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With a mining-driven economy, Botswana has experienced increased geochemical explo-
ration of minerals around existing mining towns. The mining and smelting of copper and
nickel around Selibe-Phikwe in the Central Province are capable of releasing heavy metals
including Pb, Fe, Mn, Co, Ni and Cu into the soil environments, thereby exposing humans,
plants and animals to health risks. In this study, turning bands co-simulation, a multivariate
geostatistical algorithm, was presented as a tool for spatial uncertainty quantification and
probability mapping of cross-correlated heavy metals (Co, Mn, Fe and Pb) risk assessment in
a semiarid Cu–Ni exploration field of Botswana. A total of 1050 soil samples were collected
across the field at a depth of � 10 cm in a grid sampling design. Rapid elemental concen-
tration analysis was done using an Olympus Delta Sigma portable X-ray fluorescence device.
Enrichment factor, geoaccumulation index and pollution load index were used to assess the
potential risk of heavy metals contamination in soils. The partially heterotopic nature of the
dataset and strong correlations among the heavy metals favors the use of co-simulation
instead of independent simulation in the probability mapping of heavy metal risks in the
study area. The strong correlation of Co and Mn to iron infers they are of lithogenic origin,
unlike Pb which had weak correlation pointing to its source in the area being of anthro-
pogenic source. Manganese, Co and Fe show low enrichment, whereas Pb had high
enrichment suggesting possible lead pollution. We, however, recommend that speciation of
Pb in the soils rather than total concentration should be ascertained to infer chances of
possible bioaccumulation, and subsequent health risk to human by chronic exposure.

KEY WORDS: Probability mapping, Gaussian random field, Semiarid soils, Portable XRF device,
Uncertainty quantification.

INTRODUCTION

Quantification of uncertainty has been widely
researched in environmental studies including
assessment of soils potentially polluted by heavy
metals (Liu et al. 2006; Xie et al. 2011; Sakizadeh
et al. 2017). Essentially, co-simulation of cross-cor-
related variables is key to successful mapping of
spatial uncertainty (Wackernagel 2003; Chilès and
Delfiner 2012). The most straightforward algorithms
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required for the realization of this goal are those
that make the use of Gaussian random fields (Pardo-
Igúzquiza and Chica-Olmo 1993, 1994; Chilès and
Lantuéjoul 2005). Sequential Gaussian Simulation
(SGS) (Tran 1994; Gómez-Hernández and Cassiraga
1994) and Turning Bands Simulation (TBSIM)
(Matheron 1973; Mantoglou 1987; Emery and Lan-
tuéjoul 2006) are the two geostatistical algorithms
widely used in uncertainty quantification. The SGS
relies on the sequential paradigm of simulating the
Gaussian random fields conditioned to the set of
data derived from a simple kriging exercise (Chilès
and Delfiner 2012). Although this approach is con-
sidered reliable in geostatistical modeling, it has a
major limitation relating to the difficulty in ascer-
taining moving neighborhood and reproducing the
short-scale continuity (Lantuéjoul 1994).

To address the pointed shortcomings of SGS, it
has been shown that the simulation results can be
optimized by increasing the size of neighborhood
ranges (Emery 2004). The TBSIM, the fundamental
concept of which is based on the simulation of one-
dimensional Gaussian random fields and spanning
those to d-dimensional random fields, has the ability
to address the issue of increasing neighborhood
ranges. The reasonable criticism, however, is that
artifacts might occur in the case of a few turning
lines. The idea therefore is to increase the number of
turning lines to weaken this kind of stripping (Lan-
tuéjoul 1994; Gneiting 1999; Emery and Lantuéjoul
2006). In order to co-simulate cross-correlated
variables, sequential Gaussian co-simulation (Gó-
mez-Hernández and Journel 1993; Pebesma 2004),
and turning bands co-simulation (Emery 2008; Carr
and Myers 1985; Myers 1989) offer much flexibility
to construct the outcomes (scenarios) preserving the
interrelationship between the variables as well as
displaying the spatial variability. These two current
algorithms were examined and the results showed
that turning bands co-simulation outperforms
sequential Gaussian co-simulation with regard to
reproducing the cross-correlation calculated by
spatial continuity and statistical parameters (Par-
avarzar et al. 2015).

Spatial uncertainty quantification of heavymetal
concentrations in the soil environment is critical to
our understanding of their possible pollution path-
ways, biogeochemical cycles (Cloquet et al. 2006) and
for devising possible remediation procedures. Statis-
tical (Hani and Pazira 2011) and geochemical meth-
ods including enrichment factor (Anderson and
Kravitz 2010), sequential extractions (Zimmerman

and Weindorf 2010), geochemical relationships
(Bourennane et al. 2010) and geochemical mapping
(Reimann and de Caritat 2005), among other meth-
ods, have been used for the assessment of heavymetal
contamination in soils. Since thesemethods are based
on assumptions of reference values for natural con-
tents, there is always considerable range and dis-
crepancies in the assessed soil contamination results
from single application of each and every one of the
methods. Invariably, there is no universally recog-
nizedmethod of estimation, but onlymore or less site-
specific approximations (Desaules 2012).

As an interface between the atmosphere and
the lithosphere, soils act as a sink for suspended
particulate matter. Heavy metals in near-surface
soils can be heavily disturbed by anthropogenic
activities including mining and smelting from local
and regional industrial plants. The deposition of
transported particulate matter by wind or water has
made the study of the natural status of soil geo-
chemistry very difficult. Elements in biotic and abi-
otic (soils) environments exist in various forms and
show some form of spatial trends. Three criteria
including relatively high concentrations, different
multivariate relationships from elements of natural
origins and spatial patterns related to contaminant
sources can be considered in identifying contami-
nants if significant patterns can be attributed to
anthropogenic activities (Zhang 2006).

With the rapid growth of computer technology
and new statistical methods of analysis, such as
geostatistics (Burgos et al. 2008), geographical
information systems (GIS) are becoming one of the
most important tools for studying environmental
geochemistry problems (Zhang and Selinus 1998).
Although the distribution, chemistry and elemental
interaction of heavy metals in soils have been largely
studied (Udeigwe et al. 2015; Jørgensen and Jensen
2009; Eze et al. 2010), there is still the need for site-
specific study of elemental interactions in soils in
view of the fact that soils under different climates
and environmental conditions would behave differ-
ently. Moreover, site-specific information is a great
asset for source identification, apportionment of
pollutants and remediation planning. The Maibele
Airstrip North field, where this study took place, has
never been investigated for heavy metal accumula-
tion, which makes it an interesting topic to study. In
this paper, focus is made on: (i) the application of
turning bands co-simulation model to quantify the
spatial uncertainty of four cross-correlated heavy
metal elements (Mn, Fe, Co and Pb); (ii) comparing
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the output of turning bands co-simulation with the
results of independent turning bands simulation of
each of these elements by some selected statistical
parameters. For comprehensive mathematical de-
tails on turning bands simulation (TBSIM) and
turning bands co-simulation (TBCOSIM), readers
are referred to Emery and Lantuéjoul (2006) and
Emery (2008), respectively.

THE DATA SET

The study area, Maibele Airstrip North (628200
and 631100 Easting; 759120 and 759680 Northing), is
located in the east central part of Botswana and
covers about 2.64 km2 (Fig. 1).

It is about 40 km away from the Selebe-Phikwe
Ni-Cu mine smelter/concentrator plant. Maibele
Airstrip North is found in the greenstone belts and
shear zones of the Zimbabwe Craton—a part of the
Archean basement that forms the core of the south-
ern Africa subcontinent and it stretches across
northeastern Botswana and Zimbabwe. Elevations
within the study area are typical of the basement
system of Botswana lying at an altitude between 780
and 950 m above sea level with slopes in the study
area generally being below 15%. One soil type
(Haplic Luvisols) is identified on the available 1:1
000,000 FAO soil map of the area. The soils devel-
oped on paragneisses and amphibolites rich ultra-
mafic rocks.

The climate is typically semiarid with a mean
annual precipitation of 600 mm. It is characterized
by a hot and rainy season with subtropical thun-
derstorms (November–March); a cool dry season
(April–August); and a hot season with no occur-
rences of rain (September–November). Prevailing in
the area are the south-easterly quadrant winds. A
greater portion of the land is sparsely vegetated with
grasses, shrubs and trees including Aristida conjesta,
Grewia flava, and Colophospermum mopane and
hard veld vegetation (Likuku et al. 2013).

The dataset used in this study to characterize
spatial concentrations of heavy metals was obtained
during a soil sampling campaign in search of geo-
chemical anomaly in November 2015 to expand
Botswana Metal Limited (BML)�s Cu-Ni mining
operations in Maibele Air Strip North. A total of
1050 surface soil samples were collected, and ana-
lytical results of Mn, Fe, Co and Pb were recorded in
terms of total concentration (mg kg�1). The sam-
pling followed a grid scheme, by dividing the studied
area into a grid of 100 m 9 100 m. The location map
of sample points is illustrated in Figure 2. Details of
the sampling design and the analytical procedures
using portable XRF are published in a repository
(Eze et al. 2016a, b). The manufacturer�s limits of
detection (LOD) for the heavy metals are:< 10
ppm for Co, Fe, and Mn; and< 5 ppm for Pb.

Soil Pollution Assessment

Three indices including enrichment factor (EF),
geoaccumulation index (Igeo) and pollution load
index (PLI) were used to assess the pollution

Figure 1. Geographical map of the study area (Maibele

Airstrip is indicated by filled red star).
Figure 2. Location map of sample points; black circles are

sample locations.
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thresholds of the heavy metals in the near-surface
soils. The background values of Fe, 128,840; Mn,
1150; Co 21; and Pb, 2 (mg kg�1) used in the pol-
lution assessment indices were obtained from the
compilation of the major and trace element geo-
chemistry of the regional plutonic rocks underlying
the study area by Kampunzu et al. 2003.

Enrichment Factor (EF)

Iron was used as a normalizing element in the
calculation of EF. Fe was used because of its rela-
tively more abundance in Earth�s crust and it func-
tions as a conservative tracer to differentiate
between natural and anthropogenic heavy metal
components in soil samples. Thus, EF was first
proposed by Buat-Menard and Chesselet (1979):

EF =

CX

CFe

h i
Sample

BX

BFe

h i
Background

ð1Þ

where Cx/CFe and Bx/BFe represent the ratios of
heavy metal of interest to Fe in the sample over that
of the background sample. Five EF thresholds were
used to weight pollution level (Addo et al. 2012);
EF< 2 denoted minimal enrichment, EF from 2 to 5
for moderate enrichment, EF from 5 to 20 for severe
enrichment, EF from 20 to 40 very high enrichment,
and EF> 40 extremely high enrichment.

Geoaccumulation Index (Igeo)

Geoaccumulation index (Igeo) was proposed by
Müller (1969):

Igeo ¼ log2
Cn

1:5Bn

� �
ð2Þ

where Cn = measured concentration of the element
in the soil sample, Bn = geochemical background
value of the element of interest, and the constant 1.5
minimizes the effect of possible variations in the
background values which may be attributed to
lithologic variations. The Igeo thresholds ranges
were: Igeo £ 0 (unpolluted), 0< Igeo< 1 (unpol-
luted to moderately polluted), 1< Igeo< 2 (mod-
erately polluted), 2< Igeo< 3 (moderately to
strongly polluted), 3< Igeo< 4 (strongly polluted),

4< Igeo< 5 (strongly to extremely polluted) and
Igeo> 5 (extremely polluted), respectively.

Pollution Load Index (PLI)

The PLI is first computed from the contamina-
tion factor (CF), which is the ratio between the
heavy metals in the soils and in the background
sample (Tomlinson et al. 1980)

CF =
Cm sample

Cmbackground
: ð3Þ

The PLI is then computed from Eq. 4, where n
is the total number of heavy metals assessed.

PLI = CF1 � CF2 � CF3 � � � � � CFnð Þ
1
n ð4Þ

The interpretations of PLI were given by:
PLI< 1 denotes perfection, PLI = 1 only baseline
levels of pollutants is present, and PLI> 1 polluted
soil.

METHODOLOGY

Turning bands conditional co-simulation algo-
rithms were carried out following the steps in the
flowchart (Fig. 3).

Exploratory Data Analysis

Exploratory data analysis was done to find
possible errors, outliers and statistical parameters.
This can be considered by univariate or multivariate

Figure 3. Flowchart for implementing TBSIM and

TBCOSIM.
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tools. The latter shows to what extent the variables
are related to each other, which can be measured by
correlation coefficient and drawing the scatter plot
between the co-regionalized variables.

Declustering

The scarcity of data in some parts of a study
area makes the sampling pattern irregular and sta-

tistical parameters possibly biased. One idea to
remedy this is to account for the weights of each
location by cell-declustering technique to correct the
pseudo-skewness in the global distribution of the
dataset (Goovaerts 1997; Deutsch and Journel
1998). Yet, this technique is suitable for the uni-
variate case and avoids the cross-correlation among
the variables. Following (Bourgault 1997; Bogaert
1999), the co-kriging approach can be applied for co-
regionalized variables with simple and cross-vari-
ograms to assign consistent weights to each location.
Table 1 summarizes the statistical description of
metal concentrations after declustering of the data-
set.

As can be seen in Table 1, the variables are not
measured at all the sampling locations. This pattern
is so-called partially heterotopic, in which some
variables are in common with some sample locations

Table 1. Statistical description after declustering the heavy metal concentrations.

Statistical parameters Mn Fe Co Pb

Number of data 1153 1204 1152 1142

Mean value 647.483 43,928.524 26.749 26.876

Variance 59,996.710 191,752,907.954 88.700 635.160

Minimum 168.000 14,431.000 6.000 9.000

Lower quartile 473.771 35,040.402 20.000 17.000

Median 677.790 45,362.147 27.537 21.000

Upper quartile 824.000 53,681.148 33.000 27.000

Maximum 1219.000 75,675.000 50.000 397.000

Table 2. Correlations between the declustered heavy metal

concentrations.

Mn Fe Co Pb

Mn 1 – – –

Fe 0.939 1 – –

Co 0.883 0.936 1 –

Pb 0.218 0.218 0.197 1

Figure 4. Normal score transformation. (a) Original declustered histogram of Mn, (b) normal score transformed of Mn.
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(Wackernagel 2003). The partially heterotopic nat-
ure of the heavy metals dataset led to the use of co-
simulation in the place of independent simulation in
addition to the favorable correlations that exist
among the variables (Table 2). In this case, the
secondary variable (auxiliary) that is available at
more locations than the primary variable improves
the estimation or simulation for the primary variable
(Emery 2008).

Transform the Data

As TBSIM and TBCOSIM algorithms like
other geostatistical simulation techniques are
dependent on the simulation of Gaussian random
fields, the data should be transformed to normal
standard variables to have a Gaussian distribution
with mean 0 and variance 1 accounting for declus-
tering weights. The Gaussian anamorphosis is an
applicable function for such a transformation (Riv-
oirard 1994; Chilès and Delfiner 2012). Such a
transformation to normal score for Mn, for example,
is shown in Figure 4.

Checking the Multivariate Gaussianity

The presence of interesting positive correlation
coefficients among the variables (heavy metals)
(Table 2) and their univariate transformation

(Fig. 4) to Gaussian random field does not ensure
that the multivariate distributions are also Gaussian
(Leuangthong and Deutsch 2003) which is a critical
assumption for implementing TBCOSIM. One
important specification is to examine the multivari-
ate Gaussianity by checking the homoscedasticity
and linearity among the cross-correlated variables
(Johnson and Wichern 1998). As an example, Fig. 5
illustrates the scatter plot between three elements
(Mn, Fe and Co), and one can see that the bivariate
character is somehow in agreement with
homoscedasticity and linearity definitions. There-
fore, the Gaussian co-simulation approach can be
applied here.

Checking the Bivariate Gaussianity

Gaussian simulation requires the multivariate
normality as explained in the previous section. A
graphical tool is to look at the interrelationship be-
tween two points that are located at a specific dis-
tance from each other and checking that the points
are distributed according to an elliptic isodensity
shape (Rivoirard 1994). As can be seen in Fig. 6, the
nearly elliptic shape in distribution of points is
somehow corroborated. However, this methodology
is somewhat tedious, firstly because it needs exam-
ining this visual tool for alternative distances, sec-
ondly because detection of elliptical shape is difficult
in case of large distances (Emery 2005).

Figure 5. Checking the multivariate Gaussian distribution. (a) Relationship between Co & Fe, (b) relationship between Mn & Fe.
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Figure 6. Bivariate Gaussian distribution for Fe. (a) Distance: 50 m (tolerance: 25 m), (b) distance: 1000 m (tolerance: 1000 m).

Figure 7. Direct and cross-variograms for four underlying variables (Mn, Fe, Co and Pb). Blue: azimuth 135
�
& black: azimuth 45

�
.

115Multivariate Mapping of Heavy Metals Spatial Contamination



Calculation of Spatial Continuity

Direct and cross-variograms were calculated
over these four normal scored heavy metals. First of
all, the experimental direct variograms are calculated
along different directions to detect possible aniso-
tropy. Different measures of range in variogram
indicated that the maximum axis of anisotropy is in
azimuth of 135 degrees, and consequently the mini-
mum anisotropy is extended along the azimuth of 45
degrees. Therefore, in total, 16 experimental vari-
ograms (direct and cross) were computed along these
anisotropy directions. However, TBSIM requires just
the direct variograms, while TBCOSIM needs direct
and cross-variograms as well. The most demanding
procedure beyond this step is to infer the linear
model of co-regionalization (Wackernagel 2003;
Emery 2008; Chilès and Delfiner 2012). Henceforth, a
semiautomatic fitting function was applied to fit two
spherical nested structures and a nugget effect
(Fig. 7) according to the following formulae:

cMn hð Þ cMn�Fe hð Þ cMn�Co hð Þ cMn�Pb hð Þ
cFe�Mn hð Þ cFe hð Þ cFe�Co hð Þ cFe�Pb hð Þ
cCo�Mn hð Þ cCo�Fe hð Þ cCo hð Þ cCo�Pb hð Þ
cPb�Mn hð Þ cPb�Fe hð Þ cPb�Co hð Þ cPb�Pb hð Þ

0
BBB@

1
CCCA

¼

0:098 0:043 �0:005 0:081

0:043 0:071 0:036 0:089

�0:005 0:036 0:096 0:076

0:081 0:088 0:076 0:140

0
BBB@

1
CCCAnugget

þ

0:609 0:569 0:587 0:007

0:569 0:614 0:603 �0:014

0:577 0:603 0:649 �0:02

0:007 �0:014 �0:028 �0:752

0
BBB@

1
CCCASph 250m; 250mð Þ

þ

0:866 0:820 0:800 �0:239

0:820 0:782 0:756 �0:227

0:800 0:756 0:741 �0:220

�0:239 �0:227 �0:220 �0:066

0
BBB@

1
CCCASph 800m;1ð Þ

ð5Þ
In the above equation, the first and second

ranges show the anisotropy along the directions of
azimuth 135� and 45�, respectively.

Independent Simulation and Co-simulation
of Heavy Metals

Simulation was performed on a regular grid
with dimension of 10 m 9 10 m 9 10 m, and ordi-
nary kriging and co-kriging were utilized for the

process of conditioning to the hard data (sampling
locations), respectively. The proposed approaches
can be substituted for simple kriging and co-kriging
where the uncertainty is significant in mean value of
the random field (Emery 2007, 2012). The neigh-
borhood is moving with conditioning to 20 sur-
rounding data characterized by maximum and
minimum anisotropy equal 1000 and 800 m,
respectively, derived from the variogram analysis.
The number of lines for turning bands should be
large as much as possible (Emery 2008). Henceforth,
it was set to 1000 lines for elimination of stripping
effects. The fitted linear model of co-regionalization
was incorporated to both algorithms, which consists
of the characteristics of the direct and cross-vari-
ograms (applicable only for co-simulation) models
(Fig. 7). The number of realizations was considered
to be 100 for both cases. E-type maps were produced
by averaging the 100 realizations of the co-simulated
elements in each block. As can be seen, the desired
correlation coefficient considered beforehand is
reproduced very well and manifest themselves in the
maps (Fig. 8).

Checking the Validity of the Results

The purpose of this section is to verify whether
or not the desired correlation coefficients are treated
well between the back-transformed variables ele-
ments through the realizations. It is expected that
these coefficients fluctuate around the experimental
correlations (Table 2). This condition stands for
TBCOSIM applying ordinary co-kriging, but not for
TBSIM considering ordinary kriging (Fig. 9). The
latter case shows a very significant bias due to the
low correlations, on average, reproduced by the
realizations. This is due to the fact that, compared to
TBCOSIM, ordinary kriging applied in TBSIM does
not consider linear correlation among the elements
and consequently leads to a poor regeneration of the
interdependence among the elements to be simu-
lated. Figure 9 comprises results of methodologies
for two elements (Mn and Fe) showing their effect
on the reproduction of correlation coefficients. To
check the validity of either model, a cross-validation
technique was employed whereby it co-simulates the
underlying variables at every data location, condi-
tionally to the information available at the other
locations to compare the actual values with the
average of the simulated values that can be consid-
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ered as the best prediction of the true values
(Deutsch and Journel 1998). As can be seen from
Figure 10, the average of simulated values fluctuates
around the true value, and the conditional regres-
sion between true and simulated values is close to
identity, which corroborates conditional unbiased-
ness. These results demonstrate that the TBCOSIM
algorithm is sufficient in this geo-environmental
study.

Other ways for quality checking of simulation
results are to check the reproduction of local and
global distributions. For the former, spatial conti-
nuity as direct and cross-variograms of the simulated
realizations should be compared in average with the
fitted theoretical model (Emery 2004). If the average
model is not compatible with the theoretical model,
it implies that the simulation algorithm produced
biased results. In this study, the non-conditional re-
sults corroborate that the spatial continuity is well
reproduced by TBCOSIM (Fig. 11). Slight differ-
ences that appear in large lags are typically impacted
by the extensiveness of the underlying area, which is
bounded regionally, termed as ergodic fluctuations
(Matheron 1989). The reason why non-conditional

realizations are employed is that the conditioning
information distorts the prior model due to the
restriction in the size of a domain (Lantuéjoul 2002;
Emery 2007, 2008). Since ergodic fluctuations are
also observed for the marginal distribution, the
global statistical parameters of simulation results
can be affected through conditioning dataset as well
(Goovaerts 1997). Cumulative distribution function
is a satisfying measure of global distribution, in
which the abscissa shows the data values ordered
from smallest to largest and the ordinate represents
the cumulative probability assigned to each data
(Davis 1986). Examination of this graph provides an
interesting comparison of the global distribution for
different random fields. The cumulative distribution
functions are calculated over the non-conditional
realizations and are compared with the primary
declustered cumulative distribution (Fig. 12). The
closeness of the model statistics to the sample
statistics marks a superb reproduction in global
distribution. There are some methodologies such as
simulated annealing (Journel and Xu 1994) that al-
lows improving the reproduction of the target

Figure 8. E-type maps of Mn, Fe, Co and Pb generated from 100 realizations of co-simulation results.
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statistics respecting the conditioning data. Never-
theless, this is not the scope of the current study.

Spatial Uncertainty Quantification of the Heavy
Metals

This step consists of calculating the uncertainty
within the realizations. The concepts of Igeo
(Fig. 13) and EF (Fig. 14) show varying levels of
heavy metals contaminations in the near-surface
soils. Therefore, according to the different thresh-
olds of contamination levels applicable to each in-
dex, the probability can be evaluated for heavy
metal concentrations above, below or between the
thresholds to identify polluted areas that need
remediation. Figure 13 shows the probability maps
for the Igeo thresholds (deteriorating, extremely
polluted, strongly to extremely polluted, strongly
polluted, moderately to strongly polluted and mod-
erately polluted) of Pb. Areas with little uncertainty
are those associated with high probability for a
range of threshold (shown in red in Fig. 13); areas
marked in dark blue indicate little risk of not finding
this range of established thresholds, or those asso-
ciated with very low probability of having contami-
nation depending on the pre-specified thresholds,
while the other areas (in light blue, green or yellow
in Fig. 13) have higher uncertainty of being con-
taminated or not.

DISCUSSION

Heavy metals in soils pose great ecological risk
in various ways. Plants could take up heavy metals
and incorporate them in their tissues. Such plants
would then become sources of food poisoning in the
ecosystem food web. Human are also capable of
being affected by soil heavy metals in three major
ways including direct ingestion (this pathway is more
common among children), direct inhalation through
the mouth or nose, and dermal adsorption of soils
adhered to the skin (Qu et al. 2012; Qi et al. 2016).
By using Igeo and EF (Figs. 13 and 14) the spatial
distribution of the contamination levels of heavy
metals has been documented for the Maibele North
exploration site. The probability maps shows range
of indicated thresholds at a local (block-by-block)
scale that estimate, for each block, the frequency of
occurrence of each range of indicated contamination
threshold over the 100 conditional realizations
(Fig. 14). These show the risk of occurrence of the
range of indicated threshold from the one that has
already been specified.

Both EF and Igeo indicate high level of Pb in
the soils. At some points, Pb had EF greater than 40,
a remarkable enrichment. Natural concentration of
Pb in the earth�s crust varies from 15 to 20 mg/kg
(ATSDR 2007), while most of the Igeo values are
negative, Pb had positive Igeo values as high as 5.
However, Pb had relatively weaker spatial variations

Figure 9. Correlation coefficients for Mn and Fe over 100 realizations (red: primary correlation coefficient; green: average

reproduced correlation coefficient). (a) Co-simulation, (b) simulation.
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(Fig. 8). Lead, a nonessential and toxic element, is
released from natural and anthropogenic sources.
Common sources of Pb in soils are manure, sewage
sludge, pesticides, vehicle exhausts and industrial
fumes. The studied area is currently used as a graz-
ing field. Cattle dung could therefore possibly be a
source of Pb in the soils. Moreover, the use of
inorganic fertilizers and agro-chemicals is a common

practice in the catchment areas of the Sekgopye
river, close to the study area, which could contribute
significantly to the presence of Pb in the river. Open
burning of domestic and industrial waste products
and disposal of sewage and car batteries in the
environment by local inhabitants could constitute a
potential source of Pb contamination in the catch-
ment. The co-simulation result (Fig. 8) shows Mn,

Figure 10. (Color line) Scatter plot between true values (ordinate) and predicted values (abscissa) at data locations. Predicted values

are calculated as the average of 100 realizations obtained with TBCOSIM. (a) Mn, (b) Fe, (c) Co, (d) Pb.
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Co, and Fe had similar spatial variations different
from Pb. Manganese is an element of low toxicity
having considerable biological importance. It is one

of the biogeochemically active transition metals in
the aquatic environment (Evans et al. 1977; Hasan
et al. 2013). On the other hand, Fe is often used as

Figure 11. Direct and cross-variograms of simulated realizations with turning bands co-simulation (TBCOSIM). For brevity, only

the direct and cross-variograms of Fe and Mn are displayed (black line: fitted model along azimuth (135�); blue line: fitted model

along azimuth (45�) red line: average of the realizations; green lines: individual realizations). (a) Mn (azimuth: 135�), (b) Mn & Fe

(azimuth: 135�), (c) Fe (azimuth: 135�), (d) Mn (azimuth: 45�), (e) Mn & Fe (azimuth: 45�), (f) Fe (azimuth: 45�).

Figure 12. Global distribution reproduction of the simulation results. For brevity, only the cumulative distribution functions of Fe

and Mn are displayed. Blue lines: individual realizations and red line: declustered primary dataset. (a) Mn, (b) Fe.
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an indication of natural changes in the heavy metal
carrying capacity of soils and sediments (Rule 1986),
and its concentrations were related to the abundance
of metal reactive compounds not significantly af-
fected by human activities (Luoma 1990). The high
concentrations of Pb in the area suggest possible soil
environmental pollution, but their speciation and
bio-accessibility, rather than simply their total con-
centrations, have to be ascertained (Gupta et al.
1996).

The PLI did not show much fluctuation over the
soilscape. The values ranged from 0.71 to 1.03 (re-
sults not shown in this paper). PLI values in this
range could be attributed to little anthropogenic
activities since these areas are nearby residential
plots and industrial establishments. The EF values
for Co ranged from 2 to 5 in the entire study area
(100%), indicating moderate enrichment. For this,
we presented the first, second and third quartiles as a
better way to graphically show the distribution of
the enrichment. Cobalt enrichment in the soils
(Fig. 14) falls within an environmentally safe zone.
Cobalt concentrations in the soils are, however, still
within the tolerable limit and pose no threat of
environmental pollution. Cobalt is consistently at-
tributed to weathering processes and its amounts in
soils are usually too low to reach contamination le-
vels (Manta et al. 2002; Lee et al. 2006). Manganese
and Fe, on the other hand, were below the con-
tamination thresholds in the study area. Therefore,
no uncertainty quantification maps were produced

for them. However, intermittent monitoring would
be in order.

Whenever the concentration levels of a pollu-
tant exceed the minimum allowable threshold, it
becomes very important to consider future remedi-
ation measures. In this study, Pb shows high
enrichment at several locations and efforts should be
made to put this under control. The cost of reme-
diation measures are usually high and this is why
spatial distribution of the pollutants is very impor-
tant in planning what goes to where in the remedi-
ation exercise. With stochastic turning bands co-
simulation maps and uncertainty maps of Pb cre-
ated, one can delineate areas that need urgent cor-
rection before any agricultural use can be made of
the location again. We suggest the use of heavy
metal-accumulating plants (metallophytes) in
cleaning up Pb from the soils.

This study further affirms that in geo-environ-
mental assessment and monitoring of heavy metals
contamination in soils it is better to use turning
bands co-simulation approach where there is a
strong positive correlation among the variables and
particularly, where the sampling is unequal as well.
However, it does not imply that this approach is
inefficient in equally sampled case. This conclusion is
in agreement with the work of Emery (2008), whose
study indicated that a turning bands co-simulation
algorithm is more accurate for interpolating co-re-
gionalized variablesmonitored at sampling locations
including soil contamination dataset.

Figure 13. Probability maps for the Igeo thresholds of Pb.
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CONCLUSIONS

A turning bands conditional co-simulation ap-
proach has been successfully used to quantify and
map spatial uncertainty of heavy metals in a semiarid
Ni–Cu exploration field in Botswana. In the case of
heavy metals dataset with strong positive correlation,
multivariate mapping of the cross-correlated vari-
ables is highly encouraged rather than univariate
mapping of each variable separately because the
former method takes into account the intrinsic
dependency among variables, and so the post-pro-
cessing outputs are more reliable. The co-simulation
maps of the heavy metals show spatial variations in
Co, Mn and Fe distribution. The results of the three
indices applied in the study suggest no risk of Co, Mn
and Fe contamination at Maibele Airstrip North.
Turning bands co-simulation was validated by
examining the reproduction of input statistics and by
cross-validation. However, the higher spatial con-
centrations of Pb indicate that, among the four ele-
ments studied, it contributed solely to the possible

soil environmental pollution as indicated from PLI,
but their speciation and bio-accessibility, rather than
simply their total concentrations, have to be ascer-
tained. The results of this study would be invaluable
for land use, and management decisions in the area
and turning bands co-simulation algorithm can be
successfully applied to mapping heavy metal uncer-
tainties in areas having similar geochemical proper-
ties across the globe.
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