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This paper proposes a new approach to the mining exploration drillholes positioning
problem (DPP) that incorporates both geostatistical and optimization techniques. A meta-
heuristic was developed to solve the DPP taking into account an uncertainty index that
quantifies the reliability of the current interpretation of the mineral deposit. The uncertainty
index was calculated from multiple deposit realizations obtained by truncated Gaussian
simulations conditional to the available drillholes samplings. A linear programming model
was defined to select the subset of future drillholes that maximizes coverage of the uncer-
tainty. A Tabu Search algorithm was developed to solve large instances of this set parti-
tioning problem. The proposed Tabu Search algorithm is shown to provide good quality
solutions approaching 95% of the optimal solution in a reasonable computing time, allowing
close to optimal coverage of uncertainty for a fixed investment in drilling.

KEY WORDS: Truncated Gaussian simulation, Gibbs sampling, Drillhole positioning problem, Partial
set covering problem.

INTRODUCTION

In mining exploration, the drillhole positioning
problem (DPP) emerges from the need to accurately
plan future definition drillholes whose objective is to
improve the current knowledge on an underground
mineral deposit. The solution to this problem re-
quires tools from geostatistics to model our current
(lack of) knowledge of the deposit and from opti-
mization to optimally select future drillholes such as
to maximize knowledge of the deposit.

The classical geostatistical approach consists
mainly in subdividing an exploration field into
blocks that are classified according to their esti-
mated mineral content and estimation accuracy.

Future drillholes are planned with some amount of
subjectivity by placing new drillholes next to the
blocks of interest, targeting areas with moderate or
low confidence blocks (indicated or inferred re-
sources). This approach does not necessarily ensure
a cost effective drilling campaign. The same unique
drillhole may simultaneously cover different cate-
gories of blocks (and blocks already covered by
other planned drillholes), so that it is hard to assess
its real value. New drilling campaigns will not nec-
essarily bring additional interesting information if
not planned methodically using a holistic approach.
Furthermore, uncertainty of the blocks or uncer-
tainty on the mineral envelope (surface) needs to be
methodically quantified using a reliable measure and
a more rational approach. Dimitrakopoulos (1998)
proposed an uncertainty evaluation based on the
generation of equiprobable mineral deposits using
conditional simulations. However, this approach was
not used for future drillholes selection. Some au-
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thors proposed several approaches related to surface
uncertainty on mesh grids (Surazhsky et al. 2003;
Fuhrmann et al. 2010) but few are actually applica-
ble to mineral deposits where forms and surfaces are
often not smooth and irregular, with unexpected or
unknown topology. Several approaches propose the
kriging variance as an indicator of block uncertainty,
and thus a criterion for drillhole targeting (Saikia
and Sarkar 2006; Soltani-Mohammadi et al. 2012).
However, the kriging variance is only dependent on
the spatial configuration distance between blocks
and existing drillholes—and not on the actual sam-
pling results observed (Yamamoto 2000). Yama-
moto et al. (2014) proposed a method to reduce
geological uncertainty in a 3D block model using
resampling and post-processing of the block model.
Although this method can improve the accuracy of
the geological interpretation, it is still limited to the
amount of current samplings and does not address
the question of optimal location of future drillholes.
Soltani-Mohammadi and Safa (2018) proposes an
uncertainty index combining kriging variance and
average estimation variance at local sampled blocks;
this is still subject to the limitations of kriging vari-
ance as an uncertainty index.

In our approach, a block can be either barren or
mineralized, the state of each block being known
with confidence level that is function of available
drillholes in the block neighborhood. A different
formulation of block uncertainty is proposed, which
is based on the probability of the block being min-
eralized and calculated using geostatistical simula-
tions, similar to Dimitrakopoulos (1998).

The optimization approach usually aims at
selecting the best subset of possible drillholes that
maximizes spatial coverage of the blocks (i.e.,
overall proximity between drillholes and blocks)
using several optimization techniques such as ge-
netic algorithms (Soltani et al. 2011), simulated
annealing (Soltani-Mohammadi et al. 2012; Pinheiro
et al. 2017), Tabu Search (Bilal et al. 2013) or par-
ticle swarm optimization (Ding et al. 2014; Soltani-
Mohammadi et al. 2016). In most of these ap-
proaches, the blocks are not differentiated in terms
of potential content and the current available
information is most of the time ignored or unused.

Saikia and Sarkar (2006) in an application for a
coal mine exploration proposed an optimization
algorithm to minimize the total kriging variance by
increasing/reducing the number of drillholes and the
distance between the drillholes. A limitation of this
approach (beside using the kriging variance as an

uncertainty criteria as discussed earlier) is that it
considers only vertical and even spaced drillholes.
Soltani et al. (2011) used a metaheuristic (genetic
algorithm) to find the position and length of a pre-
defined number of drillholes. In this approach,
information from existing samplings is not taken into
account and there are other limitations such as the
verticality of the drillholes and their predefined
quantity. Soltani and Hezarkhani (2013) later com-
pleted this approach with drillhole inclination
capability, but the number of drillholes was still
predefined. Bilal et al. (2013) reformulated the DPP
as a set covering optimization problem and proposed
a Tabu Search metaheuristic that searches the best
subset of drillholes (from several collar points with
various dip angles and lengths) that maximizes the
block coverage. This approach was comprehensive
from an optimization perspective; however, the
existing information from earlier samplings was not
fully taken into account. Only the proximity of the
closest drillhole was used to measure coverage,
ignoring joint collaborative information provided by
sets of close drillholes possibly just slightly further
from the uncovered block.

Recent research has started to combine geo-
statistical simulations and optimization algorithms
to plan new drillholes ; however, most methods are
limited to vertical drillholes or do not consider the
commonly adopted fan drilling in advanced ex-
ploratory phase where several drilling orientations
are adopted from a single drill position. Ding et al.
(2014) applied a modified particle swarm optimiza-
tion algorithm along with a quality map representing
production potential to find additional oil wells
placement, but that approach is once again only
applicable to vertical boreholes. Morshedy and
Memarian (2015) tackled the vertical drillhole
placement limitation by proposing a method that
aims at identifying the best potential drillholes with
dip angles using concentric cones around several
potential collar points. However, the objective
function used was based on kriging variance, which
as an uncertainty criterion does not take full
advantage of existing sampling results. Soltani-Mo-
hammadi et al. (2016) used indicator kriging to
produce a probabilistic index map that was used to
define an objective function for the DPP optimiza-
tion part done using simulated annealing and parti-
cle swarm algorithms. However, they considered
only vertical drillholes with predefined depth. Pin-
heiro et al. (2017) used several realizations of geo-
statistical simulations, the Turning Band Method
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(TBM) algorithm, to define an uncertainty variable
(local variance of simulated values or average width
of simulated values 95% probability intervals). An
optimization metaheuristic (simulated annealing) is
then applied to select the number and the location of
the future drillholes, which are represented by ver-
tically aligned points. The same limitation (vertical
drillholes) is found in Soltani-Mohammadi and Safa
(2018), where an astute approach is proposed to
decrease the calculation time by prioritizing uncer-
tain blocks and particle swarm optimization algo-
rithm is used to determine the location of additional
drillholes.

The geostatistical methodology proposed in this
research is similar to the approach in Pinheiro et al.
(2017); however, the optimization problem is for-
mulated differently (defined here as a partial set
covering problem) allowing for a more precise def-
inition of drillholes, taking into account several
orientations from different drilling positions. The
optimization approach proposed in this research is
based on Bilal et al. (2013). A new uncertainty index
is calculated using geostatistical methods (TBM
simulations). This index permits to discriminate the
blocks. More specifically, the uncertainty index as-
signed to each block was computed using a series of
deposit realizations conditional to the available
drillholes samplings, as in Dimitrakopoulos (1998).
Blocks appearing always in the simulated deposit or
always out of the simulated deposits receive a low
uncertainty index value. Deposit realizations were
obtained using a truncated Gaussian simulation
method (Armstrong et al. 2011). The optimization
process, which consists of solving a linear program,
selects a subset of drillholes maximizing uncertainty
coverage. A Tabu Search algorithm is finally pro-
posed to solve heuristically large instances of this
optimization problem.

METHODOLOGY

Definition of the Uncertainty Index

The first step consists in calculating, for each
block, an uncertainty index representative of the
current level of confidence we have on the nature of
a block. This is done using geostatistical simulation.

Let us consider an existing (yet unidentified)
mineral deposit in an exploration field. The field is

subdivided into a set U of n three-dimensional
blocks ðn ¼ jUjÞ. Let x be a variable identifying each
block. Similar to Wellmann et al. (2010), we define
I(x) as the deposit indicator function at block x, also
called geological facies. We assume, for simplicity,
that each block can only be fully inside ( IðxÞ ¼ 1) or
outside ( IðxÞ ¼ 0) the deposit.

A subset X ( X � U) of m blocks are already
sampled by existing drillholes ( m ¼ jXj). The value
of I(x) is known for each of these sampled blocks
( x 2 X) and unknown for all the other blocks. For
simplicity, we designate blocks belonging to the
sampling group X by the variable x� ( x� � x 2 X).
Given the current information from the sampled
blocks in X, we seek the likelihood of each other
block x to be in the deposit. Let p(x) denote the
probability pðxÞ ¼ PðIðxÞ ¼ 1Þ. For sampled blocks
x� ( x 2 X), pðx�Þ ¼ 1 if block x� is in the deposit, and
pðx�Þ ¼ 0 otherwise. The variable p(x) is initially
unknown for all the non sampled blocks x 62 X.

p(x) is the expectation that a certain block x is
in the deposit or not. The confidence in the state of
block x is strong for blocks having high p(x) values
(close to 100%) or low p(x) values (close to 0%).
Inversely, the confidence is minimal for blocks with
average p(x) values (close to 50%) as each facies is
then equally likely. We can expect that a block close
to a sampled block will be similar. However, the
prediction is difficult when a block is far from any
existing drillhole or close to two dissimilar blocks
(inside and outside the deposit).

We can define p(x) as the success probability of
a Bernoulli trial. The variance of the Bernoulli
random variable is uðxÞ ¼ pðxÞ½1� pðxÞ�. Note that
u(x) is maximal for pðxÞ ¼ 0:5 and minimal for
pðxÞ ¼ 0 or pðxÞ ¼ 1. We use u(x) as the uncertainty
index. The goal is to assess u(x) for all blocks based
on the knowledge we have on the current sampled
blocks.

The proposed method to calculate u(x), 8x 2 U,
consists in simulating many realizations of the de-
posit displaying the same facies as the real deposit in
sampled blocks. For each unsampled block, the
proportion of realizations showing deposit facies will
be used as an estimate of p(x) from which u(x) can
be computed. Among the numerous methods that
can be used to simulate spatial binary field, we
choose the truncated Gaussian approach (Arm-
strong et al. 2011) for its efficiency and simplicity.
The method requires to define a latent Gaussian
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variable that, upon truncation, recovers the ob-
served facies at sampled points. It involves the fol-
lowing four main steps, which are detailed in
subsequent subsections:

– Select a variogram model for the latent
Gaussian variable that is representative of
the spatial continuity of the facies indica-
tor variable Iðx�Þ of already sampled
blocks, based on existing drillholes.

– Simulate using a Gibbs sampling algo-
rithm the latent Gaussian variables at
sampled blocks. One different set is pro-
duced for each realization.

– For each set of latent Gaussian values in
sampled blocks, generate one conditional
realization at all unsampled blocks. Each
conditional realization is a plausible
interpretation of the deposit compliant
with the observed facies at sampled blocks
and the variogram model of the latent
Gaussian. This is achieved using TBM
simulations (Chilès and Delfiner 2012).

– For each block x 2 U, calculate p(x) and
u(x) as the mean and variance of the facies
simulated for block x in the different
realizations.

Selection of the Latent Gaussian�s Variogram Model

A variogram noted cðhÞ is a function that
characterizes the spatial correlation between ran-
dom variables separated by distance vector h. There
are many different theoretical variogram models
described in the literature : spherical, cubic, expo-
nential, etc. (Chilès and Delfiner 2012). For simu-
lation purposes, we have to select and use a
theoretical variogram model cthðhÞ that best fits the
experimental indicator variogram of the facies ob-
served in sampled blocks.

First, we calculate an experimental variogram
cexpðhÞ from the observed facies in sampled blocks:

cexpðhÞ ¼
1

2jNðhÞj
X

8ðxi;xjÞ2NðhÞ
½IðxiÞ � IðxjÞ�2 ð1Þ

where h is the separation vector, N(h) is the set of
pairs of blocks separated by vector h, |N(h)| is the
cardinality of the set.

The stationary latent Gaussian variable has unit
variance and covariance qðhÞ. A threshold c is ap-
plied to define the deposit facies. Given E½IðxÞ� ¼ p

one finds c ¼ F�1ðpÞ where F�1 is the Gaussian in-
verse-cdf, p is the proportion of blocks in deposit,
1� p is the proportion of barren blocks. Then, the
theoretical facies indicator variogram is given by
Chilès and Delfiner (2012):

cIndðhÞ ¼ pð1� pÞ � 1

2p

Z qðhÞ

0

exp � c2

1þ u

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p du

ð2Þ
The model type and parameters of p(h) are

selected such that cIndðhÞ is as close as possible to
cexpðhÞ. For this, a least square criterion can be used.

Gibbs Sampling of Gaussian Values at Sampled
Blocks

The Gibbs sampling algorithm is a Markov
Chain Monte Carlo algorithm. Let Ztðx�Þ ¼
½Ztðx�1Þ;Ztðx�2Þ � � �Ztðx�mÞ� be a Markov chain repre-

senting the Gaussian values assigned to sampled
blocks at iteration t of the Gibbs sampling. We start

with Z0ðx�Þ by assigning a random Gaussian value to
each block that respects the threshold corresponding
to the blocks facies:

8x 2 Xð� 8x�Þ Iðx�Þ ¼ 1 , Z0ðx�Þ 2� �1; c�
Iðx�Þ ¼ 0 , Z0ðx�Þ 2�c;þ1½

(

ð3Þ
The Gibbs sampling consists, for each block, to

draw a value from its conditional distribution. As
soon as a new value is obtained, it replaces the old
one and the new value is used to estimate the con-
ditional distribution of the next block. An iteration
is completed when all blocks have been visited once.

Because the field is truncated Gaussian, the
conditional distributions are also truncated Gaus-
sian. An easy way to sample from a truncated
Gaussian distribution is to proceed by acceptance/
rejection (Freulon and de Fouquet 1993). We com-
pute the Gaussian conditional distribution by simple
kriging and draw a value from this distribution. If
the Gaussian value falls in the right interval for the
observed facies, it is accepted, otherwise we keep
the old value. In either case we proceed to the next
block.
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Gibbs samplingalgorithm

1 : Z0ðx�Þ ¼ ½Z0ðx�1Þ;Z0ðx�2Þ � � �Z0ðx�mÞ� (Initial random drawing)

2 : t ¼ 1 � � �T

2:1 : Define a random order to visit the mknownblocks

2:2 : k¼ 1 � � �m

Value¼ RandomDrawingðÞ �NðZ�
kr;r

2
krÞ;

If½ðValue	 cÞandIðx�kÞ ¼ 1�or½ðValue[cÞandIðx�kÞ ¼ 0�

Yes : Ztðx�kÞ ¼ Value

No : Ztðx�kÞ ¼ Zt�1ðx�kÞ

3 :ReturnZTðx�Þ

where Z�
kr and r2kr are the simple kriging prediction

and associated kriging variance at x�k.
Many iterations may be required before con-

vergence to the desired joint distribution (histogram
and variogram) is reached. The Gibbs sampling is
stopped when a preselected maximum number of
iterations is reached. The Gibbs sampling process
goes through a burn-in phase when the values are
gradually matching the assigned variogram model,
as shown by Cuba et al. (2012). Once the burn-in
phase is finished, the process enters a stochastic
phase or random phase, during which there is no
substantial improvement in the resulting joint dis-
tribution (in terms of matching the desired distri-
bution). The process should always have enough
iterations to ensure that the burn-in phase is fin-
ished.

Several authors such as Chen et al. (2004),
Lyster and Deutsch (2008) and Reza Najafi and
Moradkhani (2013) have attempted to find general-
ized stopping criteria to the Gibbs sampling process.
Most were unsuccessful or at best only useful in their
specific context. Onibon et al. (2004) concluded that
the issue with many stopping criteria or techniques is
that they are not reliable and are costly in compu-
tational time. Similar to Emery (2007), we moni-
tored the convergence by following the evolution of
the resulting histograms and variograms after each
iteration. The selected number of iterations was
chosen large enough to ensure that the burn-in
phase has ended.

The whole Gibbs sampling process is repeated r
times starting from different sets of initial values

(fZ0
1; � � �Z0

r g) to obtain as many independent chains

(ZT
1 � � �ZT

r ) of m ¼ jXj Gaussian values that are

consistent with the assigned theoretical variogram
model. Each independent final chains serve as con-

ditioning input for one realization of the facies field
providing r conditional realizations.

Simulation of Facies at Each Block

Having a set of Gaussian values for the sampled
blocks, the next step consists in performing a geo-
statistical simulation of facies for each block in the
field. There are several simulation methods appli-
cable to Gaussian fields such as the LU Decompo-
sition, the Sequential Gaussian Simulation (SGS)
method, the Fast Fourier Transform (FFT) method
and the Turning Band Method (TBM). The TBM is
used in this application because of its low algorith-
mic complexity (O(n)) and its applicability on very
large grids. A detailed description of the TBM can
be found in Chilès and Delfiner (2012) and Emery
(2006). The TBM creates a Gaussian random field

with the desired covariance C3ðhÞ in R3 by simulat-

ing a process in R1, along lines, with covariance
C1ðhÞ as given by Chilès and Delfiner (2012):

C1ðhÞ ¼
d

dh
½hC3ðhÞ� ð4Þ

The Gaussian value simulated at block x 2 U is:

ZuncðxÞ ¼ 1

jSj1=2
Z

S

Yð\x; v[Þdv ð5Þ

where |S| is the surface of the unit sphere S and
Yð\x; v[Þ is the simulated value on line v at posi-
tion \x; v[ corresponding to the projection of
coordinate vector x on line v.

In practice, the integral is replaced by a sum-
mation over a sufficiently large number k of almost
equally spread lines ensuring good coverage of the
sphere.

ZuncðxÞ ¼ 1ffiffiffi
k

p
Xk

i¼1

Yð\x; vi[Þ ð6Þ

The simulated Gaussian field ( ZuncðxÞjx 2 U) needs

to be conditioned to Gaussian values ZTðx�Þ ob-
tained at sampled blocks in Gibbs sampling step.
This is done using the method of post-conditioning
by simple kriging (Chilès and Delfiner 2012):

ZconðxÞ ¼ ZuncðxÞ þ ZT
krðxÞ � Zunc

kr ðxÞ
� �

; 8x 2 U

ð7Þ
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where ZconðxÞ is the Gaussian conditioned value at

block x, ZT
krðxÞ is the kriging prediction at block x

using Gibbs values at sampled blocks ( ZTðx�Þ) and
Zunc

kr ðxÞ is the kriging prediction at block x using

unconditional simulated values also at sampled
blocks ( Zunc

kr ðxÞ). Notice that for sampled blocks x�

this ensures Zconðx�Þ ¼ ZTðx�Þ.
The whole process (turning bands simulation +

conditioning) is repeated r times, using each one of
the r independent Gibbs chains as conditioning
values. The conditioned Gaussian values ( Zcon

i ðxÞ)
are then converted back into simulated conditioned

facies ( Isimi ðxÞ 2 f0; 1g) using the same threshold c

as in Eq. 3.
At the end of this step, each one of the r inde-

pendent chains of conditioning Gaussian values
leads to a different set of simulated blocks facies that
forms a mineral deposit or realization. All the dif-
ferent realizations are possible interpretations of the
real mineral deposit based on the sampled drillholes.

Calculation of the Blocks� Uncertainty Index

For each block x, we now have r independent
shots at a facies F(x) with only two possible out-
comes: 1 (inside deposit) or 0 (outside deposit), as in
a binomial process. We can now evaluate the prob-
ability p(x) of block x as the average value of the
predicted value for block x in the realizations:

pðxÞ ¼ PðIðxÞ ¼ 1Þ ¼
Xr

i¼1

Isimi ðxÞ
r

; 8x 2 U ð8Þ

For sampled blocks x�, the facies probability is
either 100% ( Iðx�Þ ¼ 1) or 0% ( Fðx�Þ ¼ 0) because

Isimi ðx�Þ ¼ Iðx�Þ. The uncertainty index u(x) can be
calculated as the variance of the binomial process:

uðxÞ ¼ VarðIðxÞÞ ¼ pðxÞ½1� pðxÞ� ð9Þ

This index spans from 0.0 (p(x) = 100% or 0%)
to 0.25 (p(x) = 50%). Each block of the field has an
assigned uncertainty index. The index can be used to
select future drillholes by favoring drillholes cover-
ing the zones with highest uncertainty index.

Optimization for Future Drillholes Selection

In this second part, an optimization model is
proposed for selection of future drillholes. The

optimization problem is formulated as an integer
linear problem whose objective is to maximize cov-
erage of the blocks� uncertainty index. The rationale
behind that approach is that from an exploration
perspective, drilling in areas with high uncertainty
would bring valuable information on the mineral
deposit and reduce total uncertainty. A Tabu Search
algorithm is proposed for large instances of this
optimization problem for which an exact solution is
hard to find.

The proposed approach is built on Bilal et al.
(2013), who formulated the DPP as a partial set
covering problem (with the objective of maximizing
blocks coverage). The improvement in the current
approach is that each block is now assigned a dif-
ferent weight (the uncertainty index) in the objec-
tive function that accounts for the information
provided by all boreholes.

Definitions and Decision Variables

– Let UIi designates the uncertainty index
for block i (u(i)) as calculated in the first
part of this work (calculation of the
uncertainty index).

– The set of n blocks is still designated by U.
– Let W designates the set of all possible

individual drillholes. We consider a finite
number of q ¼ jWj possible drillholes.
Drillholes are defined by a collar point
(position of the drilling machine) and a
terminal point or terminal block. Accord-
ing to this definition, drillholes having the
same collar point and orientation but only
different length (or depth) are identified as
different drillholes.

– A solution S is a subset of W and |S| des-
ignates the number of drillholes within the
solution S.

– A block i is considered covered by a
drillhole j if it is located within a certain
distance (range) of the drillhole. The
coverage index cvrij is defined as:

cvrij ¼
1 if block i is covered by drillhole j ðdistance ði; jÞ 	 rangeÞ

0 otherwise

�

– The block-drillhole coverage matrix C ¼
½cvrijji 2 U and j 2 W� is an input of this
optimization problem.
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– A block i is considered covered in a solu-
tion S when it is covered by at least one
drillhole j 2 S. We denote DHi the subset
of drillholes that covers block i:

DHi ¼ fj 2 Wjcvrij ¼ 1g

– Xi is the decision variable associated with
the coverage of block i, defined as:

Xi ¼
1 if block i is covered by at least one drillhole of a solution S :

)
P

j2S cvr
i
j 
 1

0 otherwise

8
><

>:

– Yj is the decision variable associated with
the selection of a drillhole j, defined as:

Yj ¼
1 if j belongs to the current solution S) j 2 S

0 otherwise

�

– We denote BLj the subset of blocks cov-
ered by drillhole j:

BLj ¼ fi 2 Ujcvrij ¼ 1g

– ĉj is the cost of drillhole j. As with the set
of potential drillholes, the drillholes cost
array ĉ ¼ ½ĉjjj 2 W� is an input to the
optimization problem.

– Ĉmax is the maximal total drilling cost al-
lowed (when applicable). A solution is
considered acceptable if it satisfies the
maximal cost constraint:

P
j2S ĉj 	 Ĉmax.

Linear Programming Model

The optimization problem can be formulated as
an integer linear program that selects the subset of
drillholes that maximizes coverage of the uncer-
tainty index, for a given cost constraint (maximal

drilling cost Ĉmax):

max
X

i2U
UIiXi

Subject to :X

j2W
ĉjYj 	 Ĉmax

X

i2BLj

Xi 
 jBLjjYj; 8j 2 W

X

j2DHi

Yj 
 Xi; 8i 2 U

Xi 2 0; 1 8i 2 U

Yj 2 0; 1 8j 2 W

ð10Þ

The first constraint is the budget constraint. The
second set of constraints ensures that if a drillhole j
is selected, then all the blocks in BLj are covered.

The third set of constraints ensures that if a block i is
covered, then at least one drillhole in DHi is se-
lected.

We can also define an alternative problem
where the goal is to minimize the total drilling costs
for a defined level a of uncertainty coverage (for
example, we would like to cover a ¼ 90% of the
current uncertainty). This problem can be formu-
lated as:

min
X

j2W
ĉj � Yi

Subject to :X

i2U
UIiXi 
 a

X

i2U
UIi

X

i2BLj

Xi 
 jBLjjYj; 8j 2 W

X

j2DHi

Yj 
 Xi; 8i 2 U

Xi 2 0; 1 8i 2 U

Yj 2 0; 1 8j 2 W

ð11Þ

Tabu Search Algorithm

Large instances of such integer problem are
difficult to solve. In a similar research, Bilal (2014)
has shown that the CPLEX solver was unable to find
an optimal solution after several computing days for
a problem with 20,000 blocks. Metaheuristics are
then used to find good quality solutions for such
problems. The method proposed in this research is a
Tabu Search algorithm which explores solutions of a
neighborhood while keeping a record (Tabu list) of
explored solutions characteristics (drillholes). As
demonstrated in further examples, this algorithm
provides good quality solutions comparable to the
optimal solution for a reasonable computing time.

In this algorithm, a solution S represents a
subset of drillholes. The neighborhood of a solution
S, noted N(S), is a set of solutions having similar
characteristics with S. For each solution S, we define
three types of neighborhood sets as shown in
Figure 1:

– NðSÞþ: A solution S0 is considered in the
neighborhood of the current solution S, if
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S0 has the same drillholes as those in S plus
a single additional drillhole. Thus, a solu-
tion S has at most jWj � jSj neighbors+ in
set NðSÞþ:

NðSÞþ :¼ S0 2 W : jS0 \ Sj ¼ jS0j � 1
– NðSÞ�: A solution S0 is considered in the

neighborhood of the current solution S, if
S0 has the same drillholes as those in S
excluding a single drillhole in S. Thus, a
solution S has at most |S| neighbors� in set
NðSÞ�:

NðSÞ� ¼ S0 2 W : S0 2 SandjS0 \ Sj ¼
jSj � 1

Let us notice that: S0 2 NðSÞ� , S 2
NðS0Þþ

– NðSÞ�: A solution S0 is considered in the
neighborhood NðSÞ� of a current solution
S, if S and S0 has the same number of
drillholes and jSj � 1 common drillholes (S
and S0 differ by only one drillhole). Thus, a
solution S has at most jSj � ðjWj � jSjÞ
neighbors � in set NðSÞ�:

NðSÞ� :¼ S0 2 W : jS0j ¼ jSj and jS \ S0j ¼ jSj � 1

A drillhole is considered nearby another one if
they have the same collar point and nearby
terminal blocks. In order to reduce the number
of neighboring solutions to explore starting
from a current acceptable solution S, the
considered neighbors+ and neighbors* are lim-
ited to acceptable neighboring solutions that
differ from S by a nearby drillhole.
For each acceptable solution explored, a score

is calculated as the evaluation of the objective

function for this solution (total uncertainty that is
covered by the solution�s drillholes). The Tabu
Search process (Fig. 2) explores the domain of
solutions by going from solution to neighbor solu-
tion, choosing at each step the local optimum as the
current solution (neighbor with the best score to cost
ratio, when comparing all types of neighborhood).

At first, only neighborsþ and neighbors� are
considered in the neighborhood search. When the
algorithm can no longer find better solution than

the current solution in the neighborhoodþ=�, it
considers removing drillholes from the current
solution. A score to cost ratio is then used as
selection criteria in order to ensure that solution
with fewer drillholes (neighbor�) are considered.
The Tabu algorithm can thus remove ineffective
drillholes from a current solution and later add
more interesting drillholes.

A drillhole added or extracted when passing
from the current solution to the overall best neigh-
boring solution is registered in a Tabu list for a
certain number of iterations t (actually the length of
the Tabu list). At any time, the overall best solution
evaluated is recorded.

An acceptable initial solution can be generated
by a simple greedy algorithm, which consists of
randomly selecting and adding drillholes (maybe
from a predefined list of best single drillholes) until
the maximum drilling cost is almost reached and it is
no longer possible to add a drillhole to that initial
solution. When the Tabu Search algorithm is stuck
(i.e., no new best solutions after a certain number of
iterations), a temporary violation of the maximal
cost constraint can be allowed for a certain number
of iterations in order to change some of the current
solution features. During this violation time, overall
best solutions are not recorded if they are not
acceptable solutions.

The Tabu algorithm presented provides good
solutions to the optimization problem. We can
compare its predictions with optimal solutions for
some examples of average-sized problems using test
cases.

APPLICATION ON TEST CASES

The whole process (uncertainty index calcula-
tion and drillhole optimization) was tested on two
synthetic test cases: a two-dimensional and a three-
dimensional example.

Figure 1. Types of solution�s neighborhood.
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Test Case 1: A Two-dimensional Example

Let us consider the mineral deposit presented in
Figure 3a (generated by random unconditioned
geostatistical simulation). The field was subdivided
into a 300� 200 grid (60,000 blocks). Existing drill-

holes were presented in continuous lines, and results
of sampled blocks are shown in Figure 3b: solid color
line for inside-deposit facies blocks ( Iðx�Þ ¼ 1), and
pattern line for outside-deposit facies blocks
(Iðx�Þ ¼ 0). A total of 1117 blocks were sampled by
the existing drillholes.

Figure 2. Diagram of the Tabu process.
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Calculation of the Uncertainty Index

The omnidirectional experimental variogram
cexpðhÞ was calculated from those samplings and

presented in Figure 4a (in red dots). The theoretical
model selected for the Gaussian variable is an iso-
tropic (omnidirectional) Cubic model with a range
of 75.0 distance units presented in Figure 4b. An
isotropic model was selected for simplification pur-
poses (meaning that the variability is considered the

same in every direction). The induced categorical
variable model cIndðhÞ and its adjustment to the
experimental variogram is shown in Figure 4a.

An omnidirectional variogram was assumed in
the current test case for simplification. It should be
noted that the method can be generalized to ani-
sotropic deposits also. First, let us notice that the
geostatistical process (Gibbs sampling and Turning
Bands simulation) can be applied using anisotropic
variograms. In addition, the approach could be
applied to elongated deposits using isotropic vari-
ograms when working with parallel cross-sections
(as usually done in exploration). Finally, using the
two-dimensional example, if one contracts/dilate
the vertical coordinates say by factor b, then the
variogram would be anisotropic and the blocks
would also be contracted/dilated by the same
factor.

We can now encode the categorical facies val-
ues for sampled blocs Iðx�Þ into Gaussian values

Zðx�Þ � Nðl;r2Þ, using the Gibbs sampling and the
theoretical model selected as target variogram. The
Gibbs sampling process was applied 100 times to
obtain 100 independent sets of Gaussian values.
Figure 5 shows an example of the resulting vari-
ograms of the final Gaussian values for one of the
r ¼ 100 independent repetitions. The average vari-
ogram (in heavy line) shows a good fitting to the
target variogram (dash line). This test case with 1117
initial values required 30,000 iterations to make sure
the burn-in phase has passed.

Figure 3. Example of a 2D mineral deposit in a 300� 200 field with existing drillholes.

Figure 4. Variogram model selection.
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Once the 100 independent sets of Gaussian
values are obtained, they can be used as condition-
ing values to generate 100 simulations of Gaussian
values for the complete field using the Turning
Bands Algorithm. The Gaussian values were then
coded into facies values, producing as many real-
izations of the mineral deposit. Figure 6 presents
three different independent realizations simulated
for the current test case with the TBM. We can
notice that although different, each one of those
realizations is consistent with the initial sampling
results shown in Figure 3.

The 100 independent realizations were used to
calculate the facies probability and uncertainty in-
dex for each block, illustrated in Figure 7. Figure 7a
shows the facies probability for each block with the
values ranging from 0.0 to 1.0 (color scale on the
left). We can distinguish areas where no mineral
deposit is expected from areas likely to contain some
mineral deposit, given the current information pro-
vided through existing drillholes. Figure 7b shows

the uncertainty index with values ranging from 0 to
0.25 (color scale on the left). Blocks nearby existing
drillholes are more certain whereas, generally,
blocks far from existing drillholes or blocks that are
close to the deposit boundary, tend to be the most
uncertain. The total block uncertainty is 8017.7.

Figure 7d shows the average simulated deposit
(average of 100 simulations rounded to 0 or 1) and
compares it to the original mineral deposit in Fig-
ure 7c. The total facies error (blocks with the wrong
interpreted facies) for the average deposit is 3785
(among 60,000), representing 93.7% of correct block
interpretation.

Figure 8 compares two realizations generated
using different theoretical variogram models as tar-
get: spherical and cubic models, both with range of
75.0. Both models provide similar fits to the exper-
imental indicator variogram; however, the realiza-
tion with the spherical model differs in texture from
the original mineral deposit and appears unrealisti-
cally irregular from a geological standpoint.

Optimization for Future Drillholes Selection

Once the uncertainty index value for each block
of the field is calculated, the optimization problem
for selection of future drillholes can be formulated
and solved. Figure 9 presents the universe of all
possible drillholes considered with three collar
points, forming a total of 1800 possible drillholes.
For simplification purpose, it was assumed that a
drillhole individual cost is proportional to its length.
It was also assumed that each drillhole has a cov-
erage radius of 10.0 distance units. We want to find
the best subset of future drillholes for a total drilling
costs of 1000.0 (in distance units), based on the cri-
teria of covering the maximum uncertainty.

Figure 6. Example of independent realizations generated with the Turning band simulation.

Figure 5. Variograms produced during the gibbs sampling

process.
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The initial number of blocks is 60,000. In order
to reduce the number of blocks and thus the number
of variables of the problem (to allow optimal reso-
lution), we can aggregate the blocks in the original

uncertainty index map. In this example, 300� 200
original blocks have been aggregated into 75� 50
larger blocks with uncertainty indexes correspond-
ing to the sum of the 4� 4 initial blocks. The results

Figure 7. Facies probability and uncertainty index.

Figure 8. Comparison of realizations generated with different theoretical variogram models.
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are shown in Figure 10, both images are similar (with
lower resolution in the second one), but the number
of blocks has been reduced to 3750. We have to be
cautious with such a reduction: we can reasonably
assume that a good solution for the reduced problem
will be a good solution for the original set, only if the
final aggregated image is similar to the original one.

We can now solve the optimization problem
illustrated in Figure 10 with the GUROBI solver.
The optimal solution was found within 989.0 s of
computing time on a 1.70 GHz Intel Core i5 pro-
cessor. The optimal solution found is presented in
Figure 11. This optimal solution has a total drilling
cost of 999.8 and a coverage score of 3317.3 (total
uncertainty covered by selected drillholes), which

represents the highest achievable uncertainty cov-
erage for a drill cost of 1000.0.

In the current test case, the number of collar
points was fixed to three for simplification. It should
be noted that the proposed optimization model can
be generalized to larger number of collar points, but
at the cost of larger computation time (the number
of potential drillholes directly affects the computa-
tion time). A potential drillhole is defined here as
the association of a collar point and an endpoint
(Fig. 9). One can increase the number of collar point
while keeping the computation time constant by
simply reducing the number of endpoints.

It should also be noted that the drillhole posi-
tioning problem can be solved successively in an
iterative fashion, considering at each step the
remaining drilling budget. Such approach would
require to rerun the geostatistical process after each
step (addition of a new drillhole) in order to have an
updated uncertainty map, and ten solve a new
optimization problem with the remaining drilling
budget.

Finally, in the current test case, a drilling budget
of 1000.0 was considered, which seemed sufficient to
target most of the uncertainty in the field (see
Fig. 11). Let us examine the impact of reducing the
total maximal drilling cost. Figure 12 presents the
optimal drillholes (exact solution) found with dif-
ferent drilling budgets of 500.0, 700.0 and 1000.0
(default value). The total uncertainty covered was
1820.7 with a maximum drilling budget of 500.0 (a
reduction of 45.1% from the total coverage of the
1000.0 budget solution). The total uncertainty cov-
ered with the 700.0 budget solution was 2470.9 (a
reduction of 25.5% from the 1000.0 budget solu-

Figure 9. Uncertainty map and potential future drillholes.

Figure 10. Blocks aggregation for variables reduction.
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tion). For this example, all three solutions have
similar valuable (in terms of coverage) drillholes. As
the budget increases, the model is adding new
drillholes while only slightly modifying existing best
drillholes, which suggest a smooth solution space for
this example at those level of budget.

Optimization Using the Tabu Search Algorithm

The problem is now solved using the Tabu
Search algorithm proposed in ‘‘Tabu Search Algo-
rithm’’ section for 20,000 iterations. An empirical

and usually recommended value of t �
ffiffiffi
n

p
is used

for the length of the Tabu list (Gendreau et al.
1994). The best Tabu Search solution is presented
and compared to the optimal solution in Figure 13.

The best Tabu Search solution has a cost of
996.4 and a coverage score of 3310.7 (i.e., 0.2% gap
from the optimal coverage score of 3317.3). The
drillholes selected in the Tabu Search algorithm are
also very similar to the optimal solution (actually the

Tabu Search found 5 out of the 7 drillholes from the
optimal solution, and suggested 2 other drillholes
very close to the remaining 2). The best Tabu solu-
tion was found after 10,913 iterations (a computing
time of 381.64 s on the same 1.70 GHz Intel Core i5
processor). Results evolution of the Tabu Search
algorithm is presented in Figure 14. The Tabu
Search algorithm found a solution at 2.4% gap from
the optimal solution after only 2124 iterations or
87.1 s of computing time (compared to 989.0 s for
the optimal solution).

We can now assess the impact on residual total
uncertainty of actually realizing the optimal set of
drillholes or the set of drillholes from the best Tabu
Search solution (Fig. 15). This was done by adding
the suggested new drillholes to the existing ones and
recomputing the uncertainty index as previously
using geostatistical simulation. In Figure 15a, the
overall uncertainty is reduced from 8017.7 to 2621.9
(a total reduction of 67.3%). The accuracy of the
simulated deposit has also improved (Fig. 15d), with
a total facies error of 1292, representing an accuracy

Figure 11. Optimal solution found for test Case 1 with a maximum cost of 1000.0.

Figure 12. Optimal solution with different total drilling cost for test Case 1.
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of 97.8%. Very similar results were obtained with
the best Tabu Search solution (shown in Fig. 15c and
d) with a new overall uncertainty of 2622.6% and
97.9% accuracy.

The Tabu Search algorithm has provided a
solution that is very close to the optimal one. Using
a Tabu Search algorithm also enable the identifica-
tion of different good quality solutions revealing
several interesting configurations of future drillholes
with high uncertainty coverage. In contrast, the
optimal solving provides a single solution that may
not always be the most practical one. Most impor-
tantly, the Tabu Search algorithm is less limited in
terms of problem size (number of discretization
blocks), only the number of drillholes matters.

The optimization model presented in this re-

search considers a binary coverage indicator cvrij
(block i is either entirely covered by a drillhole j—i
being within a certain distance from j- or not cov-
ered). This assumption simplifies the model by lim-
iting the number of coverage/selection constraints
linking the blocks coverage variables Xi to the
drillholes selection variables Yj (total of nþm

constraints, n being the number of blocks and m the
number of drillholes). However, this assumption
also prompts the usage of a coverage radius
parameter or range, which is set at 10.0 distance
units in the current test case. Figure 16 compares the
optimal solutions (exact solver) found for different
coverage distances (range) of 5.0, 10.0 (default va-

Figure 13. Tabu Search solution and optimal solution for test Case 1.

Figure 14. Evolution of the Tabu Search results.
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lue) and 15.0 units. The 15.0 range solution is closer
to the 10.0 range solution: the most valuable drill-
holes in terms of coverage in both solution are very
similar, the solutions differing only on the few short
lateral drillholes. Four out of 7 drillholes from the
5.0 range solution (the most valuable in terms of
coverage) are similar to drillholes in the 10.0 range
solution. Furthermore, the overall uncertainty is
reduced to 2785.7 when realizing the drillholes from
the 15.0 range solution (a 68.0% reduction). This
reduction is comparable to the 67.3% uncertainty
reduction obtained with the 10.0 range solution,
which means that both solutions have a similar
quality. The total reduction when using drillholes
from the 5.0 range solution is 58.8%. Within a cer-
tain realistic threshold, the value of the coverage
distance parameter would have little impact on the
optimization solution. Nevertheless, careful consid-

eration should be given in the selection of a realistic
value for that parameter.

Test Case 2: A Three-dimensional Example

The proposed method also works for three-di-
mensional mineral deposits. Let us consider the
mineral deposit in a 60� 48� 24 grid (69,120
blocks) as presented in two views in Figure 17. This
mineral deposit was also generated using uncondi-
tioned geostatistical simulation. The existing drill-
holes are shown in red (vertical drillholes were
considered in this example for simplification only).

The sampling results from existing drillholes are
presented in Figure 18. A total of 672 blocks were
sampled by these drillholes (on a total of 69,120
blocks).

Figure 15. Facies prediction and uncertainty with the optimal set of drillholes.
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Figure 16. Optimal solution with various coverage distances.

Figure 17. Mineral deposit and existing drillholes (test Case 2).

Figure 18. Initial drillholes samplings results.
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Calculation of the Uncertainty Index

Figure 19 shows the omnidirectional experi-
mental variogram (in dots) calculated from the
samplings results. The theoretical variogram model
selected for the Gaussian variable is an isotropic
cubic model with a range of 20.0 units. The induced
categorical model is presented by the continuous
line. Its fitting to the experimental variogram is
acceptable.

Figure 19. Experimental and induced indicator variograms for

test Case 2.

Figure 20. Simulated mineral deposit and uncertainty index for test Case 2.
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Figure 20 presents the average simulated min-
eral deposit (average of 100 simulations rounded to
0 or 1) in View G, which can be compared to the
original mineral deposit in View F. The total facies
error is 5987; thus, the deposit representation is
91.3% accurate. Some part of the original deposit is
missing in the simulated deposit at the top left (View
E). However, the uncertainty is higher at this loca-
tion, which imply that future drillholes will target
this area. View H show the blocks uncertainty index
with values varying from 0.01 to 0.25. To facilitate
the visualization, blocks with uncertainty below 0.01
(i.e., 4% of max. uncertainty) were not represented.

Optimization for Future Drillholes Selection

For this case, we consider a set of potential
vertical drillholes that are evenly spaced and follow
a rectangular pattern. Each drillhole position (collar
point) has six different possible depths (4.0, 8.0, 12.0,
16.0, 20.0 or 24.0), for a total of 1710 potential
drillholes, position and depth combined. We would
like to know which subset of drillholes to select for a
maximal drilling cost of 200.0 (distance units) and
assuming a coverage radius of 5.0 (distance units).

The optimal solution found for this problem is
presented in Figure 21 (View C1, green lines). The

optimal solution was found in 180.0 s of CPU time
on a 1.70 GHz Intel Core i5 processor using the
GUROBI solver. This solution has a cost of 200.0
and a total coverage score of 2153.3 (total uncer-
tainty covered).

The Tabu Search algorithm applied to this
problem for a maximum of 20,000 iterations, pro-
vided the best solution presented in Figure 21 (View
D1). The best Tabu Search solution has a cost of 200
for a maximum coverage of 2120.9 (a 1.5% gap from
the optimal coverage score) and was found after
6509 iterations (4825.3 s on a 1.70 GHz Intel Core i5
processor). This solution is very similar to the opti-
mal solution (Fig. 21, View C1). Actually, six drill-
holes were exactly the same. The total blocks
covered by both solutions are also very similar
(Fig. 21, Views D2 and C2). The Tabu Search
algorithm found a solution at a 2.2% gap from the
optimal solution after only 730 iterations or 691.1 s
of computing time.

CONCLUSION

A new approach for the DPP in mineral
exploration context is proposed in this paper: an
optimization model for maximization of the cover-
age of a new block uncertainty index, which is cal-

Figure 21. Optimal solution and Tabu Search solution for test Case 2.
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culated using a set of conditioned Gaussian realiza-
tions. The uncertainty index is higher in undrilled
areas or in blocks close to deposit boundary. Future
drillholes are selected by solving the optimization
model. A Tabu Search algorithm has been shown to
produce results comparable to optimal solutions for
medium-size instances of the DPP problem.
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