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Incorporating locally varying anisotropy (LVA) in geostatistical modeling improves esti-
mates for structurally complex domains where a single set of anisotropic parameters mod-
eled globally do not account for all geological features. In this work, the properties of two
LVA-geostatistical modeling frameworks are explored through application to a complexly
folded gold deposit in Ghana. The inference of necessary parameters is a significant
requirement of geostatistical modeling with LVA; this work focuses on the case where LVA
orientations, derived from expert geological interpretation, are used to improve the grade
estimates. The different methodologies for inferring the required parameters in this context
are explored. The results of considering different estimation frameworks and alternate
methods of parameterization are evaluated with a cross-validation study, as well as visual
inspection of grade continuity along select cross sections. Results show that stationary
methodologies are outperformed by all LVA techniques, even when the LVA framework
has minimal guidance on parameterization. Findings also show that additional improvements
are gained by considering parameter inference where the LVA orientations and point data
are used to infer the local range of anisotropy. Considering LVA for geostatistical modeling
of the deposit considered in this work results in better reproduction of curvilinear geological
features.

KEY WORDS: Kriging, Local anisotropy, Non-stationarity.

INTRODUCTION

Anisotropy describes differing continuity of a
regionalized variable (RV) depending on orienta-
tion in a domain (Rossi and Deutsch 2014). Geo-
statistical modeling with anisotropy is required for
geological variables deposited preferentially along
specific orientations related to different geological
processes and structural orientations. Modeling

global anisotropy requires calculation of the exper-
imental variogram along three mutually perpendic-
ular orientations chosen based on geological
properties and/or grade continuity. Experimental
variogram points are fit with an appropriate vari-
ogram model, and the resulting range to the sill
defines the magnitude of continuity along each
direction. Anisotropy is fully parameterized by a set
of three rotation angles (strike, dip and plunge), and
two magnitude ratios r1 ¼ a2

a1
and r2 ¼ a3

a1
, where a1, a2

and a3 are the ranges along each principal axis, and
generally a1 � a2 � a3; the rotation angle conven-
tions from Rossi and Deutsch (2014) are used here.
However, for domains with complex spatial patterns,
a single global set of anisotropic parameters do not
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satisfy the local properties of the data. To address
this issue, frameworks for modeling with locally
varying anisotropy (LVA) have been developed (Xu
1996; te Stroet and Snepvangers 2005; Sullivan et al.
2007; Boisvert and Deutsch 2011; Machuca-Mory
and Deutsch 2013; Fouedjio 2016).

Methods to model LVA and generate geosta-
tistical models with LVA depend on site-specific
characteristics and the tools and data available to
parameterize each modeling algorithm. Techniques
for geostatistical modeling with LVA include: man-
ual or automated domain partitioning (Martin and
Boisvert 2017); stratigraphic transformations;
unfolding; locally weighted statistics (Machuca-
Mory and Deutsch 2013; Fouedjio et al. 2016); or
space deforming algorithms (Boisvert and Deutsch
2011; Fouedjio et al. 2015). From the view of the
practitioner, the technique to implement depends on
the complexity of the structural features and the
nature of the information available to parameterize
each framework. Generally, the simplest method
that can account for the features of interest should
be implemented; however, the information available
to parameterize the LVA may restrict which algo-
rithms can be applied. Simple to moderately com-
plex structural relationships may be captured with
manual or automated domain partitioning, strati-
graphic transformations or unfolding; generally,
these methods require fewer input parameters. For
example, a stratigraphic transformation is suit-
able for simpler geometries where a reference datum
can be identified across different areas. Similarly, a
manual partitioning workflow requires knowledge of
the grade continuities in different zones to justify
subsetting the deposit. More complex structural
features can be accounted for by assuming local
stationary and overlapping windows, but this re-
quires the inference of local statistics with, for
example, the distance-weighted statistics from Ma-
chuca-Mory and Deutsch (2013). The shortest-paths-
based LVA method from Boisvert and Deutsch
(2011) is the most complex method to incorporate
LVA to geostatistical modeling but can capture
nonlinear features at a scale finer than the data
spacing. For more complex LVA modeling tech-
niques, the use of information external to the point
data (e.g., secondary data, geological models) can
enhance the LVA model by providing local conti-
nuity information not explicitly captured in the point
data.

Grades estimated with LVA better reproduce
locally oriented features in structurally complex

domains, mainly determined by visually inspecting
grade models in different areas. Past works have also
shown that modeling with LVA can improve cross-
validation results (Boisvert and Deutsch 2011; Ma-
chuca-Mory and Deutsch 2013; Fouedjio 2015;
Fouedjio and Seguret 2016). Thus, for domains with
complex spatial patterns, there is clear motivation
for adopting an LVA framework for estimation.
However, the choice of LVA framework and dif-
ferences in parameter inference can lead to large
and potentially subjective differences between re-
source models.

This work studies two classes of geostatistical
modeling with LVA applied to a case study dataset.
The first class makes a Markov assumption and uses
local variogram parameters to estimate the condi-
tional distribution at the unsampled locations. The
second class uses space deformation where the input
space is deformed such that spatial continuity in the
deformed space is described by a stationary isotropic
covariance function. The parameterization of the
LVA represents a major consideration for any geo-
statistical modeling with LVA. In this work, a geo-
logical boundary model defines the directions of
local continuity, but associated ranges of anisotropy
are required to completely parameterize the LVA.
Four methodologies are considered to infer these
local ranges, including: manual interpretation, cross-
validation and methods that utilize the local orien-
tations and point data to calculate the local range of
anisotropy.

This paper is organized as follows: First, the
different frameworks for generating geostatistical
models with LVA are summarized. Next, methods
to infer the required parameters for each framework
are explored. Finally, the effects of different LVA-
estimation frameworks and LVA-field parameteri-
zations are examined by visual inspection and with
cross-validation on the case study dataset.

SECOND-ORDER NON-STATIONARY
TECHNIQUES
AND PARAMETERIZATION

Geostatistical modeling with a spatially varying
covariance function has been studied extensively
(Xu 1996; te Stroet and Snepvangers 2005; Sullivan
et al. 2007; Boisvert and Deutsch 2011; Machuca-
Mory and Deutsch 2013; Fouedjio 2016). A sum-
mary of the different methods is given here, but for a
comprehensive review the reader is directed to
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Fouedjio (2016). Of all the methods, there are gen-
erally two groups: location-dependent kriging
parameters and space deformations.

The first group of non-stationary estimation
depends on a location-dependent set of variogram
and statistical parameters. In this class of non-sta-
tionary estimation, a Markov assumption is made
and the kriging neighborhood is restricted to the N
nearest neighbors found in a local search (Xu 1996;
Machuca-Mory and Deutsch 2013). Under this
assumption, the parameters informing the local
kriging system of equations can be unique for all
locations in the domain and resulting estimates re-
flect these local anisotropic properties. Xu (1996)
demonstrates the utility of this method for a sparse
environment by showing that conditional simula-
tions better reproduced nonlinear geological pat-
terns when considering LVA.

The second group of non-stationary estimation
implements a space deformation where the non-
stationary features of the RV in Cartesian space are
embedded in a new space where the spatial conti-
nuity is described by a stationary isotropic covari-
ance function (Boisvert and Deutsch 2011;
McBratney and Minasny 2013; Fouedjio 2015).
Various techniques are used to accomplish the
embedding or space deformations; the shortest-path
and nonlinear-distance framework from Boisvert
and Deutsch (2011) is considered here. Although
space deformations can be used to capture features
present at a scale finer than the data spacing, this
implies an external source of information for
parameter inference since these features cannot be
inferred solely from the point data used in estima-
tion.

Parameterizing the local features for each
framework represents the fundamental workflow for
implementing different second-order non-stationary
estimation methods. Xu (1996) proposed to condi-
tionally simulate local orientations for sparse-data
environments where the measurements of local ori-
entation are available at a few locations. Alterna-
tively, te Stroet and Snepvangers (2005) propose an
iterative algorithm where local orientations are
gradually refined from previous estimated models,
mainly targeting densely sampled domains. The
distance-weighted local variogram (DWLV) ap-
proach (Machuca-Mory and Deutsch 2013; Fouedjio
et al. 2016) provides a comprehensive framework for
calculating all local parameters from the input da-
taset. At a set of anchor locations, defined at a res-
olution coarser than the data locations, the mean,

variance and variogram are inferred using a dis-
tance-based weighting scheme that ensures nearby
data have the most influence at each anchor loca-
tion. These locally inferred parameters are then
interpolated from the anchor locations to all esti-
mation locations to inform the local kriging param-
eters. The method from Fouedjio et al. (2016) is
similar to the DWLV method but mainly developed
for 2D domains. For complex 3D domains, Machu-
ca-Mory and Deutsch (2013) note that extra infor-
mation is required to inform the orientations for
local variogram calculations. Notably, LVA param-
eters inferred from the data may only capture vari-
ability at a scale equal to or larger than the data
scale.

The ideal source of information for LVA
techniques is an external source that adds infor-
mation to the model, e.g., geological interpreta-
tions, related soft secondary data, etc. For complex
and/or sparsely sampled domains, the inclusion of
local orientations from an external source adds
information that cannot be derived from local
statistics or bootstrapping previous models. In fact,
the added information can also benefit densely
sampled domains where the target variable is dis-
continuous at a short range, as is the case in
structurally hosted gold deposits. Lillah and Bois-
vert (2015) develop several methods to extract local
orientations from a variety of external data sources.
Local orientations may also be directly recovered
from geological wireframes (as in: Machuca-Mory
et al. 2015; and in this work); however, for these
cases, the ranges of the local anisotropy must be
inferred separately by some method to complete
the LVA parameterization.

CASE STUDY DATASET

The dataset studied herein is provided by
Golden Star Resources from their Wassa gold de-
posit in Ghana. The Wassa gold mine is located
approximately 40 kilometers northeast of the town
of Tarkwa, Ghana. The mine lies within the south-
ern Ashanti greenstone belt, and the gold mineral-
ization is associated with quartz veining hosted in
polydeformed greenstone rocks. The gold mineral-
ization is structurally controlled, related to vein
densities and sulfide content. The deposit has
undergone multiple periods of deformation resulting
in a complex folded structure along multiple fold
axes (Fig. 1).
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The goal of this work is to evaluate the different
methods to: (1) model the required components of
the LVA field; and (2) generate resource models
with different LVA estimation algorithms. The gold
mineralization is highly discontinuous at short ran-
ges, and the geological interpretation is important
for informing the local gold continuity. The dataset
used for this study consists of 37,357 3-m gold
composites from 1,824 drill holes, accompanied by a
geological interpretation of the local continuities in
the form of a geologic boundary wireframe. Drill

holes are mainly E–W oriented with a steep dip,
intersecting an overall N–S striking and west-dipping
folded mineralized structure (Fig. 1). The fold hinge
is in the north portion of the project and plunges to
the south-southwest at a moderate angle. For the
purposes of this study, the domain is clipped to the
northern region with dense sampling, outlined with
the thick dotted line in Figure 1. Three-meter com-
posite gold values range from detection limit to
56.97 g/t Au, with a mean value of 0.94 g/t Au; gold
values are capped to 30 g/t. The samples are subset

Figure 1. Plan view, E–W and N–S projected views through the domain, with samples coded by geological

domain. The black dotted line represents the boundaries of the modeling area. The green, orange, red and blue

boxes represent the boundaries of the slices plotted in Figures 6, 7, 8 and 9, respectively.
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into 4 estimation domains based on different struc-
tural zones of the folded strata bearing the miner-
alization. Variograms, cross-validation results and
estimated grades are independently calculated in
each estimation domain. The outcome of all mod-
eling is evaluated by two criteria: (1) Models are
visually inspected and evaluated based on continuity
of local-grade estimates in structurally complex
zones; and (2) the predictive performance of each
algorithm is tested through a tenfold validation
study by analyzing prediction errors from each LVA
parameterization and estimation framework. Ordi-
nary kriging in original units is used in this work.
The estimation algorithms considered here include
stationary kriging with an isotropic or anisotropic
variogram model applied in stationary subdomains,
and two LVA estimation frameworks: The first uses
a location-dependent variogram (hereafter, LDV:
Machuca-Mory and Deutsch 2013), and the second
implements the space-deformation strategy (here-
after, SD: Boisvert and Deutsch 2011).

The geological boundary model defines the
orientation and extents of mineralization for the
targeted modeling domain; the boundaries and local
orientations are shown in Figure 2. This interpreta-
tion is generated by geologists assessing the related
samples and structural continuities observed based
on local and regional experience at this project.
Local orientations for the LVA field are extracted
from this geological interpretation by processing the
wireframe facets (Machuca-Mory et al. 2015). The
resulting LVA orientations have no plunge compo-
nent (ang3 = 0); however, the strike and dip (ang1,
ang2) components vary smoothly throughout the
domain and follow the model boundaries (Fig. 2).

STATIONARY KRIGING PARAMETERS

The current domain is subset into 4 geological
domains based on the structural continuities in dif-
ferent parts of the deposit. Ordinary kriging with a

Figure 2. Selected slices of LVA orientations utilized for this study. (a) Plan view section showing the local

strike orientation indicated with the heatmap and vector orientations. Location of the cross section in (b) shown

with the dotted line. (b) XZ-slice showing complexity of the folded limbs.
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stationary covariance function within each domain
provides quasi-local anisotropy and represents the
simplest method that can be used to account for
local changes in anisotropy orientation.

In the presence of dense sampling, an isotropic
variogram model can produce sufficiently local ani-
sotropic estimates given the samples capture the
local anisotropy of interest (Boisvert 2010). The
experimental isotropic variogram is calculated for
each estimation domain and modeled with a two-
structure spherical variogram model (Fig. 3).

Inspection of the composite dataset and con-
sidering the modeled structural orientations indi-
cated from the boundary model for each domain
suggests that geometric anisotropy may better
describe the grade continuity along the dipping
model limbs. To test this hypothesis, the experi-
mental variogram is calculated with the major axis
oriented along the dipping limbs in each geologi-
cal domain. Identifying three distinct directions of
significantly different continuity for each sub do-
main was problematic, so a variogram model with

equal ranges in the rotated major and minor
directions was chosen. The specific set of orien-
tations for each domain are shown in Figure 4.

NON-STATIONARY KRIGING
PARAMETERS

The non-stationary estimation frameworks used
here require local orientations and ranges defined at
all locations in the estimation grid. This section
highlights the methods used to estimate the local
anisotropy ranges given the composite point data
and local orientations extracted from the boundary
model.

Manual Interpretation

The range of anisotropy can vary with location
in structurally complex domains with lognormally
distributed grade variables. However, in certain

Figure 3. Experimental and model isotropic variograms for each geological series.
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cases, a constant global range of anisotropy may be
sufficient. Thus, the first set of ratios are based on
the interpreted global continuity down dip and along
strike of the dipping model limbs. The correspond-
ing anisotropic ratios reflecting this interpretation of
the grade continuity are: r1 ¼ 0:9 and r2 ¼ 0:25.

Cross-Validation

Boisvert (2010) suggested to use cross-valida-
tion to choose sets of anisotropic ratios that better
match the data. The starting set of ratios for cross-
validation are r1 = {1.5, 0.8, 0.45, 0.2} and r2 = {0.8,
0.35, 0.25, 0.05}, generating 16 permuted sets of
fr1; r2g tested for each domain and each estimation
method. These anisotropic ratios reflect an inter-
pretation primarily of down-dip continuity. Incor-
porating an r1[1 explores the hypothesis that the
local primary direction of continuity is perpendicu-
lar to the local dip direction (ang1) in the rotated

horizontal plane. Since the samples are subset based
on geological series, the ratios inferred in this
manner are quasi-local since cross-validation is car-
ried out independently in each subdomain. Cross-
validation is performed independently for each of
the LDV and SD estimation frameworks resulting in
slightly different sets of best ratios for each estima-
tion method.

Distance-Weighted Local Variograms

Local ranges of anisotropy can be extracted
from the point dataset using the distance-weighted
statistics from Machuca-Mory and Deutsch (2013).
Recall that for complex 3D domains the local ori-
entations are required to inform the direction for
local variogram calculation. For this method,
experimental distance-weighted variograms are
constructed at anchor points located in different
parts of the deposit and each geological domain

Figure 4. Experimental and modeled variogram for each geological series with listed [ang1, ang2, ang3]

orientations for each domain. �Rot Hrz� refers to an isotropic variogram calculated in the rotated horizontal

plane.
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(Machuca-Mory et al. 2015). At each anchor loca-
tion, the representative local orientation is calcu-
lated by distance-weighting the nearby LVA
orientations taken from the geological boundary
model. The local distance-weighted variograms are
calculated and fitted with an appropriate model
variogram where the range of anisotropy along each
direction defines the required local ratios. Finally,
the ratios are interpolated from the anchor locations
to all required locations using global kriging with a
large search and long-range variogram.

Modified Distance-Weighted Local Variograms

A modification to calculated local variograms is
proposed in this work, where pairs are categorized
to either the major, minor or vertical variograms
based on the orientations contained in the LVA field
(Fig. 5; see ‘‘Appendix’’ for development of meth-
od). The idea is to use the orientation between data
pairs compared against the average LVA orientation
found along the lag vector between that pair. A
conceptual example is shown in Figure 5. An aver-
age rotated coordinate system is calculated by con-
sidering the LVA orientations intersected along the

lag vector between data locations. The angle be-
tween the lag vector and the principal axes of the
average rotated coordinate system is calculated; if
that angle is within a user-defined tolerance of one
of the principal axes, the pair belongs to either the
major, minor or vertical experimental variogram.
Once LVA-pair (LVAP) classification is completed,
a local experimental variogram is calculated and
fitted using the same distance-weighting methodol-
ogy as above. The benefit in considering this LVA-
pairing method is that samples paired with one an-
other depend on the LVA field rather than the
location of the anchor points; in the latter case, the
location chosen for each anchor fixes the variogram
orientation and fixes the pairs used for each local
variogram direction. Results from the two methods
should be similar for locations where orientations
are constant within local windows. Model ranges
extracted from fitted variograms are smoothly
interpolated to all unsampled locations, as above.
This style of pairing is appropriate for LVA fields
that vary smoothly, which should be the case; trends
in anisotropy should not have abrupt changes, when
such abrupt changes occur they should be consid-
ered by data domaining prior to the implementation
of LVA techniques. For interested readers, details of
the original and modified DWLV algorithm are gi-
ven in ‘‘Appendix’’.

ESTIMATION RESULTS

Slices from all kriging runs are shown in Fig-
ures 6 and 7, and the results from the tenfold cross-
validation for each estimation method and each set
of LVA parameters are shown in Table 1. The main
criteria used to evaluate each method are (1) visual
inspection of the grade continuity along cross sec-
tions and (2) measures of the prediction perfor-
mance for each estimation method including the
correlation ðqÞ covariance ðRÞ and root-mean-
squared-error ðrmseÞ calculated between the esti-
mated values and the true values. Grade estimates
are considered better if the local continuity reflects
the structural interpretation. The cross-validation
results from all methods are similar. The non-sta-
tionary frameworks generate estimates with a higher
covariance to the truth when compared to the sta-
tionary methods. Slices discussed in the following
discussion refer to those from Figures 6 and 7.

Slices through estimates from the stationary
techniques are shown in slices (a) and (b), respec-

Figure 5. Conceptual LVA-pair matching methodology.

Green cells indicate paths between pairs allocated to the

major direction, blue cells indicate the path between a pair

allocated to the minor direction, and red cells indicate path

between a rejected pair.
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tively. Grade continuity in the isotropic case is lim-
ited even in densely sampled areas owing to the high
short-range variability. Estimates generated using

domain-specific geometric anisotropy (with associ-
ated search parameters) improve upon the local
continuity in the isotropic case since the estimates

Figure 6. Clipped XZ slices through each model. Composite sample locations are shown. The red, green and

blue dotted lines indicate the position of the zoomed slices shown in Figures 7, 8 and 9, respectively.
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have improved down-dip continuity. Considering the
similarity in variogram models for global isotropic
and anisotropic cases, the observed differences can
be attributed to the search parameters which were
implemented to reflect the interpreted geometric

anisotropy by artificially shortening the vertical axis
for all domains.

Non-stationary estimates generated using LDV
kriging are shown in (c), (e), (g) and (i), and those
from SD kriging are shown in (d), (f), (h), (j) in

Figure 7. Zoomed slices through all models showing local differences. Model boundaries are shown with the

bounding black line. Boundaries between subdomains shown in Figure 1 are shown as colored lines. LVA

orientation vectors are drawn in red.
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Figure 6. The local continuity from non-stationary
estimation over the global stationary methods is
improved for both the LDV and SD kriging frame-

works and all sets of anisotropic ratios. The LDV
and SD predictions have a small decrease in accu-
racy with lower q and higher rmse. This small in-
crease in prediction error should be weighed against
the improvement in local feature reproduction.
Notably, predictions from both non-stationary
frameworks have larger covariance to the truth.

The simplest anisotropic ratios generated by
manual interpretation produced reasonable results
with both estimation frameworks, although the
strength of the anisotropy seems exaggerated with
LDV kriging when compared to SD kriging. Ani-
sotropic ratios generated by minimizing prediction
errors using domain-specific cross-validation are
tabulated in Table 2. The results from this method
are improved since the ratios better match the local
data and a different strength of anisotropy is pos-
sible at a smaller scale than the interpreted meth-
od. For example, in the top and bottom of
Figure 7e and f, the strength of the local anisotropy
between domains 8870 and 8880 varies. Interest-
ingly, with both estimation frameworks, domain
8850 was found to have increased continuity along
strike vs. down dip.

Finally, an LVA field generated by fitting local
variograms to the point data results in better non-
stationary estimates since the strength of the ani-
sotropy reflects the local conditions. For example,
in the top and bottom of Figure 7g and h, there is
weak and strong anisotropy, respectively, which
seems to fit each area better than the case of
constant anisotropy or constant domain-specific
anisotropy.

Figure 8. Zoomed XZ section through the east-central portion of the deposit. Boundaries between subdomains

shown in Figure 1 are shown as colored lines. Vectors showing the local anisotropy orientation are shown in red.

Dotted ellipse highlights areas where estimation frameworks differ.

Table 1. Measures of cross-validation performance

Modeling parameters q cov rmse

Stationary

Global isotropic 0.272 0.276 1.727

Global anisotropy 0.278 0.294 1.724

LDV framework

Interpreted ratios 0.258 0.355 1.762

Crossval ratios 0.256 0.347 1.761

DWLV ratios 0.239 0.361 1.790

LVAP ratios 0.258 0.376 1.769

SD framework

Interpreted ratios 0.253 0.324 1.754

Crossval ratios 0.260 0.320 1.744

DWLV ratios 0.260 0.303 1.741

LVAP ratios 0.276 0.375 1.744

Correlation ðqÞ, covariance ðcovÞ and root-mean-squared-error

ðrmseÞ between the estimated values and the truth

Table 2. Final cross-validated anisotropic ratios for each

subdomain

Domain SD framework LDV framework

r1 r2 r1 r2

8850 1.5 0.8 1.5 0.35

8870 0.8 0.8 0.8 0.35

8880 0.8 0.35 1.5 0.35

8890 0.45 0.35 1.5 0.25

The chosen ratios maximize the correlation between estimate and

truth for each estimation framework
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DISCUSSION

An important consideration for non-stationary
estimation is the time required for each algorithm.
In this work, the implementation of stationary
kriging is from GSLIB (Deutsch and Journel 1998),
the LDV implementation is from Machuca-Mory
and Deutsch (2013) and the SD implementation is
from Boisvert and Deutsch (2011). The modeling
grid defined for the current domain has 6.9-M nodes,
where 1.9-M is valid estimation locations (inside the
geological boundary model). Stationary kriging re-
quires 22.5 min, LDV kriging requires 42.5 min, and
SD kriging requires 90.4 min to estimate at all
blocks in the boundary model. The increase in time
required reflects the increase in complexity between
each method; the implementations considered here

could be optimized for CPU time, none of the codes
consider parallelization, and all methods compared
are very amenable to improved coding.

Overall, non-stationary estimation with space
deformation generates estimates that are smoother
than those generated from LDV kriging. For
example, Figures 8 and 9 show slices through inter-
esting locations in the models generated with LDV
and SD kriging using the interpreted anisotropic
ratios. An area showing the visible differences be-
tween LDV and SD kriging is circled with the blue
ellipse. In areas where the local orientations are
variable, estimates from SD kriging tend to vary
smoothly between locations, whereas those gener-
ated from LDV kriging better match this local ori-
entation variability. Consequently, the covariance
between the estimate and truth from the LDV esti-

Figure 9. Zoomed YZ section through the central high-grade portion of the deposit. Boundaries between

subdomains shown in Figure 1 are shown as colored lines. Vectors showing the local anisotropy orientation are

shown in red. Dotted ellipse highlights areas where estimation frameworks differ.
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mator is higher, owing to the increased variance in
the predictions (Table 1). The LDV estimator ap-
pears to have more sensitivity to locally variable
orientations, whereas the SD estimator generates
consistently smoother estimates with a pronounced
diffuse contact between very high and low-grade
zones. This diffusivity results in smooth transitions
between zones of different grade value, which may
be problematic given the short-range correlation of
gold observed in the composite dataset.

A set of oblique views centered on the circled
location in Figure 9 are shown in Figure 10 where
the 4 and 5 g/t isosurfaces are plotted to show the
off-section extension of the grade continuity for the
two non-stationary estimation frameworks. Consid-
ering the down-dip view (Fig. 10a and b), both
frameworks generate the expected curvilinear fea-
tures indicated from the LVA field in this location.
The LDV estimation method generates better down-

plunging folded structures considering this view.
Figure 10c and d shows the down-plunge extent of
the high-grade zone. The difference in model
smoothing is apparent; although the locally oriented
zones are consistent in the non-stationary method-
ology, there is additional distance between the 4 and
5 g/t shell for SD kriging. Boisvert (2010) notes that
the dimensionality reduction required to ensure
positive definite kriging matrices introduces some
errors in distance calculations in the high-dimen-
sional spaces, and the effect is especially pronounced
at the short range. Given the short-range nature of
grade continuity in this domain, this is a significant
limitation in applying this space-deformation meth-
od here.

Another interesting difference between the
frameworks is the search implementation and how
the local samples are related to one another within
the constraints of the boundary model. The imple-

Figure 10. Rotated view of the circled ellipse in Figure 9, showing the off-section extension of the 4 g/t (yellow) and 5 g/t (red)

isosurfaces of the grade model. Top: SW and down-dip oriented view with blue orientation vectors showing complex down-plunge folding

patterns for the (a) SD and (b) LDV estimators. Bottom: view is roughly orthogonal to the dipping mineralization looking NE for the (c)
SD, (d) LDV estimators, highlighting the smoothed nature of the SD grade model.
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mentation of SD kriging from Boisvert and Deutsch
(2011) uses a weighted graph to parameterize con-
nectivity between locations and calculate nonlinear
distances. Although locations in adjacent limbs may
be close based on their Euclidean position, the
connected graph and deformed space ensures they
are very far away since the shortest path must follow
connected estimation locations within the boundary
model. Reproducing the isolation of data within
each model limb with the LDV methodology is dif-
ficult. Since data from adjacent model limbs may be
easily found in a locally reoriented search with LDV
kriging, the only way to ensure consistent sets of
data are used within each model limb is to isolate
and model data from each limb independently. In
this respect, the LVA-pair matching algorithm im-
proves the data selection for the local variograms by
matching data pairs that are effectively connected
based on the LVA field.

CONCLUSIONS

Parameterizing the LVA field is the main con-
sideration for implementing LVA for grade estima-
tion. Extracting local orientations from an external
source is ideal since information is added that can-
not be derived from the point dataset. Several
methods can be used to parameterize both the ori-
entations and magnitudes of anisotropy that com-
plete an LVA specification, depending on the
complexity of the local orientations, the nature of
the grade variability and the amount of professional
time allotted for non-stationary inference. Given a
set of local anisotropic orientations, as a first pass, an
interpreted local ratio is sufficient. Domain-specific
cross-validation generates improved results with
some additional scripting efforts. Fitting local vari-
ograms is the ideal method to parameterize the local
ratios; however, this is the most complex to imple-
ment. Although the extension for local experimental
variograms calculated from pairs generated using
the average LVA field is interesting, the tight con-
straints of the bounding model in the current domain
limited the utility of this method for this project. The
likely issue stems from the domain boundaries and
the current implementation, which follows a
straight-line path and considers two points to be
unconnected if a boundary is encountered in this
path. Additional work is required to account for
complex domain boundaries and this LVA-pairing
methodology.

This study also showed that the choice of non-
stationary estimation framework does impact the
final estimates, both in terms of statistical repro-
duction and local non-stationary feature reproduc-
tion. The smoothing effect of the SD framework
considered herein was pronounced, though, both
non-stationary estimation frameworks generated
estimates with better local feature reproduction that
considering stationary methods. The overall poor
statistical performance for this domain can be at-
tributed to the high nugget effect. Given the
improvement in local feature reproduction, the
minor increase in prediction errors is deemed
acceptable. Second-order non-stationary estimation
methods are effective in capturing curvilinear fea-
tures in structurally complex domains. How the
LVA is parameterized and used to build conditional
distributions at the unsampled locations within the
non-stationary interpretation affects the resulting
grade estimates.
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APPENDIX

Details of the DWLV Parameter Inference
Framework

To extract the LVA ratio�s from the DWLV�s,
first a set of anchors are defined by partitioning the
domain based on the data density or by considering
regions of quasi-constant orientations using an
algorithm such as K-means clustering. An orienta-
tion for local variogram calculation at each anchor
location must be inferred. Machuca-Mory and
Deutsch (2013) note that in 2D cases the local ori-
entations can be inferred from the data, but in 3D
additional information is required.

Once the anchors and local orientations for
each anchor are defined, an experimental variogram
is constructed by weighting the square difference of
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the data pairs by the geometric average of the
weights assigned to each sample:

wtcij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wtci � wtcj
p

where wtci and wtcj are the weights based on the

distance between the samples locations ui and uj to

the current anchor c. These weights can be inverse-
distance weights (IDW) or weights from a Gaussian
kernel centered on c. It should be noted that
weighting from Gaussian kernels provides a more
continuous and stable weighting of data between
anchor locations (Machuca-Mory and Deutsch
2013). The weighted variogram for each anchor c
and for each lag h is calculated as (Machuca-Mory
and Deutsch 2013):

c h; cð Þ ¼ 1

2
Pn

i¼1

Pn
j¼1 wtcij

X

n

i¼1

X

n

j¼1

wtcij z uið Þ � z uið Þð Þ2

All distances refer to the Euclidean distance,
and jui � ujj ffi hj j. The constructed experimental
variograms can be fit manually or semiautomatically

to determine the local range of anisotropy (and ra-
tios) at each anchor location. The final fitted ratios
can then be interpolated smoothly throughout the
domain using global kriging with a long variogram
range or IDW interpolation.

Modified LVA-Pair Matching Algorithm

A modified version of DWLV is proposed
where instead of determining a representative local
orientation for each anchor location, each data pair
is individually classified as along major, minor or
vertical directions based on the pair orientation and
the LVA orientations found along the lag vector. To
obtain the average orientation along the lag vector
in 2D vector components may be averaged if the
axial nature of the data is accounted for. However,
in 3D where the local orientations include a plunge,
quaternions are used to determine the average ro-
tated coordinate system (Markley et al. 2007). For
every intersected cell along the straight-line path,

Figure 11. LVA-pair classification for all pairs matched to a single data point, shown in the large yellow circle. Red points are along the

major direction, yellow points along the minor direction, and blue points are along the vertical direction.
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the rotation angles strike a, dip b and plunge /
(ang1, ang2, ang3 from GSLIB conventions) are
converted to a quaternion using (Lillah and Boisvert
2015):

q a; b;/ð Þ ¼

cos /
2

� �

cos b
2

� �

cos a
2

� �

� sin /
2

� �

sin b
2

� �

sin a
2

� �

cos /
2

� �

sin b
2

� �

cos a
2
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� sin /
2
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cos b
2
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and the matrix M is accumulated using the outer
product, for all intersected cells, ni, between each
data pair (Markley et al. 2007):

M ¼
X

ni

i¼1

qiq
T
i

Finally, the quaternion representing the aver-
age rotated coordinate system is the eigenvector
corresponding to the largest eigenvalue from Eigen
decomposition of the matrix M (Markley et al.
2007). The set of strike, dip and plunge is recovered
using (Lillah and Boisvert 2015):

a
b
/

2

4

3

5 ¼
arctan 2 �2q1q3 þ 2q0q2; q

2
3 � q22 � q21 þ q20

� �

arcsin �2q2q3 þ 2q1q0ð Þ
arctan 2 �2q1q2 þ 2q0q3; q

2
2 � q23 � q20 þ q21

� �

2

4

3

5

where q1; q2; q3 and q4 are the respective compo-
nents of the average quaternion.

Examples of pair matching using the LVA field
are shown for a simple domain in Figures 11 and 12.
The LVA interpretation for this domain is circular
with no dip component. Figure 11 shows a slice of
the LVA field for a z-value centered at the large
yellow point. All pairs that utilize this point are
plotted and colored according to their coding as ei-
ther along the major, minor or vertical directions
from this methodology. Pairs in each direction are
logically arranged in this LVA field; major pairs are
oriented outwards along the direction of largest
continuity indicated from the LVA vectors, minor
pairs are oriented roughly 90 degrees to the major
orientation, and the vertical pairs are above and
below the current pair (Fig. 11). Figure 12 shows the
straight-line path between a single data pair. LVA
intersected in the cells each end of the lag vector is
drawn, and the average rotated coordinate system is
calculated from the intersected cells. The pair in
Figure 12 is coded to the major variogram because
the orientation of the lag vector for this pair is

Figure 12. For a single data pair, the average strike vectors are shown on the left, and the average rotated coordinate system along with

the pair orientation are shown to the right. This pair is classified as along the major direction.
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coincident with the major axis of the average rotated
coordinate system.
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