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Geostatistics applies statistics to quantitatively describe geological sites and assess the
uncertainty due to incomplete sampling. Strong assumptions are required regarding the
location independence of statistical parameters to construct numerical models with geosta-
tistical tools. Most geological data exhibit large-scale deterministic trends together with
short-scale variations. Such location dependence violates the common geostatistical
assumption of stationarity. The trend-like deterministic features should be modeled prior to
conventional geostatistical prediction and accounted for in subsequent geostatistical calcu-
lations. The challenge of using a trend in geostatistical simulation algorithms for the con-
tinuous variable is the subject of this paper. A stepwise conditional transformation with a
Gaussian mixture model is considered to provide a stable and artifact-free numerical model.
The complex features of the regionalized variable in the presence of a trend are removed in
the forward transformation and restored in the back transformation. The Gaussian mixture
model provides a seamless bin-free approach to transformation. Data from a copper deposit
were used as an example. These data show an apparent trend unsuitable for conventional
geostatistical algorithms. The result shows that the proposed algorithm leads to improved
geostatistical models.

KEY WORDS: Non-stationary regionalized variable, Stepwise conditional transformation, Sequential
Gaussian simulation.

INTRODUCTION

Geostatistics provides tools to construct numeri-
cal models and support mineral and petroleum re-
source estimates. Geostatistical modeling requires
parameters and assumptions based on the limited data
available for a particular deposit. The parameters in-
clude global probability distributions, variograms and
training images. A common assumption of geostatis-

tical modeling is stationarity of these parameters, that
is, they are independent of location. For example, the
expected value or mean value is assumed constant for
all locations within each domain. The decision of
stationarity is made prior to any geostatistical pre-
diction (Deutsch and Journel 1998; Davis and Samp-
son 2002; Wackernagel 2003; Pyrcz and Deutsch
2014). Most decisions of stationarity are implicitly
made with the application of a particular algorithm.

Simulation plays an important role in geosta-
tistical modeling. Simulation draws multiple real-
izations to characterize the geological heterogeneity
and quantify the uncertainty of the regionalized
variable. The realizations reflect the statistical
characteristics of the observed data and unsampled
locations. The central step in simulation is to draw
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simulated values from conditional distributions
(Deutsch and Journel 1998). The variation between
multiple realizations represents the geological
uncertainty (Goovaerts 2001; Rossi and Deutsch
2014). This uncertainty is considered with other as-
pects of a project to support decision-making.
Sequential Gaussian simulation is widely used
(Deutsch and Journel 1998). Such simulation-based
techniques make a strong assumption of stationarity.
However, real geological data often exhibit trends or
non-stationary location dependent features (Wang
et al. 2012; Boisvert et al. 2013). This violates the
assumption of stationarity and the local accuracy of
the predicted uncertainty may be unreliable.

Non-stationary geostatistical methods have been
developed. One approach is decomposition of the
regionalized variable into a deterministic component
with large-scale features and a stochastic component
with small-scale variations. Several methods are
available for modeling the deterministic component
(Journel and Huijbregts 2003; Machuca-Mory 2010;
Rossi and Deutsch 2014). The conventional geosta-
tistical algorithms would only be applied to the
stochastic component assuming that it is stationary
and the modeled deterministic component would be
added back to the simulated result (Wackernagel
2003; Chiles and Delfiner 2012). The naive approach
of modeling with residuals and adding the trend
model back in the final models is straightforward;
however, the variogram from the residuals is biased
downward compared with the underlying variogram
(Delfiner 1976; Sabourin 1976; Chiles and Delfiner
2012). Additionally, some constraints should be con-
sidered to ensure nonnegative simulated values in the
final model when adding the trend at the end
(Leuangthong 2003). Another approach is a condi-
tional transformation, such as the stepwise condi-
tional transformation (Leuangthong and Deutsch
2003, 2004) or a locally varying transformation
(Gonzales et al. 2006). The complex features of the
trend can be removed in the forward transformation,
but artifacts could also be introduced due to the bin
selection or the use of few data in the transformation.
Other approaches include the intrinsic random func-
tions of order k (Matheron 1973), the non-stationary
covariance function (Sampson and Guttorp 1992), the
moving window averages (Brunsdon et al. 2002), the
spatially varying linear model of coregionalization
(Gelfand et al. 2004) and the local random function
(Machuca-Mory 2010). However, these non-station-
ary techniques encounter difficulties in practice
(Rossi and Deutsch 2014).

This paper develops a geostatistical modeling
algorithm that accounts for the deterministic fea-
tures of continuous regionalized variables in an
artifact-free fashion. A methodology similar to the
nonparametric stepwise conditional transformation
proposed by Leuangthong and Deutsch (2003) is
considered. The conditional distributions are calcu-
lated by a Gaussian mixture model fitted to the
deterministic trend and the data. The trend-like
features in the regionalized variable are removed by
the conditional transformation. A porphyry copper
deposit is considered where the grade shows an
obvious trend. The trend is assumed known without
uncertainty. A comparison to conventional geosta-
tistical calculations is made. The results show that
the geostatistical modeling with trend modeling
outperforms the conventional geostatistical model-
ing with less error and better reproduction of
important features of the regionalized variable.

BACKGROUND

The stepwise conditional transformation tech-
nique was first introduced by Rosenblatt (1952) as an
extension of the normal score transformation.
Leuangthong and Deutsch (2003) introduced this
technique to geostatistics and developed practical
applications (Leuangthong and Deutsch 2004). This
technique removes some complex features from data.

Consider ZkðuÞ; k ¼ 1; . . . ;Kf g is a set of K
stationary random functions. ui; i ¼ 1; . . . ; nf g rep-
resents a set of n data locations. The observations of
the random function at location ui are denoted by

zi ¼ zi;1; . . . ; zi;K
� �

. The first variable zi;1; i ¼ 1;
�

. . . ; ng is transformed independently to Gaussian
units through a normal score transformation, the

second variable zi;2; i ¼ 1; . . . ; n
� �

is transformed

conditional to the first variable and so on:

yi;1 ¼ G�1 F1 zi;1
� �� �

yi;2 ¼ G�1 F2j1 zi;2 j zi;1
� �� �

..

.

yi;k ¼ G�1 Fkj1;...;k�1 zi;k j zi;1; . . . ; zi;k�1

� �� �

..

.

yi;K ¼ G�1 FKj1;...;K�1 zi;K j zi;1; . . . ; zi;K�1

� �� �

i ¼ 1; . . . ; n

ð1Þ

where yi;k; i ¼ 1; . . . ; n and k ¼ 1; . . . ;K
� �

are trans-
formed multivariate Gaussian variables. G�1ð�Þ
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represents the inverse Gaussian cumulative distri-
bution, and Fð�Þ indicates a cumulative distribution
function derived from the data. The co-located
transformed values are independent although there
is no guarantee of decorrelation at nonzero lag dis-
tances (Leuangthong and Deutsch 2003). The co-
located complex features are removed in the for-

ward transformation and are brought back in the
back transformation. The transformed variables are
simulated, then back transformed in reverse order.

The original stepwise proposal considered
nonparametric conditional distributions for the
transformation. This approach, however, suffers
from artifacts due to the bins used for the condi-

Figure 1. Overview of the proposed approach: (a) normal score

transform the trend model and data individually; (b) crossplot of the
transformed data and the co-located trend; (c) fit with a Gaussian

mixture model; and (d) transform the normal scored data with the

Gaussian mixture model.
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Figure 2. The location maps and histograms of 3302 data. (a) Location map in a top view, (b) Location map in a 3D view, (c)

Histogram with raw data and (d) Histogram with despiking.

Figure 3. Visualization of the global kriging estimates of 3302 data. (a) Estimation at 775.5 meters and (b) Estimation in a

3D view.
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tional distributions and becomes difficult to apply
with more than K ¼ 3 variables; there are rarely
enough data to reliably inform the conditional dis-
tributions.

The Gaussian distribution is fully parameter-
ized by a mean vector and a covariance matrix. One
single Gaussian model cannot capture all the com-
plex features of geological data, while one Gaussian
kernel per observation is computationally expensive
with a large number of data (Silverman 1986; Gray
and Moore 2003). Mixture models with a small
number of Gaussian kernels could be considered.
Pearson (1894) proposed the initial approach of
mixture models. A number of authors including
Gilardi et al. (2002) and Silva and Deutsch (2016)
have used them in geostatistics. The expectation

maximization algorithm is considered to fit a Gaus-
sian mixture model (McLachlan and Peel 2004;
McLachlan and Krishnan 2007; Silva and Deutsch
2016). The benefits of Gaussian mixture models are
that complex features can be captured and any
conditional distribution can be easily calculated.

Consider the same set of K variables at n data

locations zk ¼ z1;k; . . . ; zn;k
� �T

. yk ¼ y1;k; . . . ; yn;k
� �T

represents the set of the normal score transformed
observations where each variable is transformed
independently. The Gaussian mixture model is a
multivariate probability density function. The
probability density function is written as a sum of g
components or mixtures:

f
0
yk;Wð Þ ¼

Xg

j¼1

pj/ yk; lj; Rj

� �
k ¼ 1; . . . ;K ð2Þ

here f
0 ð�Þ is the estimated distribution. W is the set of

unknown parameters
n
p1; . . . ; pg; l1; . . . ; lg;R1; . . . ;

Rg

o
. p1; . . . ; pg

� �
are the nonnegative weights

assigned to each mixture, l1; . . . ; lg

n o
indicates the

mean vector of all variables and R1; . . . ;Rg

� �
refers

to the set of covariance matrices between variables
for each mixture. /ð�Þ is the multivariate Gaussian
probability density function. The expectation maxi-
mization algorithm maximizes the log likelihood,
logfL Wð Þg. The parameters of the mixtures would

be iteratively fitted so that f
0 ð�Þ closely fits the

experimental data. Any marginal or conditional

distribution is easy to compute once f
0 ð�Þ is fit.

Figure 4. Histograms of 2496 data with different weights. (a) Histogram with despiking and (b) Histogram with declustering.

Figure 5. The isotropic variogram model of 2496 data in

normal score units. The sizes of the dots represent the

relative number of pairs in each direction.
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PROPOSED METHOD

The stepwise conditional transformation pro-
posed by Leuangthong and Deutsch (2003) trans-

forms the residuals from the trend conditional to the
trend. This approach has binning artifacts due to the
nonparametric conditional distributions and creates
a small number of negative estimates due to varia-

Figure 6. The first three realizations and the average over one hundred realizations in original units. (a) Realization 1, (b)

Realization 2, (c) Realization 3 and (d) Etype.

Figure 7. The variance over one hundred realizations in original units. (a) A slice at 775.5 meters and (b) A volume in a 3D

view.
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tions within the bins. A revised methodology is
proposed. The first change is to transform the vari-
able conditional to the trend, not the residual con-
ditioned to the trend. The second change is to use a
Gaussian mixture model to avoid any binning arti-
facts. The objective is to remove the trend-like fea-
tures from data in a bin-free manner that accounts
for the spatial structure and multivariate relation-
ship between the data and the trend.

Consider a set of n observations,
zi; i ¼ 1; . . . ;nf g. The trend is assumed exhaustive

and known that it is represented by
mi; i ¼ 1; . . . ;Nf g. Figure 1 shows a schematic illus-

tration of the proposed transformation sequence.

The steps for the stepwise conditional transforma-
tion using the Gaussian mixture model are as fol-
lows:

1. Normal score transformation: the trend and
data are transformed into standard normal
score units through the normal score trans-
formation individually. The trend model is
exhaustive, and there is no need to consider
the declustering, while the data should be
transformed with declustering weights if they
are unequally sampled. The normal score
transformations are written as:

ymi
¼ G�1 FmðmiÞð Þ i ¼ 1; . . . ;N

yzi ¼ G�1 FzðziÞð Þ i ¼ 1; . . . ; n
ð3Þ

here ymi
; i ¼ 1; . . . ;N

� �
denotes the Gaus-

sian transformed trend value. Such trend
values are known everywhere. N is the
number of grid nodes from the exhaustively
sampled trend. Fmð�Þ represents the cumu-
lative distribution function of the exhaustive
trend. yzi ; i ¼ 1; . . . ; n

� �
is the Gaussian

transformed data, while Fzð�Þ represents its
cumulative distribution function. n repre-
sents the number of data where n � N.

2. Review the transformed variables: the
transformed data and the co-located trans-
formed trend are crossplotted. This crossplot
is used to help choose the number of Gaus-
sian mixture components, g, for the bivariate
fitting and conditional transformation. Too
many mixture models will over-fit the com-
plexity of the data, while too few mixture
models would fail to reproduce the impor-
tant complexity. The number of the Gaussian
mixture models should be reasonable, such
that it gives reliable conditional distributions
from the bivariate distribution of the data
and the trend in an artifact-free fashion. It is
common to choose between 2 and 5.

3. Multivariate density estimation: the expec-
tation maximization algorithm is considered
to fit the bivariate distribution of the trans-
formed variables. The estimated multivariate
density function is calculated by Eq. 2.

4. Conditional transform the normal score data:
the normal score data, yzi ; i ¼ 1; . . . ; n

� �
, are

transformed by the conditional distribution
of yzi given ymi

; i ¼ 1; . . . ; n
� �

. The equation
is given as:

Figure 8. The histogram reproduction of 2496 data with the

conventional geostatistical modeling in original units.

Figure 9. The variogram reproduction of 2496 data with

the conventional geostatistical modeling in original units.

Directional experimental variograms are plotted with

points. Light gray lines are the variograms of each real-

ization, while the dark gray line represents the average of

all realizations. The black line is the directional variogram

from the original 2496 values.
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y
0

zi
¼ G�1 Fzjmðyzi j ymi

Þ
� �

i ¼ 1; . . . ; n

where the random variable y
0

zi
indicates the

transformed data by the Gaussian mixture
models. Fzjmð�Þ represents the cumulative dis-
tribution function of the data given the
exhaustive trend. The cumulative distribution
function of the trend does not enter any calcu-
lations, but the transformed data consider the
trend at each location. The bivariate distribu-
tion of the transformed data and the co-located
normal score trend has no correlation.

The proposed parametric conditional transfor-
mation removes the trend-like features that

may be problematic in the modeling of the raw
data directly. Gaussian simulation can now be
used and several realizations are generated with
the transformed data. The back transformation
will ensure that the trend model is used every-
where. The trend is reproduced in original units.

APPLICATION

The data shown in Figure 2a (top view) and b
(3D view) comprise 121 drillholes with 3302 grade
measurements from a porphyry copper deposit. The
location coordinates range from 34, 200 to 36, 200
meters East, from 27, 400 to 28, 800 meters North,

Figure 10. The trend model and the scatter plot of 2496 data in original units. (a) Trend model and (b) Scatter plot.

Figure 11. The transformed trend model and the scatter plot of 2496 data in normal score units. (a) Trend model and (b)
Scatter plot.
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Figure 12. The bivariate and univariate distributions of the Gaussian mixture model. (a) Univariate distribution of the

exhaustive trend, (b) Scatter plot of transformed variable, (c) Bivariate distribution and (d) Univariate distribution of data.

Figure 13. The location map and the variogram model of 2496 data in stepwise units. The sizes of the dots in the variogram

model represent the relative number of pairs in each direction. (a) Location map and (b) Variogram model.
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and from 600 to 1, 300meters Elevationwith 9meters
intervals. The grade of copper ranges from 0.0 to 3:4%
with a mean of 0:262% and a standard deviation of
0:266% and the histogram is shown in Figure 2c.
Despiking was considered due to grades of constant
values (Rossi andDeutsch 2014). The histogram after
despiking is shown in Figure 2d. The mean is 0:263%
and the standard deviation is 0:265%.

Although kriging strongly depends on the
decision of stationarity, it can still be used for
mapping the large-scale trend-like features. A global
kriging was performed with a variogram with a 20%
nugget effect and a range of 1000 meters. The global
kriging result in Figure 3 reveals the obvious trend
where high values are concentrated in the center.
The most continuous direction in the plane direction
is at an azimuth of 110�.

The 3302 copper grade data from 121 drillholes
were divided randomly into a modeling set of 2496
data from 88 drillholes and a test set of 806 data
from 33 drillholes. The modeling data were used for
geostatistical modeling, and the test data were used
to check the simulated results.

The histogram of the modeling 2496 data is
shown in Figure 4a. Data are clustered together, so
the declustering was needed (Deutsch and Journel
1998). Cell declustering was performed with a 400-
meter cell size and the corrected histogram with a
mean of 0:201% and a standard deviation of 0:210%
is shown in Figure 4b. The data were transformed
into a normal distribution with the declustering
weights. The directional variograms in normal score
units were plotted with an isotropic variogram
model in Figure 5. Sequential Gaussian simulation
was considered and 100 realizations were generated.
A normal score back transformation was considered
to bring all realizations back to the original units.
Figure 6 shows the back transformed results with the
first three realizations and the average of all 100
realizations in original units. The variance of all 100
values at each location is shown in Figure 7. There
is low variance in the low-valued zones and high
variance in high-valued zones as expected with a
positively skewed distribution. The variance is high
around the margins because of the few conditioning
data.

Figure 14. The first three realizations and the average over one hundred realizations in stepwise units. (a) Realization 1,

(b) Realization 2, (c) Realization 3 and (d) Etype.
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Histogram reproduction can be checked that
geostatistical realizations are intended to reproduce
the input histogram. The histograms of 100 realiza-
tions are modeled and shown with black lines, while
the 2496 conditioning data are shown with a red line
in Figure 8. The mean of the realizations, 0:200%, is
close to the reference mean, 0:201%; the standard
deviation, 0:196%, is lower than the conditioning
variance, 0:210%. The realizations successfully
reproduce the global mean and the global distribu-
tion of the data. The histogram reproduction ap-
pears reasonable. Variogram reproduction should be
theoretically honored in simulation that checks the
spatial correlation in the final model. Figure 9 shows
the variogram reproduction in original units. The
variograms of all realizations are slightly more con-
tinuous than the original isotropic variogram.

The proposed methodology was implemented
with a trend model. The trend model is constructed
to avoid under- or over-fitting to the data. The trend
model contains the large-scale variability and is
shown in Figure 10a. The scatter plot is shown in
Figure 10b, indicating that the correlation between

the trend and the data is 0.51. The exhaustive trend
model was transformed into normal score units,
while the 2496 data were transformed into normal
score units with the declustering weights indepen-
dently. Figure 11 shows the transformed results
indicating a direct relationship with a correlation of
0.52 between the trend and the data in normal score
units. The stepwise conditional transformation with
a Gaussian mixture model was considered to remove
the complexity of the data. The decision of the
number of mixture components is subjective. In this
case study, two components were determined by
visual inspection to fit the scatter plot. Figure 12
shows the Gaussian mixture model. The univariate
distributions of the trend model and the data are
shown in Figure 12a and d, respectively. The mar-
ginal distributions from the Gaussian mixture mod-
els are not exactly normal; however, the deviation
appears to be very small in Figure 12a where the
combined mixture distribution and an exact normal
distribution are almost perfectly overlapping. The
bivariate distribution is shown on a 2D probability
density plot in Figure 12c. The transformed vari-

Figure 15. The first three realizations and the average over one hundred realizations in normal score units. (a) Realization 1,

(b) Realization 2, (c) Realization 3 and (d) Etype.
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ables are uncorrelated (Fig. 12b). The data after the
stepwise conditional transformation in Figure 13a
show a randomness, and the trend is removed. The
directional variograms in stepwise units are fitted
with an isotropic variogram model and shown in
Figure 13b. Sequential Gaussian simulation was

conducted on the transformed variable. Figure 14
shows the first three realizations and the average of
100 realizations. No trend-like features exist in the
simulated results. A stepwise conditional back
transformation with the trend was performed. Fig-
ure 15 shows the first three realizations and the

Figure 16. The first three realizations and the average over one hundred realizations in original units (a) Realization 1,

(b) Realization 2, (c) Realization 3 and (d) Etype.

Figure 17. The variance over one hundred realizations in original units. (a) A slice at 775.5 m and (b) A volume in a 3D

view.
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average of 100 realizations in normal score units.
The simulated results show that the trend-like fea-
tures are restored from the back transformation. The
initial normal score transformation was also re-
versed. Figure 16 shows the first three realizations
and the average of 100 realizations in original units.
The local variance is calculated and shown in Fig-
ure 17. The map shows the high variance in the
central and low variance around the margins.

The histogram of realizations must be consis-
tent with the histogram of 2496 conditioning data.
The realizations over all locations are considered.
The histogram is reasonably reproduced in original
units (Fig. 18). The mean over 100 realizations is
0:198%. The value is slightly lower than the condi-
tioning mean, 0:201%. The standard deviation is

0:201%, which is lower than that of the conditioning
data, 0:210%, but it is higher than that of 0:196% in
the conventional method. Figure 19 shows the vari-
ogram reproduction. The overall variogram repro-
duction from the realizations appears better than
that from the conventional method in Figure 9.

The first validation step was to compare 806
true values with the simulated average values in
normal score units. The test data were transformed
into a normal distribution with the reference distri-
bution of 2496 data. The locations of the test data
were labeled with the drillhole IDs and shown in
Figure 20. The distributions of the local uncertainty
were specified by a conditional mean and variance in
normal score units. The plot in Figure 21 shows the
accuracy of the simulated distributions of the
uncertainty with the conventional method and the
developed method in normal score units. The mean
of the variance over 100 realizations from 806
checking locations represents the local uncertainty
of the model. The local uncertainty is 0.589 that is
underestimated by the conventional method, while
the local uncertainty is fair, 0.742, with the devel-
oped method. It highlights that the numerical model
with the developed method contains more variance
than the model with the conventional method due to
the values with the conventional method is smooth
and close to the global mean. The accuracy of the
developed method is better than that of the con-
ventional method.

The second validation step was to compare 806
true values with the simulated average values with
mean squared error values in original units. Fig-
ure 22 shows the location maps of the test data la-
beled with drillhole IDs. The mean of the developed
method, 0:247%, is close to the true mean, 0:247%.
The standard deviation of the average measures the
smoothing effect. The standard deviation of the
average values with the developed method, 0:128%
contains more variability than that with the con-
ventional method, 0:108%. The mean squared error
value measures the difference between the truth and
what is being estimated and, further, summarizes the
prediction performance. The minimized mean
squared error is used to identify the best method for
modeling with a trend. The mean squared error
values between the true values and the average
values are 0.0631 and 0.0618, respectively. It shows a
2:06% improvement in the developed method. Three
drillholes extracted from high-, medium- and low-
valued zones are compared and shown in Figure 23,
indicating 8.53, 2.89, and 46:21% improvements,

Figure 18. The histogram reproduction of 2496 data with

the proposed geostatistical modeling in original units.

Figure 19. The variogram reproduction of 2496 data with

the proposed geostatistical modeling in original units.

Directional experimental variograms are plotted with

points. Light gray lines are the variograms of each real-

ization, while the dark gray line represents the average of

all realizations. The black line is the directional variogram

from the original 2496 values.
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Figure 20. The location maps with the test data in normal score units. (a) Location map in a top view and (b) Location map

in a 3D view.

(a) (b)
Figure 21. The cross-validations of the test data with different methods in normal score units. The grid of light lines shows

the probability intervals, while the red lines and bullets show the deviations of the actual proportions from the predicted

probability intervals (Deutsch 2010). (a) Conventional method and (b) Developed method.

Figure 22. The location maps with the test data in original units. (a) Location map in a top view and (b) Location map in a

3D view.
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Figure 23. The Comparisons from drillholes with different methods in original units: (a, c, e, g)

the mean squared error value between true data and simulated values with the conventional

method; and (b, d, f, h) the mean squared error value between true data and simulated values

with the proposed method. (a) 806 data from 33 DHs, (b) 806 data from 33 DHs, (c) 29 data

from DH 31, (d) 29 data from DH 31, (e) 43 data from DH 75, (f) 43 data from DH 75, (g) 10

data from DH 1 and (h) 10 data from DH 1.
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respectively. The developed method shows a signif-
icant improvement.

DISCUSSION

A practical framework for non-stationary geo-
statistical techniques using a Gaussian mixture
model was established. The data were divided into a
modeling set and a test set. The modeling set was
used for proceeding geostatistical modeling, and the
test data were used for checking the results. The
assumption of stationarity is made in the conven-
tional geostatistical prediction and relaxed in the
developed method. The proposed method is more
accurate but with greater uncertainty. The mean
squared error comparisons show a modest yet
important 2:06% improvement in the developed
method. Drillholes close the margins of the deposit
show the greatest improvement.

A significant assumption in the case study is
that the trend model is assumed optimal and known.
The trend model is a part of characterizing the
natural resources. The uncertainty in trend model is
ignored so that the overall uncertainty might be
underestimated. Data with an apparent trend were
transformed conditional to the trend that the trend is
important in the stepwise transformation. The
parameterization and optimization of the trend is an
important area of future work.

Another assumption is that two components for
the Gaussian mixture modeling are optimal. A visual
inspection is a common approach, but this decision is
subjective and depends on the practitioner. A cri-
terion for the number of Gaussian mixtures should
be proposed in future research.

The approach of modeling with residuals using
Gaussian mixture models and adding the trend
model back in final models, that is,
RðuÞ ¼ ZðuÞ �mðuÞ then ZðuÞ ¼ mðuÞ þ RðuÞ, was
also implemented. The mean squared error value
between the truth and the simulated results is 0.0639
in Figure 24, indicating a 3:29% loss. The perfor-
mance of modeling with residuals using Gaussian
mixture models was not as good as the proposed
method, which models the data more accurately. In
addition, the constraint for nonnegative simulated
values ( ZðuÞ � 0:0) is not required in the proposed
method.

The improvements of the stepwise conditional
transformation with Gaussian mixture model still
exist. The covariance after the stepwise conditional

transformation is zero at the lag distance h ¼ 0 and
may not be zero at other lag distances that could
affect the result (Leuangthong and Deutsch 2003).
The use of minimum/maximum autocorrelation
factors (MAF) (Desbarats and Dimitrakopoulos
2000) may be considered on the transformed vari-
ables if remnant cross-spatial correlation is present.
A MAF could assist with variogram fitting, and
further, it could help a better performance of mix-
ture models and lead to a better result.

Multiple non-stationary variables could also be
considered simultaneously in a hierarchical work-
flow. Each variable could be processed according to
the proposed workflow in Figure 1, and then another
Gaussian mixture model could be fit to the de-
trended variables. A second stepwise conditional
transform would remove the dependency between
the variables. Gaussian simulation of the indepen-
dent factors would proceed; then, the back trans-
formation would be performed in reverse order to
account for multivariate dependencies and the non-
stationary trend models.

CONCLUSION

Geostatistics has been used for predicting spa-
tial variability. Geostatistical methods depend on
stationary statistics. Real geological data often ex-
hibit trend-like features that represent the large-
scale variability of the regionalized variable. The
assumption of stationarity is not satisfied with the
variable in presence of trends. The trend should lead
to more accurate estimates than if the trend is
ignored.

Figure 24. The mean squared error value of 806 data

from 33 drillholes in the final model with the naive ap-

proach of modeling with residuals using Gaussian mixture

models and adding the trend model back in final models.
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A modified stepwise conditional transformation
for geostatistical modeling is proposed. Data with an
apparent trend were transformed conditional to the
trend by a parametric transformation. The use of the
Gaussian mixtures removes the trend-like features
from the regionalized variable, eliminates the arti-
facts from the data binning of the conventional
stepwise conditional transformation, and brings
more variation to numerical models. The improved
performance of the geostatistical algorithm is at-
tributed to the stationarity of the transformed result.

A real dataset with an obvious trend was used
to demonstrate the proposal. Comparisons between
the conventional prediction and the developed pre-
diction were made. The performances of numerical
models, the reproduction of geological characteri-
zations and the analysis of the local uncertainty were
compared. The case study shows that the geostatis-
tical modeling with trend modeling performs better
than conventional geostatistical modeling, especially
around the margins of the domain.

ACKNOWLEDGMENTS

The research work was supported by the
industry sponsors of the Centre for Computational
Geostatistics at the University of Alberta. Also, we
thank two anonymous reviewers for providing
important insight and constructive comments.

REFERENCES

Boisvert, J. B., Rossi, M. E., Ehrig, K., & Deutsch, C. V. (2013).
Geometallurgical modeling at Olympic dam mine, South
Australia. Mathematical Geosciences, 45(8), 901–925.

Brunsdon, C., Fotheringham, A. S., & Charlton, M. (2002).
Geographically weighted summary statistics—a framework
for localised exploratory data analysis. Computers, Environ-
ment and Urban Systems, 26(6), 501–524.

Chiles, J. P., & Delfiner, P. (2012). Geostatistics: Modeling spatial
uncertainty (2nd ed.). New York: Wiley.

Davis, J. C., & Sampson, R. J. (2002). Statistics and data analysis in
geology (3rd ed.). New York: Wiley.

Delfiner, P. (1976). Linear estimation of non-stationary spatial
phenomena. InM.Guarascio,M.David,C. J.Huijbregts (Eds.),
Advanced Geostatistics in the Mining Industry. NATO Ad-
vanced Study Institutes Series (Series C — Mathematical and
Physical Sciences) (Vol. 24, pp. 49–68). Dordrecht: Springer.

Desbarats, A. J., & Dimitrakopoulos, R. (2000). Geostatistical sim-
ulation of regionalized pore-size distributions using min/max
autocorrelation factors.Mathematical Geology, 32(8), 919–942.

Deutsch, C. V. (2010). Display of cross validation/jackknife re-
sults. Centre for Computational Geostatistics Annual Report,
12(406), 1–4.

Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical
software library and user�s guide (2nd ed.). New York: Oxford
University Press.

Gelfand, A. E., Schmidt, A. M., Banerjee, S., & Sirmans, C. F.
(2004). Nonstationary multivariate process modeling through
spatially varying coregionalization. Test, 13(2), 263–312.

Gilardi, N., Bengio, S., & Kanevski, M. (2002). Conditional
Gaussian mixture models for environmental risk mapping. In
Proceedings of the 2002 IEEE international workshop on
neural networks for signal processing (pp. 777–786).

Gonzales, E., McLennan, J. A., & Deutsch, C. V. (2006). A new
approach to sequential Gaussian simulation with a trend:
Non-stationary transformation tables. Centre for Computa-
tional Geostatistics Annual Report, 08(120), 1–13.

Goovaerts, P. (2001). Geostatistical modelling of uncertainty in
soil science. Geoderma, 103(1), 3–26.

Gray, A. G., & Moore, A. W. (2003). Nonparametric density
estimation: Toward computational tractability. In Proceed-
ings of the 2003 society for industrial and applied mathematics
international conference on data mining (pp. 203–211).

Journel, A. G., & Huijbregts, C. J. (2003). Mining geostatistics.
London: Academic Press.

Leuangthong, O. (2003). Stepwise conditional transformation for
multivariate geostatistical simulation. Doctoral dissertation,
University of Alberta.

Leuangthong, O., & Deutsch, C. V. (2003). Stepwise conditional
transformation for simulation of multiple variables. Mathe-
matical Geology, 35(2), 155–173.

Leuangthong, O., & Deutsch, C. V. (2004). Transformation of
residuals to avoid artifacts in geostatistical modelling with a
trend. Mathematical Geology, 36(3), 287–305.

Machuca-Mory, D. F. (2010). Geostatistics with location-depen-
dent statistics. Doctoral dissertation, University of Alberta.

Matheron, G. (1973). The intrinsic random functions and their
applications. Advances in Applied Probability, 5(3), 439–468.

McLachlan, G., & Krishnan, T. (2007). The EM algorithm and
extensions (3rd ed.). New York: Wiley.

McLachlan, G., & Peel, D. (2004). Finite mixture models. New
York: Wiley.

Pearson, K. (1894). Contributions to the mathematical theory of
evolution. Philosophical Transactions of the Royal Society of
London, 185, 71–110.

Pyrcz, M. J., & Deutsch, C. V. (2014). Geostatistical reservoir
modeling (2nd ed.). New York: Oxford University Press.

Rosenblatt, M. (1952). Remarks on a multivariate transformation.
The annals of mathematical statistics, 23(3), 470–472.

Rossi, M. E., & Deutsch, C. V. (2014). Mineral resource estima-
tion. Berlin: Springer.

Sabourin, R. (1976). Application of two methods for the inter-
pretation of the underlying variogram. In M. Guarascio, M.
David, C. J. Huijbregts (Eds.), Advanced Geostatistics in the
Mining Industry. NATO Advanced Study Institutes Series
(Series C — Mathematical and Physical Sciences) (Vol. 24,
pp. 101–109). Dordrecht: Springer.

Sampson, P. D., & Guttorp, P. (1992). Nonparametric estimation
of nonstationary spatial covariance structure. Journal of the
American Statistical Association, 87(417), 108–119.

Silva, D. S. F., & Deutsch, C. V. (2016). Multivariate data
imputation using Gaussian mixture models. Spatial Statistics.
doi:10.1016/j.spasta.2016.11.002.

Silverman, B. W. (1986). Density estimation for statistics and data
analysis (Vol. 26). Boca Raton: CRC Press.

Wackernagel, H. (2003).Multivariate geostatistics: An introduction
with applications (3rd ed.). Berlin: Springer.

Wang, G., Carranza, E. J. M., Zuo, R., Hao, Y., Du, Y., Pang, Z.,
et al. (2012). Mapping of district-scale potential targets using
fractal models. Journal of Geochemical Exploration, 122, 34–
46.

363Geostatistical Simulation with a Trend

http://dx.doi.org/10.1016/j.spasta.2016.11.002

	Geostatistical Simulation with a Trend Using Gaussian Mixture Models
	Abstract
	Introduction
	Background
	Application
	Discussion
	Conclusion
	Acknowledgments
	References




