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The uniaxial compressive strength and static Young�s modulus are among the key design
parameters typically used in geotechnical engineering projects. In this paper, three artificial
intelligence techniques, namely the local linear neuro-fuzzy (LLNF) technique, artificial
neural network (ANN) and the hybrid cuckoo optimization algorithm-artificial neural net-
work (COA-ANN), were used to estimate the uniaxial compressive strength and the static
Young�s modulus of limestone. For this purpose, 115 limestone samples were subjected to
the tests of uniaxial compressive strength, ultrasonic velocity, and physical properties
(density and porosity) tests. From the laboratory results obtained, the values of the P-wave
velocity, density, porosity and dynamic Poisson�s ratio were tested as the model input
parameters to determine the best input configuration for estimating the uniaxial compressive
strength and the static Young�s modulus. Different models with different input combinations
were practiced, and the models with the highest estimation accuracy are reported here.
Performance evaluation was carried out using three criteria including coefficient of deter-
mination, variance accounted for, and normalized mean-square error. Evaluating the cor-
relation coefficients and error criteria resulting from the three methods used demonstrates
the superiority of LLNF method to ANN and COA-ANN methods. The developed ANN
models display lower correlation coefficients and higher amount of error compared to the
other models. However, using cuckoo optimization algorithm has led to significant
improvement in accuracy and precision of estimations carried out by ANN and has improved
its efficiency. Results have confirmed that the employed hybrid method outperforms in
estimating untrained data (test data) compared to the LLNF and ANN methods.

KEY WORDS: Uniaxial compressive strength, Static Young�s modulus, Ultrasonic velocity, Local
linear neuro-fuzzy, Artificial neural network, Cuckoo optimization algorithm.

INTRODUCTION

Proper assessment of the uniaxial compressive
strength (UCS) and the static Young�s modulus (Es)
of rocks is an essential prerequisite for designing
dams and tunnels, excavation in rock bodies, slope
stability analysis, wellbore stability analysis, predic-
tion of optimum drilling mud pressure, and evalua-
tion of settlement of rocky foundations (Fjar et al.
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2008; Alemdag et al. 2015). The strength and elastic
characteristics of a rock material are heavily influ-
enced by its type, mineralogical composition, texture
and structure, grain size and shape, porosity, aniso-
tropy, pore water, temperature and weathering
(Vutukuri et al. 1974; Ali et al. 2014; Zhang 2017).
The compressive strength and elastic parameters of
a rock material can be directly obtained from labo-
ratory tests. In this approach, the rock material must
be subjected to uniaxial and triaxial loads until it
fails under induced stresses. These tests have been
standardized by the American Society of Testing
and Materials (ASTM) (1984) and by the Interna-
tional Society for Rock Mechanics (ISRM) (2007).

Laboratory tests are fairly straightforward and
reliable, but they are expensive and time-consuming.
Besides, collecting high-quality samples from
weathered, weak and extensively fractured rocks can
be difficult (Kilic and Teymen 2008; Moradian and
Behnia 2009; Yurdakul and Akdas 2013; Kahraman
et al. 2017; Sharma et al. 2017). These problems can
be circumvented by the use of indirect method,
whereby the strength and elastic modulus of rock
can be expressed as a function of simple character-
istics such as lithological and mineralogical param-
eters, P-wave velocity, point load index, Schmidt
hammer rebound number, density, and porosity
(Kahraman 2001; Yasar and Erdogan 2004; Shalabi
et al. 2007; Dincer et al. 2008; Mishra and Basu 2013;
Ozturk and Altinpinar 2017; Ghafoori et al. 2018).

The UCS and Es values can also be estimated by
empirical relationships derived via simple or nonlinear
regressions. Nevertheless, these empirical relation-
ships can yield highly diverse values even for the same
type of rock (Zhang 2017). In addition, according to
Meulenkamp and Grima (1999), one of the major flaws
of statistical relationships is estimating average values,
which perhaps can lead to overestimating the low
values of UCS, and vice versa. Another disadvantage
of statistical relationships is their inability to predict
highly nonlinear phenomena (Baykasoglu et al. 2004).
Besides regression methods, soft computing tech-
niques including artificial neural networks (ANN),
fuzzy logic systems (FLS), adaptive neuro-fuzzy
interface system (ANFIS), and optimization algo-
rithms have recently found widespread applications in
geotechnical engineering. The impetus for this ap-
proach arises from the uncertain and error-prone
nature of the data used in Earth sciences and the de-
cent ability of computational intelligence techniques to
deal with this type of data. A comprehensive review of
recent applications of computational intelligence

techniques in predicting rock strength and deforma-
tion parameters has concluded that computational
intelligence can serve as a powerful tool for estimating
various rock properties (Aminzadeh and Brouwer
2006; Briševac et al. 2016). One of the soft computing
tools that has rapidly found extensive applications in
various disciplines and especially in geotechnical
engineering is the ANN (Goh 2001). The appeal of
ANN can be attributed to its desirable data analysis
such as the ability to model nonlinear data, high par-
allelism, robustness, fault tolerance, and the ability to
learn from the available data and then handle vague
and imprecise information by generalizing the results.
Meulenkamp and Grima (1999) modeled the uniaxial
strength obtained through testing 194 rock samples
and found that estimations of ANN are more accurate
than those of the regression method. In a study by
Singh et al. (2001), UCS, tensile strength and axial
point load strength were simultaneously modeled
using certain basic parameters of the tested rocks.
Tiryaki (2008) modeled the UCS of quartz based on its
effective porosity and dry density using ANN and
regression tree techniques. Yilmaz and Yuksek (2009)
utilized ANN to predict the UCS and elastic modulus
of gypsum based on point load strength, effective
porosity, Schmidt hammer rebound number, and slake
durability index. Dehghan et al. (2010) took advantage
of regression analysis and ANN to model the UCS and
elastic modulus of travertine using index properties
(e.g., P-wave velocity, point load index, porosity, and
Schmidt hammer rebound number) measured in 30
samples. In their study, the results of a feed-forward
ANN were found to be far more reliable than those of
the regression method. Yagiz et al. (2012) employed an
ANN and nonlinear regression to develop a model for
estimating the UCS and elastic modulus of carbonate
rocks based on their characteristics. Yesiloglu-Gul-
tekin et al. (2013a) used a variety of methods including
multiple regression, an ANN and an adaptive neuro-
fuzzy system to develop a number of models for esti-
mating the UCS of six types of granite from different
regions of Turkey. In another study by Yesiloglu-
Gultekin et al. (2013b), the UCS of granite blocks was
modeled using regression methods and the adaptive
neuro-fuzzy system. In this study, rock mineralogy was
assumed as a strength control factor. The results of the
study showed that both the nonlinear regression
method and the adaptive neuro-fuzzy system had an
acceptable UCS estimation capability. In a study by
Majidi and Rezaei (2013), an ANN and multivariate
regression analysis were used to model the UCS of
rocks surrounding a roadway. In their model, rock
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type, Schmidt hardness, density, and porosity were
used as model input, and UCS was assumed as model
output. The results of this study showed the superiority
of an ANN over multivariate regression analysis. Ali
et al. (2014) used various methods including multi-
variate regression, fuzzy inference, and an ANN to
model the UCS of banded amphibolite rocks based on
micro-fabric characteristics such as grain size, form
factor, and quartz content. Torabi-Kaveh et al. (2015)
used the results of the tests conducted on 105 samples
of Asmari limestone collected from two different dam
sites to model and predict the UCS and elastic modulus
of carbonate rocks and to evaluate the ability of linear
regression, nonlinear regression and an ANN in this
respect. Ultimately, they concluded that ANN-based
models provide far better estimations than regression
methods. Tonnizam Mohamad et al. (2015) employed
the ANN and the hybrid method of particle swarm
optimization with ANN (PSO-ANN) techniques in
order to predict the UCS of soft rocks and concluded
that the optimization algorithm could improve the
performance of ANN. Jahed Armaghani et al. (2016)
employed various modeling methods such as simple,
linear, nonlinear regression, a standalone ANN and
integrated imperialist competitive algorithms with
ANN (ICA-ANN) to develop a number of models for
predicting the UCS of sandstone. Their results showed
the superiority of the ICA-ANN hybrid technique over
the other tested methods. The literature comprises
numerous studies that have focused on predicting the
uniaxial compressive strength of rocks using artificial
intelligence methods (Table 1).

As it was explained, previous studies have
concentrated on estimating the UCS through
regression, ANN, and ANFIS methods and have less
focused on models for predicting the elastic modulus
of rocks. The present study, however, provides new
models for predicting the UCS and static Young�s
modulus of limestone based on sonic velocity, den-
sity, porosity and Poisson�s ratio. For this purpose,
local linear neuro-fuzzy and cuckoo optimization
algorithm-ANN methods were employed.

METHODS

Neuro-fuzzy system

Neuro-fuzzy computing is a hybrid modeling
method. Fuzzy systems are often designed by
employing a group of experts to formulate expert
knowledge into fuzzy rules. One way of creating fuzzy

rules is to derive them from the available data. Com-
bining the learning capabilities of ANNs (Jang et al.
1997) with the knowledge representation capabilities
of fuzzy logic has led to the advent of neuro-fuzzy
systems capable of deriving fuzzy rules from training
datasets. Typically, neuro-fuzzy systems are designed
with an architectural feature similar to that of ANNs
and are trained using similar training methods.

LLNF models may be given a mathematical
description. A typical LLNF model splits a complex
modeling problem into a large number of smaller
and simpler sub-problems that can be individually
solved by a linear model. The LLNF model is a
neuro-fuzzy network with one hidden layer and a
linear neuron in the output layer. Each neuron
consists of a local linear model (LLM) and a validity
function ui (u), specifying a range in which LLM is
valid. The output of each LLM is given by:

ŷi ¼ wi0 þ wi1u1 þ wi2u2 þ � � � þ wilul ð1Þ

where u ¼ u1u2 � � � ul

� �T
is the input vector, l is the

number of input dimension, and wil and yi are the
LLM parameter and the output for the ith neuron,
respectively. The output of the model with K neu-
rons is given by:

y ¼
XK

i¼1

yiui uð Þ ð2Þ

where uiðuÞ is the validity function of the ith neuron
for the input vector u. The model output is, there-
fore, the weighted sum of LLM outputs. The validity
function of each neuron is a value within the interval
[0, 1] and represents the validity of the solution of
the LLM related to that neuron. Being a multiplier
of the LLM output, this value can be used to adjust
the contribution of each neuron to the final output.
Validity functions are typically formulated as nor-
malized Gaussian functions. In the case of orthogo-
nal Gaussians, the validity function is expressed as:

/i uð Þ ¼ li uð Þ
PK

j¼1 li uð Þ
ð3Þ

where li can be obtained from the following rela-
tionship:

li ¼ exp � 1

2

u1 � ci1ð Þ2

r2
ip

 !

� � � exp � 1

2

ul � cilð Þ2

r2
il

 !

ð4Þ
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In the above relationship, c is the center, and rij is
the standard deviation of the Gaussian functions.

Local optimization of the parameters of each
LLM can be easily done with the help of the least
squares method, that is, by creating a weight matrix
and a regression matrix from the input and then
applying the least squares method to the matrices.

The regression matrix X for N measured data sam-
ples is expressed as:

X ¼ X1; X2 . . . ;Xt½ � ð5Þ

where:

Table 1. Relationships between uniaxial compressive strength and the elastic Young� modulus and some geo-mechanical properties of

rocks in the literature

References Technique Dataset

number

Input layer UCS

R or R2
Es

R or R2

Garrett (1994) ANN 30 Vp, IS(50), SRn, n R2 = 0.86 –

Meulenkamp and Grimma

(1999)

ANN 194 L, n, q, d R2 = 0.94 –

Singh et al. (2001) ANN 112 PSV – –

Tiryaki (2008) ANN

Regression

tree

44 Q, SH, CI R (ANN) = 0.63

R (regression

tree) = 0.55

R (ANN) = 0.71

R (regression

tree) = 0.65

Maji and Sitharam (2008) ANN 515 Jn, n, r, Ei, r3 – R (FFBP) = 0.972

R (RBF) = 0.953

Yilmaz and Yuksek (2009) ANN, ANFIS 121 Vp, IS(50), SRn, Wn R2 (ANN) = 0.877

R2 (ANFIS) = 0.943

R2 (ANN) = 0.891

R2 (ANFIS) = 0.955

Ceryan et al. (2012) ANN 55 n, Id, Vm, ne, PSV R2 = 0.88 –

Yagiz et al. (2012) ANN 54 Vp, n, SRn, Id ; cd R2 = 0.5 R = 0.71

Monjezi et al. (2012) ANN-GA 93 SRn, q, n R2 = 0.96 –

Yesiloglu-Gultekin (2013a) ANFIS 75 BTS, Vp R2 = 0.6 –

Yesiloglu-Gultekin

(2013b)

ANN, ANFIS 75 Quartz (%), Orthoclase (%),

Plagioclase (%)

R (ANFIS) = 0.91 –

Yurdakul and Akdas

(2013)

ANN 37 For model N7 (n = 20): SV,

NR, SH

R2 = 0.97 –

Majdi and Rezaei (2013) ANN 93 RT, SH, q, n R2 = 0.97 –

Ali et al. (2014) ANN

FIS

30 quartz, grain size, shape fac-

tor

R (ANN) = 0.95

R (FIS) = 0.91

–

Tonnizam Mohamed et al.

(2015)

PSO-ANN 40 Vp, IS(50), BD, BTS R2 = 0.97 –

Torabi-Kaveh et al. (2015) ANN 105 Vp, q, n R2 = 0.95 R2 = 0.96

Dehghan et al. (2010) ANN 30 N, Vp, Is(50), n R2 = 0.92 –

Sharma et al. (2017) ANFIS-ANN-

MR

94 Vp, q, SDI (2nd cycle) ANFIS (R2 = 0.978)

ANN (R2 = 0.949)

MR (R2 = 0.934)

–

L: equotip value, n: porosity, q: density of rock, d: grain size, PSV: petrography study value, Vp: P- wave velocity, Is(50): point load index test,

N and SRn: Schmidt hammer rebound number, Id and SDI: slake durability index, Vm: P-wave velocity in the solid part of the sample, ne:

effective porosity, Wn and WC: water content, SH: shore hardness, cd: dry unit weight, BTS: Brazilian tensile strength, RT: rock type, CI:

cone indicator value, Jn: joint frequency, r: roundness of block, Ei: modulus of elasticity, r3: confining pressure, DD: dry density, BD: bulk

density, GA: genetic algorithm, MR: multiple regression

X ¼

uiðuð1ÞÞ u1 1ð Þuiðuð1ÞÞ u2 1ð Þuiðuð1ÞÞ � � � ul 1ð Þuiðuð1ÞÞ
uiðuð2ÞÞ u1 2ð Þuiðuð2ÞÞ u2 2ð Þuiðuð2ÞÞ � � � ul 2ð Þuiðuð2ÞÞ

..

. ..
. ..

. ..
. ..

.

uiðuðNÞÞ u1 Nð ÞuiðuðNÞÞ u2 Nð ÞuiðuðNÞÞ � � � ul Nð ÞuiðuðNÞÞ

2

6664

3

7775
ð6Þ
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The local estimates of the parameters and the output
of each model are calculated by Eq. 7:

ŷi ¼ XŴ ; Ŵ ¼ XTX þ aI
� ��1

XTy; a � 1 ð7Þ

where a is a regularization parameter for avoiding

any near singularity of the matrix XTX.
This model can be optimized by several differ-

ent methods, but simplicity and clarity of tree-based
methods can make them particularly suitable for this
purpose (Nelles 2001).

Local Linear Model Tree (LOLIMOT) Learning
Algorithm

A local linear model tree (LOLIMOT) is an
incremental learning method based on a partition of
input space (Nelles 2001). In each iteration of this
algorithm, a new rule or a local linear model is ad-
ded to the model, the validity function correspond-
ing to the actual partitioning is computed, and the
corresponding rules are optimized using the locally
weighted least squares method. In this way, the
algorithm can prevent time-consuming nonlinear
optimizations. A LOLIMOT algorithm consists of
five steps, briefly explained below (Nelles 2001):

Step 1 Create an initial model by considering
the entire input space as one LLM while
assuming that K = 1 and /i(u) = 1 (K = the
number of LLMs, /i(u) = the validity func-
tion).
Step 2 Find the worst LLM: Calculate the local
loss function to find the worst-performing
LLM using the root mean-square error
(RMSR) measure.
Step 3 Check all the divisions of LLM: Select
the worst LLM for further improvement, and
split the hyper-rectangle of this new LLM into
two halves. Test all the divisions in all the
dimensions. For each division, follow the be-
low steps for dimensions 1 to l:

a) Create multidimensional membership de-
grees for both hyper-rectangles.

b) Recreate all validity functions.
c) Locally estimate the parameters of both new

LLMs.
d) Calculate the error function of the current

model.

Step 4 Select and apply the best division by
selecting the best alternative among the l
dimensions checked in Step 3 (i.e., the alter-
native leading to greatest error reduction) and
applying the validity function formed in Step
3-a and the LLMs optimized in Step 3-c to the
model. Increase the number of LLMs from K
to K + 1.
Step 5 Test the convergence. Stop if the ter-
mination condition is met; otherwise, go to
Step 2 and iterate the operation.

Artificial Neural Network

Different ANN models are distinguished by
their three characteristics, namely transfer function,
network architecture and learning rules. Every
neural network works in three steps including
learning, generalization, and operation (Haykin
1999). In the first step, a neural network categorizes
and learns the patterns in the input data. In the
second step, the neural network improves its ability
to find acceptable responses to the inputs that have
not been existing in the leaning set. In the third step,
the neural network fulfills the purpose for which it
has been designed, that is, estimation of new data.
Multi-layer perceptron (MLP) is among the most
popular and widely used variants of artificial neural
networks. This network consists of an input layer, an
output layer, and one or more hidden layers be-
tween these two. The task of hidden layers is to
enhance the ability of the network to model complex
functions. The optimal number of hidden layers can
be determined by trial and error. Each layer of this
network contains multiple neurons, the number of
which varies depending on the application. Each
neuron receives one or more inputs, which it pro-
cesses using a transfer function (linear, sigmoid,
logistic-sigmoid) to produce an output signal. The
signal is then sent to subsequent neurons. The
mentioned processing in a typical neuron consists of
multiplying each input by a corresponding weight,
summing the answer with a value known as bias, and
using the result as the input of the transfer function
to produce the output signal. The most significant
step in developing a neural network is learning (also
known as training). The neural network can be
trained through several methods, the most
notable of which is the error back propagation
algorithm. The error back propagation algorithm
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creates a set of outputs using randomly selected
weights, determines the deviation of the predicted
outputs from the real values, and then distributes the
error among the weights using a back-forward ap-
proach. This weight modification process continues
until the error becomes smaller than the desired
value, and the network reaches a stable condition
(Haykin 1999).

Cuckoo Optimization Algorithm

The cuckoo optimization algorithm (COA) is
an optimization method inspired by the life of
cuckoo birds. The COA was first introduced by
Yang and Deb (2010), but it was further developed
by Rajabioun (2011). This algorithm is one of the
most powerful optimization techniques with par-
ticularly good ability to determine global optima.
Like other evolutionary algorithms, the COA starts
its operation with an initial population (here, a
population of cuckoos). This population of cuckoos
produces a number of eggs laid in the nest of other
bird species, known as hosts. Those cuckoo eggs
that are more similar to the host eggs have a better
chance of hatching and growing to mature cuckoos;
otherwise, they will be identified and destroyed by
the host. The number of eggs that grow to maturity
represents the suitability of the host nests in a
habitat. The more eggs survive in a given habitat,
the greater profit will be gained from that habitat.
Thus, the term that the COA seeks to optimize is
the location where the greatest numbers of eggs can
survive. In other words, cuckoos seek the habitat
most appropriate for egg-laying to maximize their
offspring�s rate of survival. The cuckoo eggs that
survive grow to maturity and form a new popula-
tion of cuckoos, which will migrate toward the best
(or most profitable) habitat among all alternatives,
but they will not be able to move very far away
from their current habitat. The maximum migration
distance is limited by an egg-laying radius. This
egg-laying radius is computed based on the number
of eggs that each cuckoo lays and the bird�s distance
from the best-found habitat. Consequently, new
cuckoos start to randomly lay eggs in the nest
within the computed egg-laying radius, and this
process is repeated until the best egg-laying loca-
tion (i.e., the habitat with the highest profits) is
found. This location is the place to which the
majority of cuckoos converge.

To solve an optimization problem with the
COA, the problem variables must be organized into
a matrix called habitat. For an Nvar-dimensional
optimization problem, the habitat is an array of 1 �
Nvar representing the current position of cuckoos
defined as follows:

Habitat ¼ X1;X2; . . . ;XNvar½ � ð8Þ

The profit of the current habitat is obtained by cal-
culating the profit function fp for that habitat:

Pr ofit ¼ fpðhabitatÞ ¼ fpðX1;X2; . . . ;XNvarÞ ð9Þ

The COA is a profit maximization algorithm.
Therefore, minimization problems are analyzed
using the following function:

Profit ¼ �CostðhabitatÞ ¼ �fcðX1;X2; . . . ;XNvarÞ
ð10Þ

An optimization procedure starts by creating a habi-
tat matrix of the size Nopt � Nvar and then assigning a

random number of eggs to each of these habitats. In
nature, a cuckoo lays from 5 to 20 eggs. These num-
bers are, therefore, typically used as the lower and
upper bounds of egg-laying per cuckoo per iteration.
As mentioned above, cuckoos lay their eggs within a
maximum radius from their current position, known
as egg-laying radius (ELR). In an optimization
problem, every variable has an upper limit (Varhi) and
a lower limit (Varlow), which define ELR as follows:

ELR ¼ a
Number of cuckoo0s eggs

Total number of eggs
� ðVarhi

� VarlowÞ ð11Þ

where a is a variable for adjusting the maximum
value of ELR. Every cuckoo randomly lays some
eggs in the host nests located within its ELR. Once
all the cuckoos have laid their eggs, some of the eggs
that are less similar to host eggs are detected and
destroyed by the host bird. In mathematical terms, a
percent of cuckoo eggs (usually 10%) with the
lowest profit function value are discarded, but other
eggs hatch and grow to form a new population.
Figure 1 shows the flowchart of the COA algorithm.

PERFORMANCE EVALUATION

The performance of the developed models was
evaluated by three criteria including coefficient of
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determination (R2), normalized mean-square error
(NMSE), and variance accounted for (VAF). These
criteria are defined as follows:

R2 ¼

PN

i¼1

ðPi � PÞðMi � MÞ
� �2

PN

i¼1

ðPi � PÞ2ðMi � MÞ2

� � ð12Þ

NMSE ¼

PN

i¼1

ðMi � PiÞ2

PN

i¼1

ðMiÞ2

� 100 ð13Þ

VAF ¼ 1 � VarðMi � PiÞ
VarðMiÞ

� �
� 100 ð14Þ

In the above relationships, N is the number of sam-
ples, Pi and Mi are the predicted and measured output

values, P and M are the means of the predicted and
measured output values, and Var is the variance. In an
ideal model, R2 = 1, VAF = 100, and NMSE = 0.

ROCK CHARACTERISTICS AND TESTING
PROCEDURE

The samples examined in this study were the
cylindrical core samples of limestone collected from
nine exploratory boreholes drilled through the
limestone of the Dalan Formation. These boreholes
are located near the hydropower cavern of the
Roudbar pumped storage power plant project,
Lorestan province, Iran (Figs. 2 and 3).

Figure 1. Flowchart of the cuckoo optimization algorithm.
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Samples were prepared according to the meth-
od suggested by ISRM (2007). During the sampling
practice, caution was taken to get rock samples
without layering to avoid any anisotropic effect in
measurements. Ultimately, 115 high-quality samples
were prepared. The prepared samples had diameters
ranging from 54 to 82 mm and the length-to-diam-
eter (L/D) ratios between 2 and 3. Although the
sample diameters range from 54 to 82 mm, they
comply with the suggestion of Fairhurst and Hudson
(1999) that for UCS, test samples should have at
least 54 mm diameter and L/D ratio between 2 and
3. Samples were subjected to a non-destructive
ultrasonic test, and their P-wave velocity was mea-
sured using a pundit tool. The P and S-wave veloc-
ities were determined by measuring the travel time
and the distance between the transmitter and the
receiver. In reality, wave travel time is the sum of
the real travel time (inside the sample) and the time
delay due to the presence of electronic components,
transducers, and bonds. Thus, prior to measuring the
travel time, the time delays in the P and S-wave
measurements were separately determined sepa-
rately using a standard sample or a face-to-face
method (Starzec 1999). Figure 4 shows a schematic
diagram of the ultrasonic equipment. To improve
the signal-to-noise ratio, a constant stress of 10
Newton per square centimeter was applied along the
axial direction (ISRM 2007). In addition, an ultra-
sonic couplant was used to improve the contact be-
tween the sample and the transducer.

After ultrasonic testing, the porosity and den-
sity of all the 115 samples were measured in the
laboratory. Subsequently, all the 115 samples were
subjected to UCS tests and their static Young�s
modulus were determined. The failure modes from
the UCS tests showed predominantly axial splitting
mode and in limited number of cases shear failure
mode. Figure 5 shows examples of failure modes
observed in some of the limestone samples loaded in
the UCS test. The basic statistics of the results ob-
tained from these tests are presented in Table 2. The
results of laboratory experiments span a range of
variations for either mechanical or physical param-
eters. This can be attributed to natural variations
including existence of microstructures in samples
collected from deep boreholes drilled from surface
toward position of designed underground structures
in the Dalan formation. As the significant correla-
tion between independent variables can undermine
the multivariate modeling efficiency, multi-

collinearity between input parameters including P-
wave velocity, density, porosity and the dynamic
Poisson�s ratio was checked prior to the main anal-
ysis. In this study, variance inflation factor (VIF) was
used to investigate the presence of collinearity be-
tween independent variables; VIF values greater
than 10 were attributed to the existence of multi-
collinearity (Gunset 1983). According to Table 2, it
can be concluded that no multicollinearity existed
between input variables.

MODEL IMPLEMENTATION
AND RESULTS

LLNF

By developing a MATLAB code, the LLNF
model was implemented to estimate the UCS
parameters and the static Young�s modulus. Differ-
ent combinations of P-wave velocity, Poisson�s ratio,
density, and porosity were tested as the model input
to estimate the UCS and static Young�s modulus of
the limestone rock. The ordinary least squares
(OLS) (Billings et al. 1998) method was employed to
achieve the best model for every combination of
inputs. The linear neuro-fuzzy model was trained by
the LOLIMOT. As mentioned above, the LOLI-
MOT splits the input space in the axis-orthogonal
direction into a number of hyper-rectangles (here,
the division ratio was ½), and fits a Gaussian validity
function to the resulting hyper-rectangles. The cen-
ter of these Gaussian validity functions is the center
of the hyper-rectangles, and their standard deviation
is one-third of the hyper-rectangle extension (

a ¼ 1
3). To develop and test the models, 70% of the

data was randomly selected and assigned to the
learning subset to be used for network training, and
30% was assigned to the testing subset to be re-
served for performance evaluation. The UCS per-
formance of the model was analyzed by
combinations of one to four parameters used as
model input. In this part of the study, four analyses
with four configurations were performed for esti-
mating the UCS. As mentioned above, the best in-
put for each combination was determined by the
OLS algorithm. The impact of the number of neu-
rons on the results was evaluated by repeating the
analyses with different numbers of neurons. The
results of the developed UCS estimation models are
presented in Table 3.
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The same process was repeated for the Es using
different combinations of the inputs. The results of
the best models obtained for this purpose are pre-
sented in Table 4.

According to Tables 3 and 4, the developed
models showed reasonable accuracy in estimating
the UCS and Es of the limestone, but the UCS
estimation models outperformed the models dedi-
cated to estimating the Es. This difference might be

due to the weaker correlation between this param-
eter and the input variables.

As further observed, the calculated static in-
dexes for the training and testing subsets proved to
be so close together, denoting the appropriacy of the
modeling process and the resulting models. More-
over, the best VAF and NMSE values for the UCS
estimation were observed in the analysis A1, where
the variables q; t;Vp; n were used as model inputs.

Also, the best predicting model for Es has resulted
from A2 examination in which q; t and Vp are

introduced as input parameters. The weakest model

Figure 2. Left: the location of study area (image from Google Earth), Right: geology map of the study area including borehole

locations.

Figure 3. Core samples extracted from exploratory

boreholes in Dalan Formation, position D1.

Figure 4. Schematic diagram of the ultrasonic equipment.
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in this respect was found to be the one with only one
input in the analysis A4. It is notable that, except for
the analysis A4, all the estimations of the UCS and
Es had the errors of less than 3 and 4%, respectively,
which reflects the good modeling capability of the
employed method. Figures 6 and 7 depict the best
results emerging from LLNF method in the estima-
tion of UCS and Es that correspond to A1 and A2

analyses, respectively. As it can be seen, all the
points, including those pertaining to the trained and

untrained cases, are almost completely located
within a narrow range around the angle bisector.

ANN

A MATLAB code was used for performing
ANN mode. A feed-forward neural network with
back propagation (BP) algorithm was utilized for
this research (Haykin 1999). The tangent sigmoid

Figure 5. Examples of failure modes observed in limestone loaded in the uniaxial compressive test (core

specimens are � 82 mm in diameter).

Table 2. Basic statistics of the results obtained from the tests

Parameters Unit Symbol Minimum Maximum Average Std. dev. VIF

Uniaxial compressive strength MPa UCS 23.06 188.85 93.83 34.12 –

Static Young� modulus GPa Es 6.19 69.60 27.93 10.51 –

P-wave velocity m/s Vp 2088.8 6901.4 5504.87 898.48 1.508

Density kg/m3 q 2.60 2.78 2.70 0.028 1.104

Poisson�s ratio – m 0.18 0.30 0.23 0.0274 1.364

Porosity % n 0.17 4.98 1.14 1.09 1.288

Table 3. Summary of the LLNF analysis for predicting the UCS

Analysis Input/s Optimal neuron number Train Test

R2 NMSE VAF R2 NMSE VAF

A1 q; t;Vp; n 4 0.975 2.53 79.10 0.981 2.54 80.24

A2 q; t;Vp 4 0.972 2.78 75.80 0.972 2.77 76.86

A3 q; t 4 0.970 2.98 75.76 0.980 2.48 75.17

A4 Vp 3 0.894 10.61 17.31 0.902 9.79 11.50
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(tansig) was utilized between the input layer and
hidden layer, whereas the linear transfer function
(purelin) was used between the hidden layer and
output layer. Learning of ANN model by means of
BP algorithm is an iterative optimization process in
which the error between the predicted and measured
data, MSE (mean-squared error, equation below) is
minimized by adjusting the weight and bias appro-
priately (Haykin 1999):

MSE ¼ 1

N

XN

i¼1

ðMi � PiÞ ð15Þ

where Pi and Mi are the predicted and measured
output, respectively, and N is the total data number.
The learning process is repeated until the error be-
tween the predicted and measured data meets the
threshold error.

There are many variations of BP algorithms for
learning neural network. The Levenberg–Marquardt

(LM) algorithm with back propagation was em-
ployed as the ANN models� learning algorithm be-
cause of its superior efficiency in learning compared
to other gradient descent methods (Haykin 1999).
To avoid over-fitting, input and output parameters
were normalized between uniform range of [� 1, 1]
according to the following equation:

xnorm ¼ 2 � x � xmin

xmax � xmin
� 1 ð16Þ

where xnorm is the normalized value of the input, x is
the real value of the input, xmin is the minimum
value, and xmax is the maximum value of the input.
Once the network was constructed, different com-
binations of parameters were used as input param-
eters in modeling. The optimal results from the
neural network model have been presented in Ta-
bles 5 and 6. As can be seen, the best result for both
the UCS and Es parameters estimate has been

Figure 6. Predicted UCS by the LLNF model vs. the measured data: (a) training dataset, (b) testing dataset.

Table 4. Summary of the LLNF analysis for predicting the static Young�s modulus (Es)

Analysis Input/s Optimal neuron number Train Test

R2 NMSE VAF R2 NMSE VAF

A1 q; t;Vp; n 4 0.962 3.79 70.80 0.962 3.77 64.57

A2 q; t;Vp 4 0.964 3.835 71.52 0.963 3.75 63.00

A3 q; t 4 0.961 3.967 70.95 0.962 3.60 60.27

A4 Vp 4 0.883 11.67 15.37 0.898 10.19 10.50
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achieved from A1 analysis where the combination of
the q; t; Vp; andn parameters have been used. Also,

the weakest model for both the UCS and Es

parameters is the model which is based on one input
only. However, examining the correlation coefficient
and error value shows that the models developed by
the neural network have reasonable accuracy in
estimating the values of the target parameters. Fig-
ures 8 and 9 (analysis A2) show that, for most cases
in the learning and testing subsets, the UCS and the
Es of limestone were well estimated by the ANN
models. Comparison between the results of this
section with those of LLNF method makes it clear
that precision of ANN method is less than LLNF
method.

COA-ANN

In this part of the study, a cuckoo search algo-
rithm was used to optimize the input space for an
ANN. The ANN used in this study is a multi-layered
perceptron whose weights and biases are optimized
by the COA in the learning process. Typically, an
ANN suffers from certain flaws, such as low speed
and convergence to local minima, which can be
remedied by the proper use of the COA. Using a
MATLAB code, a COA-ANN hybrid model was
implemented to estimate the UCS and the Es. The
model inputs and their combination were coded as
described in the previous section. The COA-specific

parameters used in the modeling included the max-
imum number of cuckoos (20), the maximum num-
ber of eggs (4), and the minimum number of eggs
(2). The ELR was initially considered to be 2, but it
declined at the rate of 0.99. This decline rate was
chosen to limit the egg-laying space as the algorithm
converged to a specific area and, thus, to determine
the global optimum point more accurately.

The results of the COA-ANN hybrid models
with the best estimations of the UCS and the Es are
presented in Tables 7 and 8.

The obtained statistics point to the good esti-
mation ability of the hybrid method was used in this
study. The best estimation of the UCS was observed
in the analysis A1, where the three variables
q; t; Vp and n served as model inputs. Also, the best

estimation of Es is related to the combination of
q; t; andVp parameters in A2 analysis. The worst

estimations, however, were observed in the model
developed by only one parameter. Figures 10 and 11
display the results of A1 and A2 analysis, respec-
tively. The resulting diagrams clearly demonstrate
developed models are well-trained and are able to
predict untrained data. Comparison between the
results of COA-ANN and ANN models reveals that
the COA optimization algorithm has been able to
improve ANN performance. The coefficient of
variation for COA-ANN model has increased
noticeably and its error is decreased in comparison
with ANN demonstrating the applicability of COA-
ANN used in this research.

Figure 7. Predicted Es by the LLNF model vs. the measured data: (a) training dataset, (b) testing dataset.
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CONCLUSIONS

Based on the results obtained in this study, it
can be concluded that the proposed local linear
neuro-fuzzy and hybrid cuckoo optimization algo-
rithm-artificial neural network models can estimate
the uniaxial compressive strength and the static
Young�s modulus of limestone with great precision
and are, therefore, highly practical for this purpose.

It was revealed that, among the tested parameters,
density, P-wave velocity, and Poisson�s ratio were
the most important variables for estimating the
uniaxial compressive strength and the static
Young�s modulus of limestone. Moreover, the
model developed based on a combination of these
three parameters showed a superior estimation
performance. The comparison between the three
methods showed that the local linear neuro-fuzzy

Table 5. Summary of the ANN analysis for predicting the UCS

Analysis Input/s Optimal neuron number Train Test

R2 NMSE VAF R2 NMSE VAF

A1 q; t;Vp; n 4 0.813 2.86 72 0.806 5.20 73

A2 q; t;Vp 4 0.76 2.85 74.68 0.74 4.67 71.00

A3 q; t 4 0.803 2.77 73.20 0.800 3.83 75.30

A4 Vp 3 0.670 13.33 9.800 0.65 13.79 5.50

Table 6. Summary of the ANN analysis for predicting the static Young�s modulus (Es)

Analysis Input/s Optimal neuron number Train Test

R2 NMSE VAF R2 NMSE VAF

A1 q; t;Vp; n 4 0.790 4.00 71.00 0.703 6.03 60.00

A2 q; t;Vp 4 0.700 3.30 67.29 0.700 5.80 67.10

A3 q; t 4 0.71 5.00 69.60 0.63 6.7 56.00

A4 Vp 4 0.58 13.61 7.00 0.55 15.32 6.00

Figure 8. Predicted UCS by the ANN model vs. the measured data: (a) training dataset, (b) testing dataset.
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model presented a generally better estimation
capability than artificial neural network and hybrid
cuckoo optimization algorithm-artificial neural
network, but the last method resulted in better
estimations with untrained data. The correlation
coefficients and the amount of errors associated
with different models show that artificial neural

network holds the lowest precision among the three
methods. However, by applying cuckoo optimiza-
tion algorithm, its performance has been improved.
Consequently, both the local linear neuro-fuzzy
and the cuckoo optimization algorithm-artificial
neural network models proved to be adequately
capable of solving nonlinear problems, and conse-

Figure 9. Predicted Es by the ANN model vs. the measured data: (a) training dataset, (b) testing dataset.

Table 7. Summary of the COA-ANN analysis for predicting the UCS

Analysis Input/s Optimal neuron number Train Test

R2 NMSE VAF R2 NMSE VAF

A1 q; t;Vp; n 4 0.972 2.85 74.73 0.969 3.06 75.18

A2 q; t;Vp 4 0.967 3.29 69.74 0.981 1.93 85.21

A3 q; t 4 0.97 3.28 70 0.976 2.37 84

A4 Vp 4 0.893 10.72 13.94 0.912 8.849 21

Table 8. Summary of the COA-ANN analysis for predicting the static Young� modulus (Es)

Analysis Input/s Optimal neuron number Train Test

R2 NMSE VAF R2 NMSE VAF

A1 q; t;Vp; n 4 0.952 4.75 60.2 0.961 3.88 71.35

A2 q; t;Vp 4 0.961 4.22 65.97 0.980 2.85 74.48

A3 q; t 4 0.954 4.64 63.9 0.962 4.04 61.94

A4 Vp 3 0.850 10.21 10.43 0.910 8.85 15.41
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quently they could also be utilized to solve other
complex engineering problems.
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