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Genetic algorithms (GA) are widely used to solve engineering optimization problems. The
quality and performance of the solution generated strongly depend on the selection of the
GA parameter values (crossover and mutation rates and population size). We propose an
approach based on full factorial and response surface methodology experimental designs to
calibrate GA parameters such that the objective function is maximized/minimized and the
relative importance of the parameters is quantified. The approach was tested by applying it
to stope optimization of underground mines, where profit can vary ± 7% based solely on
GA parameters. Results showed that: (1) a larger population size did not always increase
solution time; (2) solution time was positively related to crossover and mutation rates; and
(3) simultaneous analysis of solution time and profit illustrated the trade-off between
acceptable computing time and profit desirability through GA parameter selection. This
approach can be used to calibrate parameters of other metaheuristics.

KEY WORDS: Underground mine planning, Genetic algorithms (GA), GA parameters, Stope layout
optimization, Response surface methodology.

INTRODUCTION

Metaheuristic approaches such as genetic algo-
rithms, simulated annealing and ant colony opti-
mization have been widely used to deal with various
mining optimization problems (Kumral 2004; Kum-
ral and Dowd 2005; Leite and Dimitrakopoulos
2007; Manchuk and Deutsch 2008; Lamghari and
Dimitrakopoulos 2012; Shishvan and Sattarvand
2015; Goodfellow and Dimitrakopoulos 2016; Rui-
seco et al. 2016; Sauvageau and Kumral 2016; Vil-
lalba and Kumral 2018a, b). Metaheuristic
techniques are popular because they are easy to
formulate, are highly adaptable to the problem

structure, require less rigorous mathematical back-
ground on the part of the user, and require shorter
computational times compared to exact approaches
(Rayward-Smith 1996). However, it is almost
impossible to know how near a solution is to opti-
mal. As an intelligent and iterative process, meta-
heuristic generation adapts global (exploration) and
local (exploitation) search concepts to find near-
optimal solutions based on learning strategies (Os-
man and Laporte 1996). Given that mines are
planned and designed under many uncertainties,
near-optimal solutions are often acceptable. ‘‘Near-
ness’’ depends on the trade-off between exploration
and exploitation, which is governed by the selection
of parameter values. Thus, parameter calibration is a
key issue when implementing a metaheuristic ap-
proach. However, it is usually overlooked and
parameters are selected arbitrarily instead.
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Evolutionary algorithms like genetic algorithms
(GA) have been used in finance and mine planning
optimization with positive results, for example in:
increasing the profit by controlling dilution,
accounting for orebody uncertainty, and balancing
mining directions and orebody orientation in stope
definition for underground mining (Villalba and
Kumral 2018a, b); determining ore and waste dig
limits of daily production for open-pit mining (Rui-
seco et al. 2016; Ruiseco and Kumral 2017); finding
the optimal location for a mine facility; and opti-
mizing parameters of the Schwartz–Smith two-factor
model to analyze the information from a transaction
in future markets to reduce financial risk in future
contracts on commodity prices (Sauvageau and
Kumral 2016). However, these GA-based method-
ologies did not cover in detail the importance of
defining their GA control parameters.

A generation in GA starts with an initial solu-
tion set or population of chromosomes. Using
crossover and mutation operators, new offspring are
formed. Solutions with high fitness values are re-
tained to generate offspring. In other words, the
higher the fitness, the higher the chance that solution
will pass its genotype to the next generation. This
process is repeated over many iterations until con-
vergence. The performance of a GA depends mainly
on the parameters (Mitchell 1999; Reeves 2003;
Pandey et al. 2014), whose values should be deter-
mined carefully; otherwise, the search may end with
a solution that is trapped in a local optimum. In
practice, parameter values are usually calibrated one
at a time using a simple sensitivity analysis. Al-
though this method can potentially find sensitive
parameters, it is time-consuming and inefficient in
mine planning optimization where there are many
parameters.

In the past, various approaches have been pro-
posed to calibrate GA parameters. Grefenstette
(1986) calibrated GA parameters through an adap-
tive search and tuning strategy, whereby two per-
formance metrics were used: (1) online performance
based on the average performance of examined
structures during the search (t = 0, 1,…,T), where
each structure is evaluated at each time t; and (2)
offline performance based on the average of the best
performances in time intervals [0,t]. Global robust-
ness requires performance measures for the entire
set of the response surface. For example, six control
parameters needed 1000 evaluations using metalevel
GAs, and each GA tested against five functions.
Since the first experiment selected samples from a

performance distribution, the best 20 samples of this
distribution required additional testing. Even though
the tests succeeded in finding control parameters
that optimized the GA performance, this approach
may require intractable CPU time to select control
parameters in relevant mining problems. Eiben et al.
(1999) proposed a taxonomy to eliminate vagueness
in terminology and reviewed previous researches
regarding control parameters in evolutionary algo-
rithms. In that paper, three drawbacks regarding
calibration were emphasized: (i) trying all combi-
nations become nearly impossible in some problems;
(ii) even if interactions are ignored, the evaluations
can be time-consuming; and (iii) despite running
many configurations, there is still a chance that se-
lected parameters are not optimal The epistasis
iteration between control parameters—which in-
clude the mutual impact of parameters on each
other, and the complexity of joint influence of
parameters on GA behavior—challenges any opti-
mization of GA setting. A self-adaptive method
could assist GAs in arranging their parameter itself;
otherwise, a skeptical approach could use heuristic
tools to adjust parameters adding to adaptive
parameter control. Nannen and Eiben (2007) pre-
sented an approach called Relevance Estimation
and Value Calibration of GA parameters (RE-
VAC), which systematically explores the range of
possible parameter setting combinations. In this
approach, a distribution by each parameter (mar-
ginal density function) over a parameter�s range as-
signs high probability to values that lead to excellent
GA performance. Distributions with a narrow peak
or a broad plateau correspond to highly or moder-
ately relevant parameters, respectively. Thus, values
with high probability in such distributions define the
GAs setting. With this approach, however, the use of
1000 evaluations demands unmanageable computing
time; therefore, it is hard to implement in mining
problems.

This paper proposes an approach to calibrate
the population size and crossover and mutation rates
of a GA using (1) full factorial design (FFD) to
estimate main effects and parameter interactions
and (2) response surface methodology (RSM) to find
optimum values of design parameters. These two
methods share the following characteristics (Bezerra
et al. 2008): (a) the experimental design includes
different levels and combinations of factors; (b) the
factors are independent variables; (c) ‘‘levels’’ refer
to values that these factors can take and are used
during coding to replace design factors with an
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indicator set (e.g., in a three-level experiment de-
sign, the low, middle and high values are replaced by
– 1, 0, + 1, respectively); (d) responses are depen-
dent variables; and (e) residual error helps to mea-
sure how well a model fits the experimental data
where low residual error is desired.

Full Factorial Design

Ronald A. Fisher introduced FFD in the 1920s
through the early 1930s in collaboration with re-
searchers from many fields and proposed the three
principles of experimental design: randomization,
replication and blocking (Montgomery 1997). Ran-
domization prevents unknown bias, which can
modify the result of an experiment. Replication of
an experiment under the same conditions is per-
formed to estimate experimental error and increase
the precision of the experiment. Blocking helps to
increase precision by eliminating the effect of nui-
sance factors on experimental error (Clifton Young
1996; Telford 2007).

A FFD consists of two or more factors, each
with two or more levels. It differs from other designs
because experimental units take all combinations of
the factor levels (Fig. 1). A FFD is also called a
‘‘fully crossed design’’ because it permits analysis of
the effect of all factors on the response variable, all
levels of the factors and interactions between fac-
tors. This design is geometrically assembled because
values are taken from the edge midpoints, axials and
vertices of a cube in case of three factors (Fig. 1,
left), that is, the number of factors implies n-di-
mensional shape. A FFD requires 3n runs (n =
number of factors studied with three levels) to cover
all experimental points. To overcome flaw in the
exponential number of combinations of factors, an
improved version called fraction factorial design can
collect a fraction of the total number of vertices.

Response Surface Methodology

The RSM was introduced by George E. P.
Box and Kenneth B. Wilson in the 1950s for use in
chemical industries (Box and Wilson 1951). The
ability to refine models and optimize a response that
depends on several variables are the main strengths
of RSM (Montgomery 1997). The methodology
consists of: (1) choosing the independent variables;
(2) delimiting the experimental region; (3) deter-
mining the experimental design; (4) fitting the
experimental data; (5) evaluating the model fitness;
and (6) evaluating the displacement in direction to
the optimal region, which may lead to finding the
optimal values of the experimental variables (Bez-
erra et al. 2008). Polynomial functions describe the
relationships between response and independent
variables. Since a single polynomial model may not
represent the functional relationship over the entire
domain, the domain can be divided to yield a rea-
sonable approximation per portion. Interactions
between independent variables can be modeled by a
low-order (e.g., first order or second order) poly-
nomial model to describe the system and explore
experimental conditions leading to its optimization
(Bezerra et al. 2008).

The Box–Behnken (known as three-level) and
Box–Wilson (known as central composite) are two
common designs in RSM. The Box–Behnken design
performs well with few factors. It is suitable for fit-
ting quadratic models that require three levels of
each factor; the treatment combinations are at the
edge midpoints and center of the process spaces
(Ferreira et al. 2007). For instance, the geometry of
a Box–Behnken design for three factors may be as a
sphere partially within a cube whose edge midpoints
correspond to tangents on the sphere at 12 locations
(Fig. 1, middle). The number of experiments is 2n
(n � 1) + cp = 13, where cp is a central point and n
is number of factors. The Box–Wilson design is

Figure 1. Three-level factorial (left), Box–Behnken (middle) and Box–Wilson (right) designs.
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considered a fractional design that adds points to
estimate curvature. For three factors, the circum-
scribed central composite will have points that de-
scribe a sphere around the factorial cube. The design
may consider 2n + 2n + cp = 16 experiments, which
include fractional factorial points, axial points with
distance alpha from cp and center points (Fig. 1,
right). However, if the data lack curvature, FFD or
experimental design for the first-order model can be
explored.

MODEL FORMULATION

During development of a GA-based stope
optimization method, Villalba and Kumral (2018a,
2018b) noted that the GA parameter values signifi-
cantly affected the quality of the solution where
profits vary ± 11 and ± 7%, respectively. Further-
more, the quality of the solution could not be as-
sessed because the parameter selection was based on
sensitivity analysis, which randomizes one variable
at a time and cannot quantify interaction effects of
multiple parameters on profit or how well the solu-
tion space was searched. In the current research,
multiple runs of the stope optimizer for each
parameter combination were executed with the main
goals of (1) finding the parameter configuration that
maximizes profit in the stope optimizer using RSM
and (2) understanding the relative importance of
each parameter and quantifying parameter interac-
tions using FFD.

Each experiment provides a response (y) and
the change in response produced by a change in the
level of the factor defines their factor effect. An
iteration between factors is presented when the
difference in response between levels of one factor is
not the same as other factors (Montgomery 1997).
Thus, the iteration between factors is described by a
regression model (Eq. 1), which describes the set of
responses (Eq. 2) given by metaheuristic optimiza-
tion.

ŷðzÞ ¼ b0 þ b1z1 þ b2z2 þ b3z3 þ b4z4 þ � � � þ bpzp
þ e

ð1Þ

Factors or p predictor variables z1, z2,…,zp in Eq. 1
are associated with the metaheuristic optimization
parameters to be calibrated. For instance, if the
model requires three parameters to be calibrated,
predictor variables z1, z2 and z3 will be linked with

these parameters, and their interactions terms are
represented by predictor variable z4 to zp. The
regression model also contains a variable e, which is
the measurement error and the effect of other
variables not explicitly considered in the model. The
linear regression theory of a single ŷðzÞ response
defines a mean that depends continuously on the z1,
z2,…,zp and random error e (Johnson and Wichern
2007). The unknown parameters b0, b1…bp in Eq. 1
are estimated from the solution of n experiments or
y responses. The model becomes represented by n
independent observations on y and their linked
values of z, thus:

y1
y2

..

.

yn

2
6664

3
7775 ¼

1 z11 z12 � � � z1p
1 z21 z22 � � � z2p

..

. ..
. ..

. . .
. ..

.

1 zn1 zn2 � � � znp

2
6664

3
7775

b0
b1
..
.

bp

2
6664

3
7775þ

e1
e2
..
.

en

2
6664

3
7775

ð2Þ

The polynomial model permits examination of the
set of predictor variables to determine how well they
predict a response and which variables are signifi-
cant predictors of a response. The regression equa-
tion from fitting a model to the observed y1, y2,…,yn
and corresponding z11,…,z1p; z21,…,z2p,…,zn1,…,znp
known values are used to calculate regression coef-
ficients b0, b1,…,bp using least square estimation.
However, since variables have different units, it is
challenging to directly compare coefficients because
lower coefficients do not necessarily represent less
important predictors. A standardized coefficient
(std-beta) is needed to compare the coefficients and
find the predictors that impact more (or less) on the
response. The coefficients of the predictor with
negligible influence on the response or multiple
predictors linearly related with other predictors can
be dropped from the selected model (Helland 2000).
The z values that represent the interaction of the
control parameters generate a high dimension sur-
face called response surface. This response surface
can be portrayed as a contour plot. In the absence of
iterations, the lines of this contour plot will be par-
allel and straight and would correspond to a flat
surface. The response surface plot facilitates finding
the best setting for the control parameters graphi-
cally.

The regression model fits the set of observations
with values derived from metaheuristic optimiza-
tion. Once the best-fit ŷr zð Þ regression model is
found for r response, the values that provide the best
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response in the response surface are found by max-
imizing a dr ŷrðzÞð Þ desirability function (Eqs. 3 and
4) using a gradient descent algorithm. In addition,
the procedure gives the option to have R responses r
= 1,…,R given the same dependent variables. Max-
imizing the desirability function provides the values
of the dependent variables that generate the maxi-
mum or minimum response given the regression
model. This function requires three parameters to
calculate desirability values: the maximum limit Ur,
the lower limit Lr per response r, and exponent s
(weight), which defines how important it is to reach
Ur in response maximization (Eq. 3) and to reach Lr

in response minimization (Eq. 4).

dr ŷrðzÞð Þ ¼

0 if ŷr zð Þ\Lr

ŷr zð Þ�Lr

Ur�Lr

� �s

if Lr � ŷ zð Þ �
1 if ŷr zð Þ[Ur

Ur

8>><
>>:

8r ¼ 1; ::;R

ð3Þ

dr ŷrðzÞð Þ ¼

1 if ŷ zð Þ\Lr

ŷr zð Þ�Ur

Lr�Ur

� �s

if Lr � ŷ zð Þ �
0 if ŷ zð Þ[Ur

Ur

8>><
>>:

8r ¼ 1; ::;R

ð4Þ

The weight considers s = 1 when the desirability
function is linear, s> 1 when the points close to Ur

or Lr, need to be treated with high importance and
s< 1 when they need to be treated with lower
importance (Bezerra et al. 2008). The Ur must de-
note a larger desired value in maximization (Eq. 3)
and Lr with lower desired value in minimization.
The desirability function, dr ŷrðzÞð Þ, is used to maxi-
mize (or/and minimize) R responses simultaneously
(Derringer and Suich 1980) through the gradient
ascent (or descent) iterative optimization algorithm
for finding their maximum (and/or minimum) val-
ues. The search starts at any location in the function,
then a small step proportional to the positive (or
negative) gradient vector is taken at each iteration
to approach a local maximum (or minimum) of the
function. To move alongside (or against) the gradi-
ent, the values of this step are aggregated to (or
subtracted from) the location that is updated during
iterations. The goal is to find a sequence of updates
that show convergence of the function to a local
maximum (or minimum), which can also be global if
the function is convex (Snyman 2005). An overall
desirability D combines the individual dr ŷrðzÞð Þ "r =
1,…,R desirabilities using a geometric mean (Eq. 5).
Desirability ranges from 0 to 1, where 0 corresponds

to undesirable responses and 1 corresponds to the
most desirable response to reach Ur and/or Lr.

D ¼ d1 ŷ1ðzÞð Þ � d2 ŷ2ðzÞð Þ . . .� dR ŷRðzÞð Þð Þ
1
R ð5Þ

The methodology described here is used to calibrate
GA parameters, but can be used with any meta-
heuristic algorithm. Evolutionary algorithms like
GA have been used in mine planning; however,
these GA-based methodologies did not cover in
detail the importance of defining their GA control
parameters, such as population size, crossover rate,
and mutation rate (Kumral 2004; Ruiseco et al. 2016;
Sauvageau and Kumral 2016; Verhoeff 2017; Vil-
lalba and Kumral 2018a).

The population size (P) affects GA perfor-
mance: a small P will have limited access to the
search space, resulting in poor performance. A large
P with more access to the search space prevents
premature convergence to suboptimal solutions;
however, a low convergence rate results since a large
P requires more evaluations per generation.

The crossover rate (C) influences the number of
times crossover is used, where C 9 P solutions or (C
9 solution space) locations in the solutions under-
take crossovers. The crossover exploits the current
solutions, which lead the population to converge on
a good solution, which can be the global optimum.
The higher the C, the more quickly a population
accounts for new solutions, but too high a C carries
the risk of discarding high-performance solutions
before the selection process produces any improve-
ment (Grefenstette 1986). Crossover rates that are
too low will not permit enough new solutions;
changes in the population will be null, resulting in a
lower exploration rate.

The mutation rate (M) assists in increasing
variability of a population as a secondary search
operator. After the crossover operation, the block
position of new population solutions undergoes
random changes, which increase the probability of
exploring the search space. Mutation rates that are
too low lead to premature convergence to local op-
tima instead of the global optimum. High mutation
rates lead to random searches, which diminishes the
GA search ability and prevents converging on the
optimum solution (Reeves 2003).

The control parameters in GA can vary among
mining deposits: the optimal control parameters at
deposit A will differ from deposit B because mining
deposits are complex and their grade spatial vari-
ability influences their mine planning optimization
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setting parameters. The control parameters P, C and
M can lead to profit variation of ± 11% (Villalba
and Kumral 2018a) and affect the performance and
efficiency of GA. Thus, mine planning optimization
requires different control parameters values. The
methodology herein balances exploitation and
exploration ability by finding the optimal control
parameters. The case study demonstrates the cali-
bration of these parameters by maximizing the
desirability function of approaching the desired
profit by using a gradient descent algorithm. Three
regression models obtained from three experiments
assist in defining their respective desirability func-
tion.

CASE STUDY

To illustrate the merits of the proposed ap-
proach, the control parameters of GA-based stope
optimization are calibrated. The optimization
determines orebody portion to maximize the profit
of underground mining operation (Villalba and
Kumral 2017). Input data are from a narrow vein
gold deposit sector located in a volume of 140 m in
the east, 188 m in the north and 150 m in the vertical
direction. A total of 109 composites of gold data and
a three-dimensional geological solid were used to
calculate vein grades, with gold values ranging from
0.017 to 28.26 g/t. This data corresponds to the case
study data used and stope layout algorithm proposed
by Villalba and Kumral (2018b). Multiple realiza-
tions or equally probable orebody scenarios, simu-
lated using sequential Gaussian simulation (Deutsch
and Journel 1998; Shi et al. 2000), were scaled into
the blocks to provide input to the stochastic stope
layout optimizer. To account for orebody uncer-
tainty and find the most profitable mining direction
of stopes following the orebody directions, the stope
layout based on GA was performed in three stages:
(1) measure stope layout uncertainty based on
equally probable orebody realizations; (2) create an
average design whereby feasibility evaluation breeds
an initial population; and (3) use GA operators to
improve this initial population over generations. The
proposed methodology mainly affects the third stage
where GA is used. The control parameters of the
GA were calibrated using experimental design tools
in JMP statistical software (v. 13.0.0), in which
desirability is maximized using gradient descent
algorithm and prediction profiler tools.

The FFD, Box–Behnken, and Box–Wilson de-
signs define the stope layout profit as a single re-
sponse variable and the desirability function (Eq. 3)
for maximization, minimization and target. The
desirability is maximization of the profit, expressed
in thousands (K). L1 = US$18,500 K is the lower
limit, U1 = US$22,000 K is the upper limit and
importance is s = 1. Desirability is 0 when a design
provides profits<US$18,500 K, and is 1 when a
design has profit>US$22,000 K. Each design eval-
uation (Table 1) considers P from 10 to 40, C from
0.1 to 0.4 and M from 0.05 to 0.15. Ranges of these
control parameters were taken from Villalba and
Kumral (2018b). The sensitivity analysis showed that
values outside these ranges did not generate higher
profit. The lower and upper values of these ranges
correspond to the minimum and maximum values,
respectively, in the definition of factors in surface
methodology and two-level FFD. Also, the FFD
uses an additional level (P = 25, C = 0.25,M = 0.1) to
make a fair comparison with the other two designs
that also consider central points in their experi-
mental designs. The first, second and third design
requires 27, 13 and 15 experiments, respectively.
These experiments use three levels referring to the
values that P, C, andM can take and are used during
coding (the low, middle and high values are replaced
by –, 0, +, respectively, in JMP software), e.g., the
experiment 000 in Table 1 means that P, C, and M
take middle values 25, 0.25, and 0.1, respectively.
The computing time was stored only for the Box–
Wilson experiment because a further analysis con-
siders both profit and also time as responses in
Figure 8.

Sensitivity analysis considers the effect of one
parameter at each iteration and ignores the inter-
dependencies among the parameters. Therefore,
computational time increases due to a large number
of tests, unrealistic scenarios may be unnecessarily
examined, and less information is gathered. On the
other hand, experimental design requires a reduced
number of experiments to describe the relationship
between factors and predictors by a polynomial
model, which assists in finding optimal control
parameters while maximizing profit. To calibrate
parameters in this case study, sensitivity analysis
required 60 experiments, FFD required 45% of
sensitivity analysis experiments, and Box–Wilson
and Box–Behnken required 44–52% of FFD exper-
iments (Table 1). Thus, the proposed approach
based on experimental design simplifies and shows
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better performance in comparison with sensitivity
analysis.

The initial attempt at model selection considers
only the first-order model, which gives the basic
model representation and helps to understand the
initial contribution on the profit of P, C, and M
independently before accounting for their interac-
tions. As expected, the fit of this preliminary RSM
without cross product factors is low: R2 = 0.35, 0.42
and 0.17 for FFD, Box–Behnken and Box–Wilson
designs, respectively. However, if standardized
coefficients (std-beta) are compared, P has the
strongest influence in the FFD, Box–Behnken and
Box–Wilson designs (std-beta = 0.35, 0.46 and 0.39,
respectively) followed by C (std-beta = 0.25, 0.43
and 0.12, respectively) and M (std-beta = 0.09, 0.16
and � 0.07, respectively). The variance inflation
factor (VIF) across the three designs varies between
1 and 1.3, where VIF< 10 means there is no mul-
ticollinearity between the factors or the predictor
variables. Ideally, the predictor variables of regres-

sion models are weakly correlated with each other
but highly correlated with the dependent variable.

The lack of fitness of the preliminary model
suggests more terms are needed. Terms may be
added in the following order: (1) first-order, (2)
cross product (iteration) and (3) second-order
(quadratic) and (4) higher-order terms. Some sce-
narios will require transforming either the re-
sponses or the factors (Melvin 2000). The three
preliminary first-order models were expanded to
cross products in FFD (R2 = 0.56) and second-order
in RSM for both Box–Behnken (R2 = 0.88) and
Box–Wilson (R2 = 0.74) designs. Adjusted R2 val-
ues increased (from 0.23 to 0.32 in FFD, from 0.23
to 0.37 in Box–Behnken and from – 0.03 to 0.34 in
Box–Wilson) because the adjusted R2 considers the
number of predictors as denominators in their
equations. R2 is an intuitive measure for model
selection and knows how well a model fits a set of
observations; however, additional residual plot,
knowledge about nature of the problem, and other

Table 1. Population size (P), crossover rate (C), mutation rate (M), profit and solution time for full factorial design (FFD), Box–Behnken

and Box–Wilson experimental designs

FFD Box–Behnken Box–Wilson P C M Profit (US$ 9 1000) Time (h)

- - - - - - 10 0.1 0.05 19,144 5.57

� �0 � �0 10 0.1 0.1 19,536

- -+ - -+ 10 0.1 0.15 18,772 9.35

�0� �0� 10 0.25 0.05 19,420

-00 -00 10 0.25 0.1 19,684 20.17

�0+ �0+ 10 0.25 0.15 19,372

-+- -+- 10 0.4 0.05 18,646 20.36

�+0 �+0 10 0.4 0.1 18,865

-++ -++ 10 0.4 0.15 19,467 20.15

0�� 0�� 25 0.1 0.05 19,387

0-0 0-0 25 0.1 0.1 19,675 7.04

0�+ 0�+ 25 0.1 0.15 19,387

00- 00- 25 0.25 0.05 19,372 16.00

000 000 000 25 0.25 0.1 19,602 20.81

00+ 00+ 25 0.25 0.15 19,536 24.64

0+� 0+� 25 0.4 0.05 19,778

0+0 0+0 25 0.4 0.1 19,543 25.00

0++ 0++ 25 0.4 0.15 19,927

+- - +- - 40 0.1 0.05 19,527 4.59

+�0 +�0 40 0.1 0.1 19,293

+�+ +�+ 40 0.1 0.15 19,144 8.50

+0� +0� 40 0.25 0.05 19,293

+00 +00 40 0.25 0.1 19,536 19.82

+0+ +0+ 40 0.25 0.15 19,677

++� ++– 40 0.4 0.05 19,778 30.52

++0 ++0 40 0.4 0.1 19,927

+++ +++ 40 0.4 0.15 19,675 40.78
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model statistics assist in the fitness evaluation.
Since low R2 value still indicates a right relation-
ship between predictors and response, low R2 val-
ues obtained are tolerated in the calibration of GA
control parameters because the proposed approach
focusses in modeling the relationship between fac-
tors with higher priority than profit prediction it-
self. When the GA control parameters are defined,
the profit is maximized again using metaheuristic
stope layout optimization.

In the three designs, the least square algorithm
was used to fit the multiple regression models, where
their intercept terms ranged from US$18,941 K to
US$19,643 K. The interactions between indepen-
dent variables given by FFD—during an screening
stage—we modeled by a low-order polynomial

model (Eq. 6) to explain the system and explore
experimental conditions, whereas RSM required a
second-order polynomial to define the nature of the
response surface in the optimal region that assist in
finding optimal setting while maximizing the re-
sponse (Eqs. 7 and 8).

As observed in the preliminary model and
Table 2, P had the strongest effect on the profit (std-
beta = 0.35–0.46) and M had the least effect (std-
beta = 0.08–0.16) among the designs.

Results of Full Factorial Design

The regression model for the three-level FFD is
shown in Eq. 6. Profit depends on seven terms,

Table 2. Standardized coefficients in regression models for FFD, Box–Behnken and Box–Wilson experimental designs

Term FFD Box–Behnken Box–Wilson

Std-beta Term Std-beta Std-beta

P 0.43 P (10,40) 0.46 0.39

C 0.25 C (0.1,0.4) 0.43 0.12

M 0.09 M (0.05,0.15) 0.16 � 0.07

(P � 25) 9 (C � 0.25) 0.34 P 9 C 0.43 0.28

(P � 25) 9 (M � 0.1) � 0.09 P 9 M 0.20 � 0.15

(C � 0.25) 9 (M � 0.1) 0.29 C 9 M 0.07 0.53

P 9 P � 0.39 � 0.08

C 9 C � 0.09 � 0.09

M 9 M 0.12 � 0.33

Figure 2. The surface of the regression model using full factorial design.
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which are three control parameters and their itera-
tion terms.

Profit¼ 18941:3� 10:9Pþ 644:81Cþ 680M

þ 70ðP� 25ÞðC� 0:25Þ� 55:9ðP� 25ÞðM� 0:1Þ
þ 18022:2ðC� 0:25ÞðM� 0:1Þ

ð6Þ

As expected, the FFD surface did not perform as
well as the RSM designs to fit the case study data
(black dots in Fig. 2), but suggests graphically a
critical point to be explored that is congruent with
the RSM design results. This corresponds to P, C
and M of 40,> 0.40 and> 0.10, respectively.

Exploration of the response surface model (of
two variables at the time) must focus on the vicinity
of these critical points that may represent a local or
global maximum and are graphical approximations.
However, maximization of the desirability func-
tion—obtaining values close to the specified U1 =
US$22,000 K—will better facilitate defining the
optimum setting for all whole contributing variables
or GA control parameters. The prediction profiler in
Figure 3 shows how the prediction model of the
stope profits changes when the variable settings are
modified.

The maximum combined desirability obtained
by FFD is approximately 0.43 because the profits
obtained by the prediction model are primar-
ily<U1. This desirability is obtained when P = 40, C

= 0.40 and M = 0.15; however, the prediction profiler
graphs and surface response suggest exploring places
with higher C and M values.

Results of Box–Behnken Design

Profit depends on 10 terms, which are combi-
nations of three control parameters (as factors) until
the second order. The regression model term related
to C in the Box–Behnken design (Eq. 7) yielded a
std-beta of 0.43, close to the maximum std-beta
(0.46) obtained by P. The iteration of P and C also
yielded a high std-beta (0.43); however, the quad-
ratic terms of P maintain a high std-beta (absolute
� 0.39) whereas the quadratic term of C yielded a
very low std-beta (0.09).

Profit ¼ 19; 602þ 173:6Pþ 160:8C þ 60:6M þ 228P

� C þ 107:8P�M þ 37C �M � 237:4P2

� 57:6C2 þ 75:6M2

ð7Þ

Additional second-order terms in the model gener-
ated surfaces that fit the data and determined the
best possible combinations of variables (Fig. 4).

The desirability value using the Box–Behnken
design was higher (0.47) than using FFD because the
prediction model generates profits closer to U1 =
US$20,000 K (Fig. 5).

Figure 3. Prediction profiler and maximum desirability using the full factorial design.
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The optimal setting provided by this desirability
maximization is P = 40, C = 0.40 and M = 0.15. At a
P of approximately 40, profit steadily increases as C
increases. However, the profile of the mutation ratio
does not show convergence at the optimal setting.

Results of Box–Wilson Design

The regression model (Eq. 8) for the Box–
Wilson design and the influence of the parameters
on the response follow the findings for previous
designs with a high std-beta (0.40) obtained for P;
however, iterations of C and M obtained higher std-
beta values (0.53 and absolute � 0.32, respectively).
Thus, C and M have a synergistic effect on the re-
sponse.

Profit ¼ 19; 656þ 155:6Pþ 45:5C � 26:4M þ 122:1P

� C þ�67:9P�M þ 233:1C �M � 59P2

� 60:5C2 þ 215M2

ð8Þ

Similar to Box–Behnken, Box–Wilson design
(Fig. 6) suggested a critical point associated with
potential optimum GA control parameters that
reach the maximum profit in the response surface
(P, C, and M of approximately 40,> 0.4 and> 0.10,
respectively). This location is also related to the
critical point found by FFD.

The prediction profiler of the mutation rate is
improved by the Box–Wilson design (Fig. 7), but the
maximized desirability value is less than the two
previous designs (0.40). The prediction profile found
two optimal setting parameters (P and C) similar to
the two previous designs and P, C and M found their
best profit at values 40, 0.40, and 0.116, respectively.

In summary, comparison of the surface profiler
and contours of two factors with their response
profit are shown for each design. Their directions of
movement relative to the fitted surface lead toward
the optimum response. The directions with the
steepest slopes move more rapidly toward maxi-
mization (Melvin 2000). The population size (P =
40) and the crossover rate (C = 0.40) are defined and
ratified by the three designs, but mutation rate needs
to be confirmed from a reduced interval of possible
variations identified by the prediction profiler and
desirability maximization in the Box–Wilson design.
Thus, mutation rate was tested at 0.10, 0.116 and
0.12 using GA optimization and the profits obtained
were US$19,927, 19,887 and 18,810 K, respectively.
Also, the optimal setting for the two first designs
with M = 0.15 and a better desirability value (which
implied higher profit was found by regression mod-
el) was also tested using GA optimization. This last
test provided a profit of US$19,675 K, lower than
the profit using M from the reduced interval. Thus,
the parameters were calibrated as follows: P = 40, C
= 0.40 and M = 0.10. This decision was assisted by

Figure 4. The surface of regression model using Box–Behnken design in RSM.
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maximizing the desirability value and verifying the
prediction profiler. Since the response values of the
experiments correspond to metaheuristic solutions, a
critical point or optimal setting here may represent a
value close to the global optimum in stope layout
optimization.

GA Solution Time as a Second Response

Moreover, the case study considered the GA
solution time for a specified number of generations
as a second response variable in the analysis. This
post-optimization value can assist in calibrating the

Figure 5. Prediction profiler and maximum desirability using the Box–Behnken design.

Figure 6. The surface of regression model using Box–Wilson design in RSM.
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Figure 7. Prediction profiler and maximum desirability using the Box–Wilson design.

Figure 8. Maximization of desirability where profit is maximized and solution time is minimized.
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parameters and balancing exploration and exploita-
tion in GA because reasonable convergence time is
relevant in decision-making. The goal is to find the
minimum solution time while simultaneously maxi-
mizing the profit. The desirability of this second
response (r = 2) is set as minimization of the solution
time where L2 = 1 h as the lower limit, U2 = 30 h as
the upper limit and importance s = 1. Desirability is
0 when solution time>U2 and is 1 when solution
time is<L2.

The maximized combined desirability was 0.57,
and the prediction profiler shows a maximum profit
aligned with a minimum solution time (Fig. 8). As
expected, the profit is lower than using a single re-
sponse where only the profit is maximized; however,
the profit and solving time evaluated simultaneously
confirmed that P = 40 is the optimal setting for this
case study. Further, a larger population size does not
always imply a longer solution time; rather, cross-
over and mutation steadily increase the solution
time, though the effect is less evident for mutation
rate. These parameters are case–study-dependent
because the variability within each solution may af-
fect their selection. In other words, the stope layout
pattern, which depends on orebody spatial variabil-
ity, may affect the choice of GA parameters. This
profit and solution time analysis using experimental
design may also assist in further exploration and
exploitation solution space decisions using higher or
lower setting parameters.

CONCLUSIONS

Genetic algorithms (GA) provide a powerful
stochastic search strategy that can be used in various
optimization problems including mine planning.
Control parameter selection is either overlooked or
it is based on sensitivity analysis. Therefore, the
impact of each parameter on the optimization, the
relative importance of each parameter and the
interactions among parameters are unknown. In the
case study, these parameters could cause profit
variation of ± 7% and affect the performance and
efficiency of GAs. It should be noted that these
parameters are not universal and differ among
optimization trials. Therefore, the proposed ap-
proach should be repeated for different instances.

In seeking a balance between GA exploitation
and ability to explore the solution space via
parameter calibration, a multiple regression model
assisted in maximizing a desirability function to ob-

tain profit close to a target value through a gradient
ascent/descend algorithm. This defines the optimum
setting for all GA control parameters.

The case study was implemented for three clas-
sical experimental design techniques. The 3-level full
factorial design determined the impact of each
parameter on the response variable, as well as the
relative importance of parameters and their interac-
tions, whereas the Box–Behnken and Box–Wilson
designs as part of the response surface methodology
(RSM) found the parameter configuration that max-
imizes profit during stope optimization. Population
size had the strongest effect on profit (std-beta 0.35–
0.61), crossover rate had a moderate effect (std-beta
0.12–0.43) and mutation rate had the weakest effect
(std-beta 0.08–0.16) across the designs. These three
designs produced ŷr zð Þ regression models, and their
surface and predictor profilers illustrated the location
of critical points or potential optimal parameters;
however, the maximization of dr ŷrðzÞð Þ desirability
function defines the optimum setting for all the
parameters simultaneously. Thus, the desirability
function to obtain profit close to the desired profit
defined thepopulation size (P=40) and crossover rate
(C= 0.4), but themutation rate (M= 0.10) required an
additional evaluation from a reduced interval (0.1–
0.12) identified by the prediction profiler in RSM,
from the original interval (0.5–0.15). These parame-
ters were tested in the stope layout metaheuristic
optimization and ratified as optimal because they
provided the highest profit. Since the response values
correspond to metaheuristic solutions, the optimal
setting of parameters may be linked to the global
optimum in the stope layout optimization.

Furthermore, minimization of solution time was
considered as a second response in the analysis. As
expected, the profit was lower than using a single
response where only the profit is maximized; how-
ever, evaluating profit and solution time simultane-
ously confirmed that (1) population size (P = 40) is
still the optimal setting for this case study, (2) a
larger population size does not always imply a
longer solution time, (3) the solution time increases
steadily in proportion to crossover and mutation
rates, (4) simultaneous profit and solution time
analysis may assist in further exploration and
exploitation decision with higher or lower setting
parameters, and (5) the trade-off of accept-
able computing time and profit desirability are
illustrated. As the case study showed, the experi-
mental design can be used to determine the values of
GA operators.
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