-
sions, and the eastern zone is dominated by PC1
scores.

In addition to their high AUC values, the
MaxEnt and RF modeling by zones can more pre-
cisely identify areas containing known gold deposits,
with both models identifying areas occupying 19%
of the study area and containing> 88% of the
known gold deposits. The results enable a compre-
hensive evaluation of the mineral potential of the
study area and provide a case study for machine-
learning-based data-driven predictive modeling in
an area containing only a few (< 20) known miner-
alized occurrences.
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Lerch, M. F., Xue, F., Kröner, A., Zhang, G. W., & Tod, W.
(1995). A middle Silurian-Early Devonian magmatic arc in
the Qinling Mountains of central China. The Journal of
Geology, 103(4), 437–449.

Lewkowski, C., Porwal, A., & González-Álvarez, I. (2010). Ge-
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