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Predictionof true classes of surficial anddeepearthmaterials usingmultivariate spatial data is a
common challenge for geoscience modelers. Most geological processes leave a footprint that
can be explored by geochemical data analysis. These footprints are normally complex statis-
tical and spatial patterns buried deep in the high-dimensional compositional space. This paper
proposes a spatial predictive model for classification of surficial and deep earth materials
derived from the geochemical composition of surface regolith. The model is based on a com-
bination of geostatistical simulation and machine learning approaches. A random forest pre-
dictive model is trained, and features are ranked based on their contribution to the predictive
model. To generate potential and uncertainty maps, compositional data are simulated at
unsampled locations via a chain of transformations (isometric log-ratio transformation fol-
lowed by the flow anamorphosis) and geostatistical simulation. The simulated results are
subsequently back-transformed to the original compositional space. The trained predictive
model is used to estimate the probability of classes for simulated compositions. The proposed
approach is illustrated through two case studies. In the first case study, themajor crustal blocks
of the Australian continent are predicted from the surface regolith geochemistry of the Na-
tionalGeochemical Survey ofAustralia project. The aim of the second case study is to discover
the superficial deposits (peat) from the regional-scale soil geochemical data of the Tellus
Project. The accuracy of the results in these two case studies confirms the usefulness of the
proposed method for geological class prediction and geological process discovery.

KEY WORDS: Compositional data, Log-ratio, Flow anamorphosis, Geostatistical simulation, Machine
learning.

INTRODUCTION

Surficial and deep earth materials normally
consist of several classes with different characteris-
tics. Tectonic, lithological and alteration units, soil
types, vegetation classes, plant species, and land uses
are examples of such classes. Spatial maps of these
classes and their associated uncertainties are vital
components in the current strategies for managing
projects such as mineral exploration, animal and
human health, environmental and ecological plan-
ning, efficient management of water resources,
geohazard risk assessment, agriculture, and sustain-
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able food production. Class prediction and spatial
uncertainty modeling using multivariate spatial data
are a common challenge for geoscience modelers.
Mechanisms behind geological systems can be ex-
plained partly by geochemical data and methods
(Buccianti and Grunsky 2014; Grunsky et al. 2014;
Tolosana-Delgado and van den Boogaart 2014;
Harris and Grunsky 2015; Tolosana-Delgado and
McKinley 2016; Caritat et al. 2017). Spatial or spa-
tiotemporal geoscientific entities such as climate
zones, ecosystems, landforms, and surface and sub-
surface geology are related to geochemistry derived
from surface and near-surface materials (Drew et al.
2010; Grunsky et al. 2013; McKinley 2015; Grunsky
et al. 2017; McKinley et al. 2018). Over the last
decade, geochemical surveys at different scales (e.g.,
regional, national, transnational, and continent
scales) have become widely available. These geo-
chemical surveys normally constitute ‘‘big data’’ of
high dimensionality making the statistical and spa-
tial analyses challenging (Grunsky 2010). Most
geological processes leave some sort of footprint
that can be explored by advanced geochemical data
analysis. These footprints are complex multivariate
statistical and/or spatial patterns hidden deep in the
geochemical compositional space. Advanced statis-
tical and/or spatial compositional data analysis
should be implemented to explore these patterns.
Geochemical data are inherently compositional in
nature, presenting several challenges for spatial
predictive models (Pawlowsky-Glahn and Olea
2004; Tolosana-Delgado 2006; Tolosana-Delgado
and van den Boogaart 2013; van den Boogaart and
Tolosana-Delgado 2013; Pawlowsky-Glahn and
Egozcue 2016). Compositional data are multivariate,
nonnegative values that represent the abundance of
some parts of a whole. In such data, the constant
sum constraint forces at least one covariance to be
negative and induces spurious statistical and spatial
correlations and patterns. Furthermore, these data
carry just relative information (Aitchison 1986) and
interpretations are necessarily multivariate, depen-
dent on all components. To transform compositional
data into an unbounded space and to increase
mathematical tractability, different log-ratio trans-
formations (Aitchison 1986; Pawlowsky-Glahn and
Olea 2004; Tolosana-Delgado 2006) can be applied
prior to using standard (geo)statistical techniques. A
geochemical survey normally produces thousands of
samples and dozens of variables (log-ratios) and as
such is practically impossible to effectively visualize
and interpret without the assistance of computers

and statistical tools. In addition, the underlying
geological processes most of the time are obscure
and difficult to understand. In such situations, ma-
chine learning algorithms (MLAs) have been shown
to perform well in the prediction of classes from
spatially dispersed data and discovering the under-
lying geological processes (Kanevski et al. 2009;
Harris and Grunsky 2015). However, MLAs are
typically not spatially predictive algorithms, which
means that they do not consider the multivariate
spatial relationships between features. As a result,
the probability maps generated via MLAs cannot be
accepted as a model of spatial uncertainty. In a
geostatistical treatment, spatial relationships are ta-
ken into account via means such as second-order
((cross-)variograms) and/or higher-order statistics
(training images). To address this limitation of
MLAs, an alternative solution is proposed in this
study based on the combined use of advanced mul-
tivariate geostatistical simulation and MLAs.

The proposed spatial compositional predictive
model is twofold: first, spatial simulation of geo-
chemical compositions at unsampled locations and
second class prediction for each simulated map via a
trained random forest (RF) algorithm (Breiman
2001). Other spatial (Tolosana-Delgado et al. 2015)
or nonspatial (Kuhn and Johnson 2013) predictive
models can also be implemented, but RF is utilized
in this study for its ease of implementation, robust-
ness against over-fitting, ability to handle many
types of predictors (sparse, skewed, continuous,
categorical, etc.) without the need to preprocess
them, ability to handle missing data and to select the
most relevant features (Kuhn and Johnson 2013).
Once the spatial compositional vectors have been
simulated in the study area, MLAs (RF in this study)
can be implemented to predict the probability of
occurrence of classes conditional to each realization
of the compositional random function. To simulate
the compositional random function at unsampled
locations, the input geochemical compositions are
transformed to real space via an isometric log-ratio
(ilr, Egozcue et al. 2003) transformation. To avoid
violating the assumption of multivariate multi-
Gaussianity of geostatistical simulation techniques
(Chilès and Delfiner 2012), log-ratios are trans-
formed to multivariate normal space via a flow
anamorphosis (FA) algorithm (Mueller et al. 2017;
van den Boogaart et al. 2017). The turning bands
(TB) algorithm (Emery and Lantuéjoul 2006; Emery
2008) is used to simulate the orthogonal factors at
unsampled locations. Finally, the simulated results
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are back-transformed to the original space to
provide several simulated spatial maps of geo-
chemical compositions. Based on the true classes
for the input set, a random forest algorithm is
trained using the generated features. The ability of
RF to rank the features based on their contribu-
tion to the predictive model aids the discovery of
underlying geological processes. The trained RF is
used to predict the probabilities of classes at
unsampled locations using the simulated composi-
tions. Minimum, expected, and maximum proba-
bility scenarios are defined for each class from
simulated probabilities.

The objectives of this research are to intro-
duce a new method to account for spatial uncer-
tainty on classifiers based on a combination of
geostatistical simulation and machine learning
classification algorithms. The most probable geo-
logical classes are predicted out of geochemical
survey data using the new model of spatial
uncertainty. Finally, a compositional feature
selection is introduced and implemented for geo-
logical process discovery studies.

The proposed approach is illustrated through
two case studies. In the first one, surface regolith
geochemistry data are used to predict the major
crustal blocks of the Australian continent. Discov-
ering superficial peat deposits in Northern Ireland
from regional-scale soil geochemical data is the aim
of the second case study.

The organization of this paper is as follows:
‘‘Compositional Data Analysis’’ section discusses
the analysis of compositional data. Flow anamor-
phosis as a powerful technique for transforming in-
put data to multivariate normal space is discussed in
‘‘Flow Anamorphosis’’ section. ‘‘Random Forest
Algorithm and Feature Selection’’ section presents
the random forest predictive model and the recur-
sive feature elimination with resampling technique.
Steps of the proposed method for modeling spatial
uncertainty are presented in ‘‘Spatial Modeling of
Geological Classes’’ section. ‘‘Major Crustal Blocks
Prediction Using Surface Regolith Geochemistry’’
and ‘‘Post-glacial Deposits Exploration for Envi-
ronmental Monitoring’’ sections present the imple-
mentation of the method and results and discussion
for the two case studies. Finally, some conclusions

and the final thoughts are presented in ‘‘Conclu-
sions’’ section.

METHODOLOGY

Compositional Data Analysis

Compositions are multivariate data whose com-
ponents represent the relative contribution of some
parts forming a whole. Typically, these nonnegative
components are measured on the same scale (pro-
portions, percentages, ppm, or ppb) and are con-
strained by a constant sum property. Regionalized
compositions are consequently defined as follows:

~Z uð Þ ¼ z1 uð Þ; z2 uð Þ; . . . ; zD uð Þ½ �;
zi uð Þ � 0; i ¼ 1; 2; . . . ;D; u 2 A
PD

i¼1

zi uð Þ ¼ m
;

8
<

:

ð1Þ

where zi uð Þ represents the ith componentmeasured at
location u within the study area A and m is the con-
stant sum. Geochemical data are a typical example of
compositional data. It is often the case that the data
analyzed do not add to the constant m, in which case
an additional variable can be introduced, often called
filler or rest, to ensure that the constant sum constraint
is satisfied. Compositional data carry by definition
relative information (Aitchison 1986), and the con-
stant sum constraint is known to induce the problems
of spurious statistical and spatial correlations
(Aitchison 1982; Pawlowsky-Glahn and Olea 2004).
Constraints of positivity and constant sum and the
spurious correlations can be appropriately addressed
by implementing log-ratio transformations, for in-
stance, making (geo)statistical treatment more
amenable (Aitchison 1986; van den Boogaart and
Tolosana-Delgado 2013; Pawlowsky-Glahn et al.
2015; Pawlowsky-Glahn and Egozcue 2016). Several
families of log-ratio transformations exist in the lit-
erature. The pairwise log-ratio (pwlr), additive log-
ratio (alr), and centered log-ratio (clr) transforma-
tions were introduced by Aitchison (1986), and the
isometric log-ratio (ilr) transformation was proposed
by Egozcue et al. (2003). The pairwise log-ratios are
readily interpretable and are defined as follows:
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where i, j 2 1; 2; . . . ;Df g. The centered log-ratios
present the logarithms of ratios of each component
to the geometric mean of all components. They are
obtained via the following formula:

clr ~Z uð Þ
� �

¼ ln
~Z uð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQD

i¼1 zi uð ÞD

q

0

B
@

1

C
A: ð3Þ

Finally, the isometric log-ratio transformation is
defined as follows:

ilr ~Z uð Þ
� �

¼ V � clr ~Z uð Þ
� �

; ð4Þ

where V is a D� 1ð Þ �D matrix whose columns are
pairwise orthogonal vectors, each sums to zero. Each
matrix V satisfying these conditions gives rise to an
ilr transformation.

All the aforementioned log-ratio transforma-
tions are log-contrasts, that is: linear combinations of
the components in log-scale with coefficients sum-
ming to zero:

n uð Þ ¼
XD

i¼1

ailn zi uð Þð Þ;
XD

i¼1

ai ¼ 0; ai 2 R ð5Þ

Complex log-contrasts can be defined to discover
hidden underlying geological processes and classes.
Many log-contrasts can be defined, and the most
appropriate ones depend on the aim of the analysis
undertaken (Pawlowsky-Glahn and Buccianti 2011;
McKinley et al. 2016).

Flow Anamorphosis

As discussed in the preceding section, compo-
sitional data do not have a unique, canonical rep-
resentation and several log-ratio transformations are
available. Invariance of the simulated results under
the choice of log-ratio transform is thus highly
desirable. This property is known as affine equiv-
ariance. Log-ratios are not commonly multivariate
normal, so they have to be combined with a normal
score transform prior to using geostatistical simula-
tion techniques in order to not violate the assump-
tion of multi-Gaussianity of most of these simulation
algorithms (Chilès and Delfiner 2012; Mueller et al.
2014). Conventional normal score transformations
based on quantile matching are neither affine
equivariant nor do provide multivariate normal
transformed scores. The flow anamorphosis is a
multivariate form of gaussian anamorphosis which is
capable of transforming original multivariate data to
multivariate normal space and at the same time is
invariant under the choice of log-ratio transform
(Mueller et al. 2017; van den Boogaart et al. 2017).
FA is applied in this study because of its ability to
reproduce complex patterns (e.g., presence of out-
liers, presence of several populations, nonlinearity,
and heteroscedasticity) in the input data, its invari-
ance property under the choice of log-ratio trans-
formation, and its property of generating spatially
orthogonal factors that makes geostatistical simula-
tion straightforward. The transformation is con-
trolled by two parameters: r0 and r1 (initial and final
spreads of the smoothing kernels of the kernel
density estimates) which need to be tuned. The
choice of a suitable value for r0 depends on the
number of variables, sample size, and complexity of
the input data, while r1 controls the ranges of the
transformed distributions. The simulated results are
subsequently back-transformed to the original space
via FA�1.

Table 1. Prediction with uncertain inputs

Realization number ðlÞ p1 uð Þ p2 uð Þ p3 uð Þ Most probable class ðkÞ

1 0.10 0.20 0.70 3

2 0.15 0.25 0.60 3

3 0.05 0.30 0.65 3

4 0.10 0.25 0.65 3

5 0.15 0.30 0.55 3

Final decision for location u = 3
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Figure 1. (a) Major crustal blocks of Australia (colored and numbered). The line styles of the MCB boundaries

reflect the confidence level in their position/existence (solid thick: high; solid thin: moderate; dashed: low; dot

dashed: none). (b) Surface geology and the geological regions of Australia. The NGSA sample site locations are

shown as black dots on both maps. Sources: Blake and Kilgour (1998), Caritat and Cooper (2011), Korsch and

Doublier (2016), Nakamura and Milligan (2015), Raymond (2012). Modified after Grunsky et al. (2017).
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Figure 2. Input geochemical compositions, two realizations of the geostatistical simulation procedure and expected map for three

major components Ca, total Fe, and Mg (warm colors are associated with high values).
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Random Forest Algorithm and Feature Selection

Tree-based classification models consist of sev-
eral nested conditions on the predictors that parti-

tion the observations into purer subpopulations.
Within these partitions, a model is used to predict
the class of future observations. Tree-based models
are very popular due to their ease of interpreta-
tion and implementation, their ability to handle
many types of predictors (sparse, skewed, contin-
uous, categorical, etc.) without the need to pre-
process them, allow missing data, and conduct
feature selection (Kuhn and Johnson 2013). How-
ever, single decision trees are prone to instability,
which means that slight changes in the input
observations can drastically change the structure of
the tree and, hence, the subsequent interpretations
and predictions. Ensemble methods that combine
many simple predictive models (e.g., built from
bootstrap samples) into one predictive model have
been developed to address this instability and have
much better predictive performance (Breiman
1996). The other advantage of the ensemble
models is that the predictive performance can be
estimated internally, which correlates well with
either cross-validation estimates or test set esti-
mates. The left-out observations from each boot-
strap sample (called ‘‘out-of-bag’’) are used to
assess the predictive performance of each model in
the ensemble. The average of the out-of-bag per-
formance metrics can then be used to measure the
overall predictive performance of the entire

ensemble. Algorithm 1 shows the processes of a
general random forest algorithm (Breiman 2001), a
well-known ensemble predictive model.

For each new observation, each of the t trees in
the forest is used to predict its class and the resulting
t predictions are combined to give the forest pre-
diction. The number of trees in the forest (t) and the
number of randomly selected predictors for each
split (s) are the most important parameters in the

Algorithm 1 General RF algorithm (after Breiman (2001))

1. Select the number of trees in the forest ( )

2. for = :

3. Generate a bootstrap sample of the original observations

4. Train a decision tree on this sample

5. for each split in the tree

6. Randomly select a subset ( ≪ ) of the predictors ( , = : )

7. Select the best predictor out of this subset and partition the observations

8. end

9. Build the ultimate tree without pruning 

10. end 

Figure 3. Conditional total compositional variation, a means

to assess the spatial uncertainty of the geochemical

compositions (warm colors are associated with high

uncertainty, and black dots are the location of samples).
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RF algorithm, which need to be tuned. It has been
shown that the selection of a large t will not ad-
versely affect the RF model and does not lead to
over-fitting (Breiman 2001); however, it increases
the computational burden. Several experiments
have shown that the random forest tuning parameter
does not have a drastic effect on its accuracy (Kuhn
and Johnson 2013). Several approaches have been
proposed to quantify the importance of predictors in
the RF model such as measuring the improvement in
node purities for each predictor at each occurrence
of that predictor across the whole forest and aggre-
gating them to determine the overall importance.

However, these approaches for measuring the
importance of predictors are adversely affected by
the correlations between predictors (Strobl et al.
2007).

Due to the high-dimensional characteristic of
the log-contrasts ðnÞ calculated from geochemical
compositions, determining which subset of them
should be included in a predictive model is a critical
question. While decision trees are not affected by
redundant predictors due to the built-in feature
selection, RF shows a moderate degradation in its
accuracy due to random selection of predictors for
splitting (Kuhn and Johnson 2013). Given the

Figure 4. Recursive feature elimination with resampling to identify the most important subset of log-ratios.
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potential negative impact of redundant information
(collinearity within log-contrasts), there is a need to
find a smaller subset of them by maximizing the
predictive performance of the RF algorithm. Fea-
ture selection is primarily implemented for remov-
ing noninformative or redundant predictors from the
model. Multiple predictive models (built from sub-
sets si of significant predictors) are evaluated to find
the optimal combination of predictors that maxi-
mizes model performance. A recursive feature
elimination with resampling technique (Guyon et al.
2002; Kuhn and Johnson 2013) is used in this study
to select the most informative subset of log-contrasts
for the classification purpose. The final predictive
model with the highest accuracy is built from this
subset of significant predictors (Algorithm 2).

Spatial Modeling of Geological Classes

To spatially predict geological classes from geo-
chemical composition, the first step is to simulate the
compositional random function at unsampled loca-
tions. Algorithm 3 shows the procedure of geostatis-
tical simulation of regionalized compositions. In line 1
of this algorithm, any log-ratio transformation can be
implemented as long as the selected anamorphosis is
affine equivariant. An ilr transformation (Eq. 4) was
used in this study for this purpose. After transforming
the log-ratios tomultivariate normal space via the FA
algorithm, the spatially orthogonal multivariate nor-
mal scores are simulated at unsampled locations
independently. In this study, a turning bands algo-
rithm will be used for this purpose (Emery and Lan-

Algorithm 2 Recursive feature elimination with resampling

1. for each iteration of resampling 

2. Divide the input observations into training and test subsets via resampling

3. Build a predictive model on the training set using all the predictors

4. Measure the model accuracy

5. Measure the rank of predictors

6. for each subset size , = :

7. Keep the most important predictors

8. Build a predictive model on the training set using predictors

9. Measure model performance on the test subset

10. end

11. end

12. Calculate the performance profile over the using the test subsets

13. Determine the appropriate number of predictors

14. Determine the final ranks of predictors

15. Fit the final model based on the optimal predictors using all the input 

observations
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tuéjoul 2006; Emery et al. 2016). After generating L
realizations of the compositional random function,
the expected spatial map of regionalized composi-
tions is defined as follows:

~Z� uð Þ ¼ C
YL

l¼1

zl1 uð Þ
 !1=L

;
YL

l¼1

zl2 uð Þ
 !1=L

;

2

4

. . . ;
YL

l¼1

zlD uð Þ
 !1=L

3

5;

ð6Þ

where C is the closure operator defined as:

C ~Z uð Þ
� �

¼
QL

l¼1 z
l
1 uð Þ

� �1=L

PD
d¼1

QL
l¼1 z

l
d uð Þ

� �1=L
;

QL
l¼1 z

l
2 uð Þ

� �1=L

PD
d¼1

QL
l¼1 z

l
d uð Þ

� �1=L
; . . . ;

2

6
6
4

QL
l¼1 z

l
D uð Þ

� �1=L

PD
d¼1

QL
l¼1 z

l
d uð Þ

� �1=L

3

7
7
5:

ð7Þ

The conditional total compositional variation in the
simulated composition at location u is given by:

totvarcomposition
~Z uð Þ
� �

¼ 1

2D

XD

i¼1

XD

j¼1

var ln
zi uð Þ
zj uð Þ

� �

:

ð8Þ

The map of the total compositional variations for
the simulated compositions can be considered as a
means to assess spatial uncertainty of the geo-
chemical compositions. High values of this metric
show the most uncertain areas (and vice versa)
with respect to the simulated geochemical com-
positions.

The second step is to build a predictive model
based on the input labeled observations (input
geochemical compositions). For such a predictive
model, the features consist of log-contrasts ðnÞ. To
extract relevant compositional information, a com-
bination of the knowledge-driven log-contrasts
(based on a geochemical understanding of the pro-
cesses under consideration) and established mathe-
matical representations (e.g., pwlr and clr) can be
used as the input features (McKinley et al. 2016).
These features together with the associated classes
(e.g., rock types, soil types, mineralized material) are
used to train the RF predictive model (Algorithm 1).
The significant log-contrasts are recognized and or-
dered based on their contributions to the predictive
model via Algorithm 2. The selected log-contrasts

Algorithm 3 Geostatistical simulation of geochemical compositions

1. Transform the set of closed components into a set of − unbounded log-

ratios, by means of a log-ratio transformation

2. Transform the log-ratios to multivariate normal space via an affine equivariant 

anamorphosis

3. Simulate the multivariate normal scores at unsampled locations via any 

geostatistical simulation technique

4. Transform the simulated results back to the original (compositional) space
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(out of many) and their ranks are very useful for
geological process discovery and interpretation. The
same selected log-contrasts are calculated from the
simulated compositions at unsampled locations. The
trained RF is used to predict classes at these loca-
tions. For each location u and for each realization l
of the compositional random function, RF generates
a discrete prediction (geological classes

Il uð Þ ¼ k; k ¼ 1; . . . ;K and l ¼ 1; . . . ;L) and a vec-

tor of probabilities ~pl uð Þ ¼ pl1 uð Þ; pl2 uð Þ; . . . ; plK uð Þ
� �

.

However, the local uncertainty of the discrete pre-
dictions is underestimated and should not be used
for spatial classification purposes. As an example,
consider the information in Table 1, where there are
three geological classes ðk ¼ 1; 2; 3Þ and at location u
a compositional random function has been simulated
five times ðl ¼ 1; . . . ; 5Þ. Running a predictive model
on these realizations (uncertain inputs) will generate
different sets of probabilities. Although the proba-
bility of other classes occurring is nonzero for each
realization, the final decision for location u would be
class 3 with zero uncertainty, which is not true. This
example shows that the spatial uncertainty of geo-

logical classes generated by a predictive model
might be misleading.

As a result, discrete predictions of RF for each
realization of geochemical compositions should be

ignored and predicted probabilities ð~pl uð Þ ¼
pl1 uð Þ; pl2 uð Þ; . . . ; plK uð Þ
� �

Þ should be treated as fol-

lows: For a location u, the probability of occurrence

of a specific class k varies from minðplk uð ÞÞ to

maxðplk uð ÞÞ while the vector of expected probabili-

ties is defined as closure of the vector of geometric
means of the probabilities for each class:

~q uð Þ ¼ C
YL

l¼1

pl1 uð Þ
 !1=L

;
YL

l¼1

pl2 uð Þ
 !1=L

; . . . ;

2

4

YL

l¼1

plK uð Þ
 !1=L

3

5:

ð9Þ

To reach the convergence and generate stable pre-
dictions, the number of bootstrap samples in the RF

Figure 5. Top 30 most informative log-ratios for classification of all MCBs (the significance of selected log-ratios

is decreasing from the top to bottom of the chart).
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algorithm should be large enough. Having a large
number of simple learners (decision trees built from
bootstrap samples), there is a chance for all geo-
logical classes to occur (although pretty close to zero

and negligible in the unlikely situations). However,
to avoid multiplying by zero, one way is to replace
these zero probabilities by new predictions, using
new realizations of the compositional random func-

Table 2. Top five most important log-ratios (from left to right) associated with each MCB

MCBs Top five most important log-ratios (from left to right)

MCB 01 pwlr(Eu/Na) pwlr(Ba/Na) pwlr(Bi/Na) pwlr(Co/Na) pwlr(Mg/Na)

MCB 02 pwlr(Th/Ti) pwlr(Ca/Sr) pwlr(K/Si) pwlr(K/Filler) pwlr(Eu/Na)

MCB 03 pwlr(Co/Mg) pwlr(Cs/FeT) pwlr(FeT/Mn) pwlr(Co/FeT) pwlr(K/Si)

MCB 04 pwlr(Dy/Th) pwlr(Lu/Th) pwlr(La/Nd) pwlr(La/Pr) pwlr(Ce/Nd)

MCB 05 pwlr(Cs/FeT) pwlr(FeT/Mn) pwlr(Th/Ti) pwlr(Co/FeT) pwlr(Eu/Na)

MCB 06 pwlr(Cs/FeT) pwlr(Th/Ti) pwlr(Al/FeT) pwlr(Eu/Na) pwlr(Dy/Th)

MCB 07 pwlr.Dy/Th) pwlr(Co/FeT) pwlr(FeT/Mn) pwlr(Th/Ti) pwlr(Nb/Th)

MCB 08 pwlr(Cr/Sr) pwlr(Cr/Sm) pwlr(Cr/Eu) pwlr(Cr/P) pwlr(Th/Ti)

MCB 10 pwlr(FeT/Mn) pwlr(Na/Zr) pwlr(Th/Ti) pwlr(Na/U) pwlr(Eu/Na)

MCB 11 pwlr(Cs/FeT) pwlr(Th/Ti) pwlr(FeT/Mn) pwlr(Al/FeT) pwlr(Co/FeT)

MCB 12 pwlr(Cr/K) pwlr(Co/Mg) pwlr(Co/FeT) pwlr(Th/Ti) pwlr(Cr/Rb)

MCB 13 pwlr(FeT/Mn) pwlr(Eu/Na) pwlr(Dy/Th) pwlr(Ba/Na) pwlr(Al/FeT)

MCB 14 pwlr(Co/Mg) pwlr(Cs/FeT) pwlr(Th/Ti) pwlr(Cr/Sm) pwlr(Co/FeT)

MCB 15 pwlr(Cu/LOI) pwlr(Cr/Sm) pwlr(Cs/FeT) pwlr(Cr/Eu) pwlr(Cr/Sr)

MCB 16 pwlr(Cr/Sm) pwlr(Cr/Eu) pwlr(Cs/FeT) pwlr(Dy/Th) pwlr(FeT/Mn)

MCB 18 pwlr(Cs/FeT) pwlr(Cu/LOI) pwlr(Co/FeT) pwlr(Cr/Sr) pwlr(Al/FeT)

MCB 19 pwlr(Th/Ti) pwlr(K/Si) pwlr(Nb/Yb) pwlr(Cs/FeT) pwlr(Si/Th)

MCB 20 pwlr(Th/Ti) pwlr(Cs/FeT) pwlr(FeT/Mn) pwlr(Nb/Yb) pwlr(K/Rb)

MCB 21 pwlr(Ce/Gd) pwlr(Dy/Th) pwlr(Cs/FeT) pwlr(Th/Ti) pwlr(Gd/La)

MCB 22 pwlr(Th/Ti) pwlr(Cs/FeT) pwlr(FeT/Mn) pwlr(Co/Mg) pwlr(Eu/Na)

MCB 23 pwlr(Th/Ti) pwlr(FeT/Mn) pwlr(Cs/FeT) pwlr(Co/FeT) pwlr(Eu/Na)

MCB 24 pwlr(Cs/FeT) pwlr(Th/Ti) pwlr(Co/FeT) pwlr(Al/Cs) pwlr(Cs/Rb)

Figure 6. Simulated models (two randomly selected realizations) and expected maps for the most significant log-

ratios associated with MCBs 01 and 02 (warm colors are associated with high values).
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Figure 7. Maps of minimum (first column), expected (middle column), and maximum (last column) probability of occurrence for MCBs

01–04.
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tion until all probabilities of geological classes are
nonzero. The expected spatial probability model
~q uð Þ combines the statistical uncertainty (e.g.,
bootstrapping in the RF model) and the spatial
uncertainty ðL realizations of the geostatistical
model). For example, in Table 1, the probability of

class 1 varies from minl¼1;...;3ðpl1 uð ÞÞ ¼ 0:05 to

maxl¼1;...;3ðpl1 uð ÞÞ ¼ 0:15 while the expected proba-

bility is 0:104 ~q uð Þ ¼ 0:104; 0:260; 0:636½ �ð Þ. The most
probable class for location u should be defined from
~q uð Þ which is class 3 in this example. Finally, the
conditional total variation in geological classes for a
location u is given by:

totvarprobability uð Þ ¼ 1

2K

XK

i¼1

XK

j¼1

var ln
pi uð Þ
pj uð Þ

� �

ð10Þ

High values of this metric show the most uncertain
areas (and vice versa) with respect to the predicted
geological classes.

Figure 8. Conditional total variation in all simulated MCBs

(warm colors show high values).

Figure 9. Map of most probable MCBs.
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MAJOR CRUSTAL BLOCKS PREDICTION
USING SURFACE REGOLITH
GEOCHEMISTRY

Dataset

In this first case study, multi-element near-sur-
face geochemical compositions from the National
Geochemical Survey of Australia (NGSA) are used
to predict the exposed to deeply buried major
crustal blocks (MCBs) of the Australian continent.
The NGSA is a uniform and internally consistent
geochemical database, covering approximately 81%
of the continent of Australia (Caritat and Cooper

2011, 2016). The NGSA dataset consists of four
subsets based on the sampling depth and grain size.
In this study, the focus is on the ‘‘total’’ analysis of
the fine-grained fraction (< 75 lm) of the top outlet
sediment samples (0–10 cm depth) (for further de-
tail please see Grunsky et al. (2017)). Figure 1a
shows the map of the major MCBs over Australia,
while the distribution of surface lithology and the
geological regions of Australia are shown in Fig-
ure 1b. The NGSA sample site locations are shown
as black dots on these maps. The MCBs, derived
from the major boundaries in the Australian crust as
interpreted from geophysical and geological data by
Korsch and Doublier (2015, 2016), reflect distinct

Figure 10. Post-glacial peat-covered areas. Adapted from McKinley et al. (2018).
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tectonic domains comprised of early Archean to
recent Cenozoic igneous, metamorphic, and sedi-
mentary rock assemblages. The MCBs were num-
bered in order of decreasing size. Of the 30 MCBs
derived from the crustal boundaries, 22 are used in
the present analysis as explained in Grunsky et al.
(2017). In the present contribution, we introduce
and implement a new method for modeling spatial
uncertainty of Australian MCBs based on surface
regolith geochemistry and for predicting MCBs in
areas lacking/between geochemical samples. The
most important log-contrasts for distinguishing
crustal blocks are introduced and mapped for fur-
ther geological discovery analysis.

Results and Discussion

Input data (1067 compositional samples with 52
variables, 50 elements (Al, As, Au, Ba, Be, Bi, Ca,
Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, F, FeT, Ga, Gd, Ge,
Hf, Ho, K, La, Lu, Mg, Mn, Na, Nb, Nd, Ni, P, Pb,
Pr, Rb, Sc, Se, Si, Sm, Sn, Sr, Tb, Th, Ti, U, V, Y,
Yb, Zn, Zr) plus LOI and filler) were transformed to
real space via an ilr transformation (Eq. 4). As the
ilr-transformed data were not multivariate normal, a
transformation to normal space was needed prior to
geostatistical simulation. The ilr-transformed scores
were transformed to multivariate normal space via
flow anamorphosis. Due to the complexity of the
data and the number of variables, multivariate nor-
mality was not achieved by a single FA. Two suc-
cessive FA with the same parameters ðr0 ¼ 0:1 and
r1 ¼ 1:1Þ were required to achieve multivariate
normality. Spatial structural analysis (variography)
showed further that the multivariate normal scores
are spatially orthogonal, with Tercan�s (1999) �s and
�j equal to 0.0954 and 0.9073, respectively, so they
could be simulated independently. The scores were
simulated independently on a regular grid
(25 km 9 25 km) via a turning bands algorithm and
back-transformed to compositions afterward. In to-
tal, 100 realizations of geochemical compositions
were generated at unsampled locations. To illustrate
the simulated model, the spatial distributions of
three major elements (out of 52 jointly simulated
variables), Ca, total Fe, and Mg, are depicted in
Figure 2. The expected maps were calculated via
Eq. 6. Figure 3 shows the map of the conditional
total compositional variations for the simulated
compositions. This map can be considered as a
means of assessing spatial uncertainty of the geo-

chemical compositions. Close to sample locations
where direct information is available variation is
low, while in areas where no sample was taken,
variation is high. Some MCBs generally show higher
uncertainty than others, for instance, MCB 06 shows
less uncertainty than MCB 01 or southern parts of
MCB 04 show higher uncertainty than its northern
parts.

The RF predictive model was trained based on
the input labeled log-ratios. In this case, only pair-
wise (1326 log-ratios) and centered log-ratios (52
log-ratios) were used as predictors and MCBs as the
categorical response variable. Out of 30 MCBs, 8
were not considered due to an insufficient number of
sample sites in each of these MCBs (Grunsky et al.
2017). Algorithm 2 was used to select the most
informative subset of log-ratios for the classification
purpose. The final predictive RF with the highest
accuracy was associated with a subset of only 220
log-ratios (Fig. 4). Figure 5 shows the top 30 (out of
220 selected log-ratios) most informative log-ratios
for classification of MCBs. To determine the most
significant log-ratios for discriminating a crustal
block of interest from the remaining blocks, a binary
response variable can be defined (e.g., 1 is the block
of interest and 0 is all other blocks) and Algorithm 2
can be run again.

Table 2 shows the top five most important log-
ratios (from left to right) for each MCB of interest.
For example, for MCB 01 and MCB 02, pwlr(Eu/
Na) and pwlr(Th/Ti) are the most significant pre-
dictors, respectively. The simulated model for these
two log-ratios is depicted in Figure 6. High values

Figure 11. Conditional total compositional variation (warm

colors are associated with high values, and black polygons are

peat-covered areas).
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(warm colors) of pwlr(Eu/Na) and low values (cool
colors) of pwlr(Th/Ti) are associated with MCB 01
and MCB 02, respectively.

The trained RF was used to estimate the
probability of occurrence of MCBs at unsampled
locations using pwlr and clr of simulated composi-
tions as input predictors. For each location u of the
study area and each MCB k, 100 probabilities were
simulated. Maps of minimum, expected (Eq. 9), and
maximum estimated probabilities are shown in Fig-
ure 7 for MCBs 01–04. Figure 8 shows conditional
total variation in simulated MCBs calculated via

Eq. 10. Areas close to geochemical samples show
lower uncertainty. MCBs 01, 02, and 10 show higher
uncertainty than the other MCBs while MCBs 03,
06, 13, and 22 show low uncertainty. Finally, Fig-
ure 9 shows the most probable MCBs calculated via
the proposed method. The predicted crustal blocks
are broadly consistent with the known MCBs (con-
tinuous black lines in Fig. 9). Discrepancies may be
due to uncertain initial definition of crustal bound-
aries (e.g., due to ambiguity of geophysical data) or
from surficial processes (e.g., chemical weathering
and/or physical transport effects) that mask/shift the

Figure 12. Recursive feature elimination with resampling to identify the most important subset of log-ratios

(Northern Ireland Tellus Survey data).
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crustal block geochemical signature (see discussion
in Grunsky et al. (2017)). In conclusion, the archi-
tecture of the MCBs of Australia can be predicted
accurately from geochemical composition of the
Australian surface regolith. These results can be
used further for managing projects such as mineral
exploration, environmental and ecological planning,
and efficient usage of water resources.

POST-GLACIAL DEPOSITS
EXPLORATION FOR ENVIRONMENTAL
MONITORING

In this study, regional-scale soil geochemical
dataset (obtained as part of the Tellus Project gen-
erated by the Geological Survey of Northern Ire-
land) is analyzed to explore the relationship between
soil geochemistry and post-glacial deposits (e.g.,
surficial peat deposits) for environmental monitor-
ing of this fragile ecosystem. Superficial deposits
(e.g., glacial till, post-glacial alluvium, and peat) in
this area have been created due to the advance of ice
sheets and their meltwaters over the last
100,000 years (Fig. 10). Accurate mapping of peat-
covered areas has become important because of the
relatively high carbon density of peat and organic-
rich soils.

Dataset

The Northern Ireland Tellus Survey (GSNI
2007; Young and Donald 2013) consists of 6862 rural
soil samples (X-ray fluorescence (XRF) analyses).
Geochemical samples presented in this study were
collected at 20 cm depth, with average spatial cov-
erage of one sample site every 2 km2. Each soil
sample site was assigned to the post-glacial peat-
covered map (Fig. 10), resulting in spatial data for
one binary response variable (presence or absence
of peat) and 50 continuous geochemical variables
(Ag, Al2O3, As, Ba, Bi, Br, CaO, Cd, Ce, Cl, Co, Cr,
Cs, Cu, Fe2O3, Ga, Ge, Hf, I, K2O, La, MgO, MnO,
Mo, Na2O, Nb, Nd, Ni, P2O5, Pb, Rb, SO3, Sb, Sc,
Se, SiO2, Sm, Sn, Sr, Th, TiO2, Tl, U, V, W, Y, Yb,
Zn, Zr, and filler which includes Loss on Ignition
(LOI)). More information on Tellus Survey field
methods and analytical methodology are available in
Smyth (2007) and Young and Donald (2013).

Results and Discussion

Input data were transformed to real space via ilr
transformation (Eq. 4) and subsequently to multi-
variate normal space via flow anamorphosis. Two
successive FA with the same parameters ðr0 ¼ 0:1

Figure 13. Top 30 most informative log-ratios for discrimination of peat-covered areas (the significance of

selected log-ratios is decreasing from the top to bottom of the chart).
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and r1 ¼ 1:1) were required to achieve multivariate
normality. The multivariate normal scores were
simulated 100 times on a regular grid (1 km 9 1
km) independently via the turning bands algorithm
and back-transformed to compositions subsequently.
Figure 11 shows the map of the conditional total
compositional variations (spatial uncertainty of the
geochemical compositions) calculated via Eq. 8.
Outlines of the peat-covered areas are shown by
black polygons. According to this map, geochemical
compositions show higher variation close to peat
deposits. This may represent random disturbances of
the geochemical signal at very small spatial scale due
to peat cover.

The pairwise log-ratios (1225 log-ratios) and
centered log-ratios (50 log-ratios) were used as
predictors and peat/non-peat as the binary response

variable to train a RF predictive model. The most
informative subset of log-ratios for discrimination of
peat-covered areas was selected using Algorithm 2.
The final predictive RF with the highest accuracy
was associated with a subset of only 150 log-ratios
(Fig. 12). Figure 13 shows the top 30 most significant
log-ratios for discrimination of peat-covered areas.
Figure 14 shows the spatial distribution (two ran-
domly selected realizations and the expected map)
of the most informative log-ratio, pwlr (Y/filler),
where a coincidence between low values (cool col-
ors) of this log-ratio and peat-covered areas is clear.
The most informative log-ratios, e.g., pwlr (Y/filler),
include the presence of LOI in the filler variable.
This supports the previously known association be-
tween peat cover and LOI.

Figure 14. Simulated model (two randomly selected realizations) and expected map of the most significant log-

ratio (pwlr (Y/filler)) for discrimination of peat-covered areas (warm colors are associated with high values, and

black polygons are peat-covered areas).
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Finally the trained RF was used to predict the
probability of occurrence of peat-covered areas at
unsampled locations. Maps of minimum, expected
(Eq. 9), and maximum estimated probabilities of
peat-covered areas are shown in Figure 15 which
demonstrate good consistency with the reported
peat areas (Fig. 10). Figure 16 shows conditional
total variation in predicted peat-covered areas cal-
culated via Eq. 10. Areas close to peat deposits show
higher uncertainty. Figure 17 shows the most prob-
able peat-covered areas calculated via the proposed
method. Although Figures 15 and 17 show good
match with the reported peat-covered areas, incon-
sistencies may be due to uncertain initial definition
of peat-covered areas (Fig. 10) and/or degradation
of peat-covered areas since the creation of the
superficial deposit classification that masks the peat
geochemical signature. Peat-covered areas include
upland blanket bog which is more extensive and

spatially coherent and lowland �raised bogs� which
are smaller more fragile ecosystems. Using the
proposed spatial predictive model, the locations of
the main upland blanket peat-covered areas have
been predicted accurately from geochemical com-
position of the Northern Ireland Tellus Survey. The
association of LOI with peat-covered areas helps to
explain the most informative log-ratios, e.g., pwlr
(Y/filler). However, the approach has also identified
the presence of potentially important marker ele-
ments (Y, Ag, and Sn) which may have accumulated
in peat which acts as a sink for toxic elements. The
results can be used further for managing projects
such as environmental and ecological planning. As
the underlying geology and spatial distribution of
soil types across Northern Ireland are similar to the
UK (Jordan et al. 2001) and Northern Europe in
general, the proposed techniques in this study can be
applied on those areas.

Figure 15. Maps of minimum, expected, and maximum probability of occurrence for peat-covered areas.
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CONCLUSIONS

This study introduces a novel approach for the
spatial modeling of uncertainty and prediction of
geological classes using geochemical compositions.
The approach is based on the combined use of ad-
vanced geostatistical simulation for compositional
data (geostatistical simulation using isometric log-
ratio transformation and flow anamorphosis) and a
random forest predictive model. Due to the high-
dimensional characteristics of log-ratios, recursive
feature elimination with resampling technique was

used to select the most significant log-ratios for the
classification purpose. Such a feature selection
technique is known to lead to a more stable and
accurate predictive model and can be used further as
an exploratory data analysis tool for geological
process discoveries. The proposed approach was
applied on two case studies. In the first case study,
the major crustal blocks of the Australian continent
were predicted from the surface regolith geochemi-
cal compositions while in the second case study the
spatial distribution of superficial deposits (peat) was
predicted from regional-scale soil geochemical data
of Northern Ireland (Tellus Project). The accuracy
of the results in these two case studies confirmed the
usefulness and applicability of the proposed method.
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Figure 16. Conditional total variation in simulated peat-

covered areas (warm colors are associated with high values,

and black polygons are peat-covered areas).

Figure 17. Map of the most probable peat-covered areas

(shown by red color).
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Emery, X., & Lantuéjoul, C. (2006). TBSIM: A computer pro-
gram for conditional simulation of three-dimensional Gaus-
sian random fields via the turning bands method. Computers
and Geosciences, 32, 1615–1628.

Geological Survey Northern Ireland (GSNI). (2007). Tellus pro-
ject overview. https://www.bgs.ac.uk/gsni/Tellus/index.html.

Grunsky, E. C. (2010). The interpretation of geochemical survey
data. Geochemistry: Exploration, Environment, Analysis, 10,
27–74.

Grunsky, E. C., Caritat, P. de, & Mueller, U. (2017). Using surface
regolith geochemistry to map the major crustal blocks of the
Australian continent. Gondwana Research, 46, 227–239.

Grunsky, E. C., Drew, L. J., Woodruff, L. G., Friske, P. W. B., &
Sutphin, D. M. (2013). Statistical variability of the geo-
chemistry and mineralogy of soils in the Maritime Provinces
of Canada and part of the Northeast United States. Geo-
chemistry: Exploration, Environment, Analysis, 13, 249–266.

Grunsky, E. C., Mueller, U., & Corrigan, D. (2014). A study of the
lake sediment geochemistry of the Melville Peninsula using
multivariate methods: Applications for predictive geological
mapping. Journal of Geochemical Exploration, 141, 15–41.

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene
selection for cancer classification using Support Vector Ma-
chines. Machine Learning, 46, 389–422.

Harris, J. R., & Grunsky, E. C. (2015). Predictive lithological
mapping of Canada�s North using Random Forest classifica-
tion applied to geophysical and geochemical data. Computers
and Geosciences, 80, 9–25.

Jordan, C., Higgins, A., Hamill, K., & Cruickshank, J. (2001). The
soil geochemical atlas of Northern Ireland. Department of
Agriculture and Rural Development, NI.

Kanevski, M., Pozdnoukhov, A., & Timonin, V. (2009). Machine
learning for spatial environmental data: Theory, applications
and software. BocaRaton, USA: CRC Press.

Korsch, R. J., & Doublier, M. P. (2015). Major crustal boundaries
of Australia, Scale 1:2 500 000 (2nd edn.) Canberra, Geo-
science Australia. http://www.ga.gov.au/metadata-gateway/m
etadata/record/83223.

Korsch, R. J., & Doublier, M. P. (2016). Major crustal boundaries
of Australia, and their significance in mineral systems tar-
geting. Ore Geology Reviews, 76, 211–228.

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling.
New York: Springer.

McKinley, J. M. (2015). Using compositional geochemical ground
survey data as predictors for geogenic radon potential. Paper
presented at the international workshop on the European
Atlas of natural radiation, Verbania, Italy.

McKinley, J. M., Grunsky, E. C., & Mueller, U. (2018). Envi-
ronmental monitoring and peat assessment using multivariate
analysis of regional-scale geochemical data. Mathematical
Geosciences, 50, 235–246.

McKinley, J. M., Hron, K., Grunsky, E. C., Reimann, C., Caritat,
P. de, Filzmoser, P., et al. (2016). The single component
geochemical map: Fact or fiction? Journal of Geochemical
Exploration, 162, 16–28.

Mueller, U., Tolosana-Delgado, R., & van den Boogaart, K. G.
(2014). Approaches to the simulation of compositional data:
A nickel-laterite comparative case study. Paper presented at
the orebody modelling and strategic mine planning sympo-
sium 2014, Melbourne.

Mueller, U., van den Boogaart, K. G., & Tolosana-Delgado, R.
(2017). A truly multivariate normal score transform based on
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