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Geochemical anomalies are commonly separated into different geochemical anomaly levels
based on one or more thresholds. However, this practice may cause some important geo-
chemical anomaly information to be lost and subsequently draw wrong decisions for mineral
exploration. In addition, previous studies indicate that sparse geochemical sampling always
entails uncertainty resulting from conventional geochemical interpolation methods because
of smoothing effect. Uncertainty can propagate through the various steps of geochemical
data analysis that may lead to significant impact on the final results (e.g., anomaly inter-
pretation and mineral exploration). For geochemical anomaly identification, quantifying the
probability of unsampled locations and characterizing the spatial uncertainty of geochemical
anomaly based on (not) exceeding a key threshold is very important for practical demands
such as exploration risk assessment. Considering the limitations of deterministic modeling
method and geochemical anomaly assessment, this study proposes a new method of geo-
chemical anomaly uncertainty assessment by combining geostatistical simulation and sin-
gularity analysis. A case study for Au anomaly uncertainty assessment is presented in the
west Tianshan region (China) so as to verify the feasibility and effectiveness of the proposed
method. The sequential Gaussian simulation was adopted to generate a set of equiprobable
realizations that were subsequently employed to produce a series of corresponding singu-
larity index realizations by means of singularity analysis. Critical thresholds of E-type sin-
gularity index (a) were determined by the method of singularity-quantile plot analysis, which
were used to simulate the spatial uncertainty of Au anomaly in the study area. The results
show that the risk probability of Au anomaly characterized by (not) exceedance of a critical
threshold can be considered as an important reference for exploration decision-making and
risk management.
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INTRODUCTION

Singularity analysis has proven to be an impor-
tant tool for identifying geochemical anomalies and
characterizing element distribution patterns (Cheng
2007, 2012; Chen et al. 2007; Zuo et al. 2009; Agter-
berg 2012a; Liu et al. 2013, 2014; Wang et al. 2013;
Zhang et al. 2017a; Lark et al. 2018; Wang and Zuo
2018). For singularity mapping, conventional inter-
polation methods, such as inverse distance weighted
(IDW) interpolation and kriging, are commonly used
to produce a continuous geochemical field from point
data of element concentrations (Carranza 2010).
However, any interpolation method inevitably leads
to smoothing out of element concentrations (also
called smoothing effect) as indicated by lower varia-
tions in estimated values compared to those in origi-
nal values, because most interpolation techniques
result in small values being overestimated and large
values being underestimated (Juang et al. 2004;
Goovaerts 2006; Yuan et al. 2015). In particular,
kriging-based algorithms (e.g., simple kriging and
ordinary kriging) only describe the spatial variation of
observed data at each sampled location, whereas the
variation of the estimated values at each unsampled
location is ignored (Afrasiab and Delbari 2013), and
the IDW interpolation is a puremathematicalmethod
that is sensitive to extreme values. Unlike IDW and
kriging-based algorithms, the multifractal IDW takes
into account local singularities in the data (Cheng
2008) although it remains a moving average method
that is not devoid of smoothing effect. Therefore, the
results obtained from any interpolation method may
not reflect to some degree the inherent geochemical
spatial pattern and thus can undermine geochemical
anomaly identification through singularity analysis.

Questions regarding accuracy of characterizing
spatial variability of element concentrations, produc-
ing simulated maps (also called realizations) from
sparse sampling data, and quantifying uncertainties in
maps are critical concerns in earth and environmental
sciences. However, every geostatistical simulation
technique (Goovaerts 1997, 1999; Deutsch and Jour-
nel 1998; Juang et al. 2004; Deutsch 2006; Emery and
Ortiz 2012; Emery 2012), such as sequential Gaussian
simulation (SGS), provides powerful means of
addressing the above-mentioned and related ques-
tions, because they can produce a series of equiprob-
able realizations of target attribute values and each
realization honors sample data at their original loca-
tions. Therefore, a stochastic simulation map is a

realistic representation of the spatial distribution of
the target attribute. Compared to other techniques,
SGS is the most straightforward and analytically sim-
ple algorithm for determining conditional cumulative
distribution functions (Deutsch and Journel 1998).

Geostatistical simulation algorithms are designed
to overcome limitations (e.g., smoothing effect and
inability to consider variation in estimations at
unsampled locations) of conventional interpolation
methods. In recent years, geostatistical simulation has
been widely used in the field of environmental and
exploration geochemistry and ore grade simulation
(Zhao et al. 2005; Afzal et al. 2015; Soltani et al. 2014;
Olea andLuppens 2015; Sadeghi et al. 2015;Mery et al.
2017; Qu et al. 2013; Qu andDeutsch 2018; Paithankar
and Chatterjee 2017; Rahimi et al. 2018) because of its
several advantages including unbiased predictions and
uncertainty estimates of model outputs, evaluation of
uncertainty propagation and estimation of probability
by exceedance of a critical threshold (Goovaerts 1997;
Deutsch and Journel 1998). A method by combining
singularity analysis and sequential indicator simulation
(SIS) has been presented to evaluate geochemical
anomaly uncertainty related to gold exploration in the
west Junggar belt, China (Liu and Zhou 2018).

Uncertaintyassociatedwithgeochemical anomaly
maps can impact the whole geochemistry exploration
decision-making process. In view of the foregoing dis-
cussion, the present study focuses on methodological
issues of assessing uncertainty of geochemical anomaly
maps. We attempted to develop a new method by
means of integrating geostatistical simulation and sin-
gularity analysis to assess potential risk in geochemical
exploration activities. The proposed method takes
spatial uncertainty analysis into account toquantify the
influence of geochemical anomaly uncertainty on
mineral exploration. For demonstration purposes, a
case study for spatial prediction and uncertainty
assessment of Au anomaly was carried out by SGS and
singularity analysis to support risk management of Au
anomaly based on stream sediment geochemical data
in the west Tianshan region, China.

METHODS

Procedures for Geochemical Anomaly Uncertainty
Assessment

The workflow, consisting of several steps, for the
proposed geochemical anomaly uncertainty assess-
ment is shown in Figure 1. First, geostatistical simu-
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lation algorithms (Deutsch and Journel 1998), such as
SGS, were used to simulate geochemical spatial pat-
terns by generating a set of equiprobability realiza-
tions of original element concentrations. Second,
singularity analysis (Cheng 2007) was performed on
realizations to calculate corresponding singularity in-
dex realizations (SIRs). Variations in the SIRs allow a
measure of geochemical anomaly uncertainty defined
by singularity indices (SI). Third, the map of condi-
tional average estimation of SIRs, termed as E-type
singularity index (a), was generated from a set of SIRs,
which was used to determine geochemical anomaly
thresholds by means of singularity-quantile (S-Q)
method (Liu et al. 2017). Finally, uncertainty algo-
rithms including local uncertainty analysis and spatial
uncertainty analysis were used to quantify the uncer-
tainties among the SIRs through characterization of
the probability of (not) exceeding a critical threshold
derived from the S-Q method.

Sequential Gaussian Simulation

The SGS is on the base of multi-Gaussian
assumption of a random functionmodel; thus, a normal
score transformation of original sampling data is nec-
essary so that the data could follow the normal distri-
bution assumption at unsampled locations (Deutsch
and Journel 1998). The SGS procedures consist of
designing a regularly spaced grid, selecting a study area
and establishing a random path through each grid
node, so that all the nodes can be visited only once in
each sequence.

A general workflow for SGS involves normal
score transformation of the original data, creating
the realizations, and back transforming the results

into original units. The sequential steps shown in
Figure 2 carry out only the first realization. To
produce the remaining realizations, the sequential
steps are repeated with different random paths by
passing through all nodes for each realization.

Reconstruct 
Geochemical 

Spatial Structure
Realizations

SIRs 

E-type SI

Probability 
Representation

Local Uncertainty

Spatial Uncertainty

Singularity 
Analysis

S-Q 
Analysis
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Figure 1. Workflow of uncertainty propagation in geochemical anomaly analysis.
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Figure 2. A general workflow for sequential Gaussian

simulation.
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Singularity Analysis

The method of singularity analysis was devel-
oped for geochemical anomaly identification based
on inherent fractal/multifractal properties (Cheng
2007; Cheng and Agterberg 2009; Agterberg 2012b).
The window-based method is frequently used to
calculate singularity indices (a) in a 2-dimensional
space (Cheng 1999). The average concentration q
within an area A of window size e can be obtained
based on the following power-law relationship:

q½AðeÞ� ¼ l½AðeÞ�
e2

¼ c � ea�2 ð1Þ

where c is the fractal density (Cheng 2016; Liu et al.
2018a), a is the singularity index of the power-law
relationship, and the l[A(e)] is the total concentra-
tion within an area A of window size e. On a log–log
plot, the relationship between q[A(e)] and e can be
fitted by least squares method, and the a is deter-
mined by the slope (a � 2).

According to Cheng (2007) and Cheng and
Agterberg (2009), most singularity indices with a � 2
obey a normal or lognormal distribution, while the
remaining singularity indices with a> 2 and a< 2
might follow fractal/multifractal distributions. For
geochemical anomaly identification, a< 2 indicates
element concentration enrichment, while a> 2 indi-
cates element concentration depletion. Based on the
concept of singularity analysis, the S-Q method was
developed to separate multiple geochemical popula-
tions in frequency domain by plotting singularity index
quantiles vs. standard normal quantiles (Liu et al.
2017, 2018a). The critical point of the S-Q method is
how to extract these singularity indices with a � 2.
This problem can be addressed by setting a confidence
interval (e.g., 99%) of singularity indices and selecting
suitable percentile intervals, such as 15th and 85th, to
determine normal reference line and residual fitting
curves. Then, a polynomial curve is fitted by total
singularity indices. Using these three curves, two
intersection points or thresholds can be solved; these
are located above and below the normal reference
line, respectively. Thus, hybrid geochemical distribu-
tion patterns of singularity indices can be separated
into three populations in frequency domain, corre-
sponding to element enrichment, element average and
element depletion. Finally, frequency-distributed sin-
gularity indices are converted back to spatial domain
for visual representation of different patterns. From
the fractal/multifractal and statistical points of view,

the S-Qmethod provides insight into the nature of the
geochemical anomaly according to Cheng (2007) and
Cheng and Agterberg (2009), and S-Q method has
been successfully used for chromitite prospectivity
analysis based on stream sediment geochemical data
in the west Junggar region, China (Liu et al. 2017).
Recently, the S-Q method was applied to explore
geochemical distribution patterns of minor and major
elements in the west Tianshan region based on fractal
density model, and it provided excellent performance
for characterizing normal/lognormal, power-law and
multifractal distributions (Liu et al. 2018a).

Uncertainty Assessment Based on Probability
Representation

Uncertainty of a target attribute at a specific
location can be expressed by a series of probability
values (Goovaerts 1997; Juang et al. 2004; Zhao
et al. 2005). For geochemical data at a specific
location x�, the local uncertainty can be expressed by
a quantified probability z(x) involved in the ex-
ceedance of a critical geochemical anomaly thresh-
old z(c), defined by the following equation:

ProbSGS½zðxiÞ[zc� ¼
nðxiÞ
L

i ¼ 1; 2; . . . ;N ð2Þ

where N is the number of grid nodes across the
whole study area, the integer L is the total number
of realizations, and n(xi) is the number of realiza-
tions that have all simulated values at location xi
being larger than the zc in the L realizations.

The reliability of delineating geochemical
anomalous areas is described by the spatial uncer-
tainty, which is defined by the joint probability of L
realizations across each node:

ProbSGS½zðx1Þ[zc; zðx2Þ[zc; � � � ; zðxNÞ[zc�

¼ nðx1; x2; � � � ; xNÞ
L

ð3Þ

CASE STUDY

Study Area

The west Tianshan region along the southern
margin of the Central Asian Orogenic Belt (CAOB)
was formed during the Paleozoic closure of the
Northern Tianshan and Southern Tianshan oceans
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between the Junggar block and Tarim craton
(Fig. 3a; Charvet et al. 2011; Xiao et al. 2008; Zhang
et al. 2015; Chen et al. 2018). The study area is a
significant part of the Chinese Tianshan, consisting
dominantly of Proterozoic basement and Paleozoic
magmatic and sedimentary rocks, and structurally
comprises a series of approximately E–W-trending
faults (Fig. 3b). The basement is mainly comprised
of Proterozoic metamorphic rocks that are uncon-

formably overlain by upper Paleozoic granites and a
series of sedimentary rocks (Xia et al. 2004; Long
et al. 2011; Xu et al. 2013). Two large-scale Paleo-
zoic granitic belts distributed in the middle and
northern parts of the study area are considered to be
associated with southward and northward subduc-
tion of the northern Tianshan ocean, respectively
(Gao et al. 2009; Tang et al. 2010). The northern
granitic belt was dated at 390–287 Ma by means of

Figure 3. (a) Schematic map showing the position of west Tianshan region; (b) sampling sites of geochemical

data overlain on geological map.
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the zircon U–Pb method, while the middle granitic
belt was dated at 497–296 Ma by means of the
SHRIMP method (Han et al. 2011; Xu et al. 2013;
Yin et al. 2016). Some metamorphic rocks (e.g.,
metasedimentary and basic metavolcanic rocks) due
to high to ultrahigh pressure have been recognized
within Paleozoic ophiolitic mélanges at the southern
part of the west Tianshan region (Fig. 3b; Gao et al.
2009; Zhang et al. 2013).

In recent years, several researches on gold de-
posits have been conducted in the west Tianshan
region (e.g., Chen et al. 2012; Xue et al. 2014, 2015;
Yu et al. 2017; Zhang et al. 2017b; Dong et al. 2018).
Gold deposits in this region, which occurred mainly
during Variscan-Indosinian period, are spatially
controlled by geological structures and surrounding
strata (Wang et al. 2004; Yang et al. 2015). Gold
mineralization in the northern parts of study area is
associated with volcanic rocks of the Paleozoic
strata, whereas in the southern parts of study area,
gold deposits are mainly hosted by slightly meta-
morphosed clastic rocks and obviously controlled by
the ductile shear or fault zone. The ore-forming fluid
in these deposits was mainly originated from deep-
derived fluid in the early stage of ore formation but
combined with meteoric water in the late stage (Sha
et al., 2003; Yang et al. 2015). Therefore, Xue et al.
(2014) considered that two types of gold systems can
be identified in the west Tianshan region, namely

orogenic gold and porphyry gold systems. On the
one hand, the orogenic Au deposits are hosted in the
Paleozoic subduction-related accretionary zone and
the collisional orogenic environment, and they are
closely associated with Precambrian crust, structure
deformation and overprinting of magma hydrother-
mal fluid. On the other hand, the porphyry gold
deposits are mainly hosted in Carboniferous inter-
mediate-acidic pyroclastic rocks and intermediate-
basic lavas and are closely related to matured arc,
deep-source magma and long-lived mineralization.

Dataset

The study area is chiefly composed of high
mountains and a series of catchment systems. The
dense drainage and snow water in the area con-
tribute to the transportation of stream sediments
that led to dispersion of geochemical elements in
each catchment system. Stream sediment samples
were commonly collected at the bottom of riverbeds,
near waterlines, at dried-up riverbeds, or near the
paleo-channels (Fig. 3b). Geostatistical analysis of
stream sediment geochemical data is based on 1731
samples, which were analyzed for a total of 39 trace
and major elements. Details of the chemical ana-
lytical methods employed can be found in Wang
et al. (2007) and Liu et al. (2016, 2018b). Because the

Figure 4. Experimental variogram and the fitted exponent model, where C0 is nugget

variance, C is Sill variance, R2 is the squared correlation coefficient, and RSS is residual

sum of squares.
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study area is an important gold belt where several
gold deposits/occurrences have been discovered
(Feng et al. 2014; Xue et al. 2014; Wang 2016), data
for Au were selected in this study to demonstrate
the application of the proposed method for assessing
uncertainty of Au anomaly and identifying gold
target areas.

Uncertainty Assessment of Au Anomaly

Spatial Autocorrelation Analysis Based
on Variogram Model

Variogram analysis was performed after normal
scores transformation. The fitting parameters of the
semivariogram (Fig. 4) show that the distributions of
normal scores of Au concentrations are spatially
dependent. The exponential model was chosen to
construct the variogram model because the squared

correlation coefficient for the curve fitting was
highest (R2 = 0.96), while it possesses the lowest
residual sums of squares (RSS = 8E�04). The nug-
get variance represents the experimental error and
field variation within the minimum sample spacing
(Chang et al. 1998), showing that C0 is 0.51 when the
distance is close to 0. The sill variance C is 0.2 when
the fitting line is close to horizontal at a distance of
� 36 km considered as the autocorrelation range.
There is no significant spatial correlation beyond
36 km; hence, no significant spatial autodependence.
The proportion C0/(C0 + C) is the coefficient of
variation (CV), which can be used to investigate the
spatial dependence of geochemical distribution.
Cambardella et al. (1994) suggested that CV< 25%
indicates strong spatial dependence, 25% £ CV
£ 75% indicates moderate spatial dependence, and
CV> 75% indicates weak spatial dependence. In
this study, CV = 71.8% indicates moderate spatial
autodependence for the Au normal scores.

Figure 5. Four out of 200 equiprobable realizations of Au concentrations: (a) realization #32, (b) realization #79, (c) realization #115, and

(d) realization #164.
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Spatial Distribution Pattern of Au Realizations
and SIRs

Following the assumption of Gaussian normal
distribution, Au concentration values were first
subjected to normal score transformation so that the
dataset approximates a normal distribution.
According to the workflow for geochemical anomaly
uncertainty assessment (Fig. 1), the SGS was used to
generate 200 equiprobable realizations with
1 km 9 1 km grid cells aided by simple kriging and
the semivariogram model. Then, the realizations
were back-transformed to Au concentration values
for processing later by singularity analysis. Figure 5
shows four randomly selected Au realizations in
original unit (#32, #79, #115 and #164). Each real-
ization is a realistic spatial distribution of Au con-
centrations because of the elimination of smoothing
effect. The small discrepancies among these real-
izations are called ergodic fluctuations, which can be
attributed to several factors, such as the stochastic

simulation algorithm that was used, and the semi-
variogram parameters (Goovaerts 1997).

The uncertainty of geochemical information at
unsampled locations can propagate into the final
geochemical anomaly identification and could seri-
ously impact gold exploration in the study area. The
200 realizations of Au concentrations were further
processed by singularity analysis to obtain 200 cor-
responding SIRs, as described in the workflow for
geochemical anomaly uncertainty assessment. Fluc-
tuations among the SIRs provide a measure of Au
anomaly uncertainty and exhibit equiprobable spa-
tial distributions of Au singularity indices across the
study area. Four SIRs, each corresponding to the
four selected realizations (#32, #79, #115 and #164),
are shown in Figure 6. The E-type a map provides
the spatial representations of average of Au singu-
larity indices as each SIR is equiprobable (Fig. 7a).
The spatial distribution of E-type a is obviously
smoother than the four randomly selected SIRs. The
results show that the degree of Au anomalies is in-

Figure 6. Four singularity index realizations calculated from the corresponding realizations of Au concentration: (a) SIR #32, (b) SIR

#79, (c) SIR #115, and (d) SIR #164.
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versely proportional to the singularity indices. In
addition, the approximate numerical interval of
singularity indices can be detected from the SIRs
map and E-type a map (Figs. 6 and 7a), implying
that the E-type a not only avoids smoothing effect
caused by interpolation methods, but also preserve
the spatial variability of Au concentrations. The E-

type a variance map is presented in Figure 7b. The
largest predictive variance implies the largest
uncertainty, and vice versa. The results indicate that
higher uncertainty occurred at the northeastern and
southwestern parts of the west Tianshan region,
mainly developed on Paleozoic strata as indicated by
Figure 3b.

Figure 7. E-type estimates of singularity index realizations: (a) E-type a, and (b) a variance.
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Probabilistic Modeling of Au Anomaly

One of the most important steps in geochemical
exploration is to determine one or more critical
thresholds for certain elements, so as to delineate
anomalous areas where mineralization is likely pre-
sent. Here, the S-Q method was used to identify

critical thresholds based on inherent multifractal
properties, as described in section of singularity
analysis. A 99% confidence interval of E-type Au
singularity indices was selected to determine normal
reference line and residual fitting curves based on
passing through the 15th and 85th quartiles. As
shown in Figure 8a, two critical thresholds of sin-

Figure 8. Geochemical anomaly separation of E-type a map by means of S-Q method in (a) frequency domain,

and (b) spatial domain.
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gularity indices corresponding to 1.961 and 2.108
were determined. Therefore, the spatial distribution
patterns of E-type Au singularity indices can be
classified into three groups (Fig. 8b): element
enrichment with a< 1.961, element average with
1.961 £ a £ 2.108 and element depletion with
a> 2.108.

Based on the two thresholds, uncertainty
assessment for Au anomaly can be achieved in order
to determine gold exploration risk. The SIRs were
used to simulate uncertainty associated with Au
anomaly by generating probability maps of (not)
exceeding a critical threshold. As shown in Figure 9a
and b, the probability maps of a< 1.961 and

Figure 9. Probability maps of geochemical anomaly with (a) a< 1.961, and (b) a> 2.108.
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a> 2.108 are represented by colored scale values,
which depict the reliability of delineating Au
anomalous areas. Uncertainty is related to the actual
Au anomaly at any location, the probabilities of
a< 1.961 and a> 2.108 are very low nearly every-
where with blue color, and there are only isolated
areas with red and yellow colors where the proba-
bilities of a< 1.961 and a> 2.108 are high as shown
in Figure 9a and b. For geochemical exploration, we
are interested in Figure 9a because it is character-
ized by small singularity indices with a< 1.961,
indicating element enrichment or possible gold
mineralization as described in the section of singu-
larity analysis. As shown in Figure 9a, areas with
possible gold mineralization indicated by high
probability values imply low risk for gold explo-
ration. For example, the probability values are
greater than 0.813, implying that there are areas in
which the Au singularity indices may not always
exceed 1.961 as justified by 200 SIRs. However, the
low probability values mean that the risk of gold
exploration will be highly uncertain and more
information is needed to mitigate risk of gold
exploration.

SUMMARY AND CONCLUSIONS

1. The new method of integrated geostatistical
simulation technique and local singularity
analysis proposed in the present study for
geochemical anomaly uncertainty assess-
ment allows generation of a series of singu-
larity index realizations (SIRs). Compared
to deterministic modeling methods (e.g.,
kriging and IDW), this new method over-
comes the smoothing effect and ensures that
extreme values are not downgraded, making
them highly conducive to geochemical
anomaly identification. By means of spatial
uncertainty analysis, the probability distri-
bution pattern of SIRs can be determined
and this provides an opportunity for risk
evaluation and uncertainty quantification of
geochemical anomaly.

2. The case study for Au anomaly uncertainty
assessment based on stream sediment geo-
chemical data in the west Tianshan region
(China) was used to demonstrate the pro-
posed method. Two hundred equiprobable
Au SIRs were generated to enable quan-

tification of spatial uncertainty of Au
anomalies across the study area. Two crit-
ical thresholds of Au E-type a were deter-
mined in frequency domain by means of
the singularity-quantile method, and the
estimate of Au anomaly uncertainty at
unsampled locations was performed by
mapping the probabilities of a< 1.961 and
a> 2.108. The results indicate that areas
delineated by high probability pattern with
a< 1.961 have significant spatial correlation
with known gold locations, implying that
the proposed method can be helpful to
evaluate exploration risk and to delineate
areas that more likely contain gold miner-
alization.
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