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In its 26 years of existence, the journal of Natural Resources Research (NRR) has published
and continues to publish papers on geochemical anomaly and mineral potential mapping.
This is consistent with its aims and scope to publish quantitative studies of natural (mainly
but not limited to mineral) resources exploration, evaluation and exploitation, including
environmental and risk-related aspects. Over the years, NRR has contributed significantly
more to the publication of developments in mineral potential mapping and notably less to
the publication of developments in geochemical anomaly mapping. In more detail, NRR has
contributed significantly more to the publication of research on development of robust
quantitative methods for analysis and synthesis of spatial evidence of mineral potential but
notably less to the publication of research on development of geologically focused models of
mineral potential. The editorship of NRR recognizes the latter as a challenge to promote
further research on development of numerically robust as well as geologically focused
mineral potential models, and this special issue is a major initiative in response to that
challenge. The recent inclusion of Natural Resources Research for coverage by the Clarivate
Analytics (formerly the Institute for Scientific Information) in the Science Citation Index
Expanded� and Journal Citation Reports� (JCR) Science Edition will help make Natural
Resources Research meet that challenge.
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INTRODUCTION

The journal of Natural Resources Research
(NRR) was founded in 1992 by Richard McCam-
mon. Its original name, Nonrenewable Resources, was
changed to the present one in 1999, but its objective
remained the same: to promote quantitative ap-

proaches to mineral resource exploration, assessment,
extraction andutilization.However, since its namewas
changed, the scope of the NRR has also broadened to
publish quantitative studies of natural (mainly but not
limited to mineral) resources exploration, evaluation
and exploitation, including environmental and risk-
related aspects. Thus, NRR covers a wide variety of
resources including minerals, coal, hydrocarbon,
geothermal, water and vegetation. Typical articles
makeuse of geoscientific dataor analyses to assess, test
or compare resource-related aspects.

Finding new mineral deposits is becoming
increasingly more and more difficult, as the most
obvious ones have probably been all discovered al-
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ready. This requires, among others, sustained re-
search and development of methods to facilitate
mineral deposit discovery. Significant developments
in the geographic information system (GIS) tech-
nology during the last four to five decades or so have
been useful in the development of quantitative
methods of geoscientific data analysis and integra-
tion, particularly for geochemical anomaly and
mineral potential mapping (Bonham-Carter 1994;
Pan and Harris 2000; Carranza 2008). In this article,
we review the general developments of GIS-based
mineral potential mapping by looking into the yearly
variations of published papers in this field. Then, we
review the publications of NRR on mineral potential
mapping, which is one of the major fields within the
scope of this journal. Although NRR is not exclu-
sively dedicated geochemical anomaly mapping, it
has published a few articles on this field and these
are also reviewed briefly here. Finally, we introduce
the papers in this special issue on GIS-based geo-
chemical anomaly and mineral potential mapping.

The field of geochemical anomaly mapping has
existed since the early 1970s, and detailed explana-
tions of the science of this field can be found in
Levinson (1974), Rose et al. (1979), Govett (1983),
Butt and Zeegers (1992), Kauranne et al. (1992),
Hale and Plant (1994) and Hale (2000). In very
simple terms, this field involves separation of back-
ground and anomalous geochemical samples and
using the latter group to delineate targets for further
exploration of undiscovered deposits. Traditionally,
the task of delineating exploration targets based on
geochemical anomalies was achieved by stacking on
a light table same-scale maps of anomalies of single
elements or suites of elements in order to define
exploration targets based on intersections of
anomalies. Since about three to four decades ago,
this task was facilitated by the use of an ‘‘electronic
light table’’ (i.e., a GIS). Then, in the late 1980s, the
field of geochemical anomaly mapping intuitively
evolved into the field of mineral potential mapping,
as geochemical anomaly maps need to be integrated
with geological datasets in order to delineate geo-
logically meaningful exploration targets (Bonham-
Carter et al. 1988, 1989; Agterberg et al. 1990).

DEVELOPMENTS IN MINERAL
POTENTIAL MAPPING

Mineral potential mapping is concerned with
quantifying and mapping the likelihood that mineral

deposits are present in a study area. It is synony-
mous to mineral prospectivity mapping, which is
concerned with quantifying and mapping the likeli-
hood that mineral deposits may be found by explo-
ration in a study area. Indeed, these two
terms—mineral potential mapping and mineral
prospectivity mapping—have been used inter-
changeably in the literature and are hereafter both
denoted as MPM.

Thus, MPM involves the collection, analysis and
integration of geochemical, geological and geo-
physical data from multi-sources to quantify spatial
relationships between anomalies (i.e., indicators of
mineralization) and existing occurrences of mineral
deposits of the type sought and use the quantified
spatial relationships to map mineral potential or
prospectivity. The integration of anomalies, derived
from a variety of geo-exploration data, has been
done traditionally with the aid of a light table, upon
which maps of the same sizes and scale are stacked
on top of each to outline potential or prospective
areas defined by intersections of anomalies. How-
ever, in the last three to four decades or so, MPM
has been made more efficient with the aid of a
geographic information system (GIS).

The procedure of GIS-based MPM starts with
definition of a conceptual model of mineral potential
(Fig. 1), which describes theoretical relationships
among various factors or controls of how and where
certain types of mineral deposits form. The con-
ceptual model guides the choice of spatial geo-
science datasets to be used in MPM. Analyses of
spatial geoscience datasets to define predictive
model parameters can provide feedback to the def-
inition and fine-tuning of the conceptual model of
mineral potential (cf. Carranza and Hale 2002b;
Carranza 2009a) and eventually to the creation of
predictor maps. The integration of predictor maps,
using a certain method, yields a map of mineral
potential or prospectivity, which needs to be vali-
dated in order to judge its predictive ability and,
thus, its usefulness for decision-making to guide
mineral exploration.

In general, GIS-based MPM can be either data-
driven or knowledge-driven. Methods of data-driven
MPM, which involve quantitative analysis of spatial
relationships between anomalies (i.e., indicators of
mineralization) and existing occurrences of mineral
deposits of the type sought, are suitable for
‘‘brownfields’’ or well-explored regions wherein the
objective is to define additional targets for explo-
ration. Methods of knowledge-driven MPM, which
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are based on expert judgment of spatial relationships
between anomalies (i.e., indicators of mineraliza-
tion) and existing occurrences of mineral deposits of
the type sought, are suitable for ‘‘greenfields’’ or
under-explored regions wherein the objective is to
define new targets for exploration. The develop-
ments in MPM in the last three to four decades or so
have involved testing and application of various
methods, considering the assumptions as well as the
strengths and limitations of each and every method.
The different data- and knowledge-driven methods
of GIS-based MPM are listed in Tables 1 and 2,
respectively. The methods and references to these
methods given in these tables are a representative
sampling of the developments in GIS-based MPM as
these are the most commonly used and are published
mostly in peer-reviewed journals/books (see refer-
ence list).

Developments of methods for data-driven
MPM preceded those for knowledge-driven MPM
by at least 10 years (Fig. 2). This is largely because
MPM is mainly a form of deductive modeling, which
involves analysis of patterns from observations
(data) in order to derive a model (hypothesis/the-
ory) of mineral potential or prospectivity (cf. Fig. 1).
Weights of evidence (WofE) is the most widely used
data-driven method of MPM, whereas fuzzy logic
(FL) is the most widely used knowledge-driven

method of MPM (Fig. 2). The development of WofE
has been pioneered by Bonham-Carter et al. (1988,
1989) and Agterberg et al. (1990), whereas the
development of FL has been pioneered by An et al.
(1991). An analysis of annual publications regarding
MPM shows that there have been generally 2–4
papers on WofE modeling of MPM since the
development of WofE for MPM in 1988 up to the
present, whereas there has been a significant in-
crease in papers on FL modeling of MPM since the
development of FL for MPM in 1991 up to the
present (Fig. 3). In particular, the significant in-
crease in papers on FL modeling of MPM took place
in the last 5–10 years. There is an underlying reason
for the growth in research on conceptual (or
knowledge-driven) modeling of MPM relative to the
decline in research on empirical (or data-driven)
modeling of MPM, as discussed below.

The development of GIS-based MPM has been
influenced by the publication of three textbooks
(Fig. 4), among which the textbook by Bonham-
Carter (1994) has been the most influential as it has
been cited at least 1500 times (according to Google
Scholar). However, the later textbooks by Pan and
Harris (2000) and Carranza (2008) certainly have
also influenced the development of methods for
MPM as, according to Google Scholar, these have
been cited at least 100 times and at least 260 times,

Figure 1. General flowchart of MPM (slightly modified from Carranza (2008)).
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respectively. The influence of each of these three
textbooks seems to be reflected by a decrease in
number of journal/conference papers in the years
after their respective publication year (Fig. 5), sug-
gesting perhaps that researchers in the field of MPM
were studying these textbooks after their publication
and then published their findings later on. A similar
pattern is associated with the publication of the first
paper on WofE for MPM Bonham-Carter et al.
(1988). However, it may be difficult to ascertain
whether this supposition is true.

Nevertheless, on the one hand, the first publi-
cation on mineral potential mapping that can be
found by a year-to-year search of the literature using
the search terms ‘‘mineral potential mapping’’ AND
‘‘GIS’’ in Google Scholar in the Internet is a book
chapter by Bonham-Carter and Agterberg (1990)
about the application of microcomputer-based GIS
to mineral potential mapping. Thus, it can be said
that the Canadians, as Bonham-Carter and Agter-
berg worked then for the Geological Survey of Ca-
nada, introduced the term mineral potential
mapping. And, on the other hand, the first publica-
tion on mineral prospectivity mapping that can be
found by a year-to-year search of the literature using
the search terms ‘‘mineral prospectivity mapping’’
AND ‘‘GIS’’ in Google Scholar in the Internet is a
journal article by Brown et al. (1999) about the use
of a multilayer feed-forward neural network for
mineral prospectivity mapping. Thus, it can be said
that the Australians, as Brown et al. worked then for
academic institutions in Australia, introduced the
term mineral prospectivity mapping. Indeed, a
compilation of papers on MPM in peer-reviewed
geoscience journals shows that the Canadians have
pioneered the development of GIS-based MPM for
three decades or so since the late 1970s, although
development in GIS-based MPM has grown to a
global scale in the last two decades (Fig. 6).

Developments in GIS-based MPM in the last
four decades have been published in various journals
(Fig. 7); however, about 45% of journal papers on
this topic have been published in the journals owned
by International Association for Mathematical
Geosciences (IAMG), namely NRR, Mathematical
Geosciences (MG) and Computers & Geosciences
(C&G). This reflects that developments in GIS-
based MPM significantly involved the development
of robust mathematical methods for analysis and
synthesis of spatial evidence of mineral potential. It
is remarkable that 30% of journal papers on GIS-
based MPM have been published in NRR. It is

Figure 2. Years and numbers of publications of mostly journal

papers on methods of (a) data-driven MPM and (b) knowl-

edge-driven MPM. The publications included in these graphs

are cited in Tables 1 and 2. DA = discriminant analysis.

CA = characteristic analysis. LR = logistic regression. Wo-

fE = weights of evidence. FA = favorability analysis.

LRA = likelihood ratio analysis. EBF = evidential belief

functions. ANN = artificial neural network. SVM = support

vector machine. RF = random forest. FL = fuzzy logic.

MIO = multi-class index overlay. BL = Boolean logic.

BIO = binary index overlay.

Figure 3. Years and numbers of publications of mostly journal

papers on the applications of weights of evidence (WofE) and

fuzzy logic (FL) to MPM. The publications included in the

graphs are cited in Tables 1 and 2.
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Figure 4. Front cover of textbooks relevant to MPM, authored by: (a) Bonham-Carter (1994); (b) Pan and Harris (2000); and (c)

Carranza (2008).

Figure 5. Numbers and years of publication of mostly journal papers regarding MPM, as well as years of

publication of the first paper on weights of evidence (WofE) modeling of MPM and those of three textbooks

relevant to MPM (see text for details). The publications included in the graph are cited in Tables 1 and 2.
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remarkable as well that 18% of journal papers on
this topic have been published in Ore Geology
Reviewers (OGR), which is an economic geology
journal. Intriguingly, the number of papers on GIS-
based MPM published in NRR has decreased sig-
nificantly during the last decade, whereas that in
OGR has increased significantly during the last
decade (Fig. 8). This reflects that developments in
GIS-based MPM also significantly involved the
development of geologically focused models of
mineral potential. There is a common underlying
reason for these observations and for the earlier
observation regarding the growth in research on
conceptual (or knowledge-driven) modeling of
MPM relative to the decline in research on empirical

(or data-driven) modeling of MPM. This common
underlying reason is the adoption in GIS-based
MPM of the mineral systems approach to explo-
ration targeting.

The concept of ‘‘mineral systems’’ for explo-
ration targeting, proposed by Wyborn et al. (1994),
describes ‘‘all geological factors that control the
generation and preservation of mineral deposits, and
stress the processes that are in involved in mobilising
ore components from a source, transporting and
accumulating them in more concentrated form and
then preserving them throughout the subsequent
geological history.’’ The mineral systems approach
to exploration targeting is, according to Walshe et al.
(2005), a paradigm that requires answers to five

Figure 6. Source countries of studies on MPM published as articles in peer-reviewed geoscience journals during the last four decades

divided into four 10-year slices. Number of articles is denoted by n. The publications included in these charts are cited in Tables 1 and 2.
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questions in order to guide mineral exploration,
namely: (1) What is the architecture/size of the
system?; (2) What is pressure, temperature and
geodynamic history of the system?; (3) What is the
nature of the fluids and fluid reservoirs in the sys-
tem?; (4) What are the fluid pathways and drivers of
fluid flux?; and (5) What are the transport and
depositional mechanisms? Therefore, the mineral
systems approach to exploration targeting focuses
on three geological elements (or processes) that are
critical to the formation of mineral deposits, namely:
source of metals, fluid pathways and traps. For GIS-

based MPM, these critical elements must be trans-
lated into mappable criteria (or spatial proxies) of
mineral prospectivity (cf. McCuaig et al. 2010; Por-
wal and Kreuzer 2010; Porwal and Carranza 2015).
Research on the adoption in GIS-based MPM of the
mineral systems approach to exploration targeting
has grown significantly in the last decade (2007–
2016) (Fig. 9). Because the mineral systems ap-
proach to GIS-based MPM is intuitively a knowl-
edge-driven approach and because FL is the mostly

Figure 7. Distributions of papers on MPM published in peer-reviewed geoscience journals in the last four

decades (1977–2016). The journal papers included in this chart are among those cited in Tables 1 and 2.

Figure 8. Numbers and years of publication of papers on GIS-

based MPM published in Natural Resources Research (NRR)

and Ore Geology Reviews (OGR). The journal papers in-

cluded in this graph are among those cited in Tables 1 and 2.

Figure 9. Numbers and years of publication of journal papers

yielded by a document search (as of March 11, 2017) via

Google Scholar using the terms (a) ‘‘mineral systems’’ AND

‘‘mineral potential mapping’’ AND ‘‘GIS’’ (denoted as MSA-

1) and (b) ‘‘mineral systems’’ AND ‘‘mineral prospectivity

mapping’’ AND ‘‘GIS’’ (denoted as MSA-2).
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widely used (and perhaps the most efficient) method
for knowledge-driven MPM, there is a statistically
significant positive correlation (r = 0.6, p<0.05)
between the number of papers on FL modeling of
MPM (Fig. 3) and the number of papers on mineral
systems approach to MPM (Fig. 9) during the last
decade (2007–2016).

Prior to the development of the mineral sys-
tems approach to GIS-based MPM (i.e., mainly
prior to 1997; Fig. 9), conceptual models of mineral
prospectivity for GIS-based MPM (Fig. 1) were
based mostly on mineral deposit models (e.g., Cox
and Singer, 1986; Roberts et al., 1988), which de-
scribe the typical spatial attributes (e.g., geological
characteristics) of certain types of mineral deposits
as well as their regional geological environments.
Because the typical spatial attributes of certain
types of mineral deposits may not be relevant to
particular deposit types in particular study areas
(i.e., mineral deposits are unique even though they
are grouped into types according to their similari-
ties), focusing on mineral systems (i.e., using spatial
proxies of metal source, fluid pathways and traps)
instead makes GIS-based MPM more process based
and more geologically focused. Therefore, it can be
said that there have been mainly two stages in the
development of GIS-based MPM, namely: (1) an
earlier stage devoted mostly to the development
of robust quantitative methods for analysis and
synthesis of spatial evidence of mineral potential
and (2) a later stage devoted mostly to the devel-
opment of geologically focused models of mineral
potential. Whereas the initial stage was motivated
by the Canadians, the second stage was stimulated
by the Australians. The boundary between these
two stages is fuzzy, and in fact these two stages
strongly overlap each other because undoubtedly
researchers who have contributed to the develop-
ment of GIS-based MPM have endeavored and
continue to endeavor to develop numerically robust
as well as geologically focused mineral potential
models; however, the initial stage was mainly dur-
ing 1977–2006, and the second stage is mainly
during 2007–present.

Accordingly, although NRR has significantly
contributed to the publication of developments of
GIS-based MPM in general (Fig. 7), NRR has con-
tributed more significantly to the promotion of the
initial stage and less significantly to the second stage
(Fig. 8). The editorship of NRR recognizes the latter
as a challenge to promote further the development
of numerically robust as well as geologically focused

mineral potential models. In the following sections,
NRR articles relevant to GIS-based geochemical
anomaly mapping and MPM are reviewed briefly in
chronological order of publication.

NRR PUBLICATIONS ON GEOCHEMICAL
ANOMALY MAPPING

Only a few articles relevant to geochemical
anomaly mapping have been published in NRR, as it
is not exclusively dedicated to the field of explo-
ration geochemistry.

Cheng et al. (1996) used the concepts of frac-
tal/multi-fractal dimensions and fractal measure to
estimate prior and posterior probabilities of a small
unit cell in a study area to contain at least one
mineral deposit occurrence. This resulted in a new
version of the WofE method for MPM, which can
also be used to map geochemical anomalies.

Chen and Zhao (1998) subjected multi-element
lithogeochemical data to factor analysis to under-
stand zonation in primary halos around a gold de-
posit in China and to use the results of the analysis
for mapping multi-element anomalies to support
mineral exploration.

Costa and Koppe (1999) subjected pedogeo-
chemical data to geostatistical analysis to derive
probability maps, indicating uncertainty of geo-
chemical anomalies, to select areas for further
exploration.

Cheng et al. (2000) proposed a novel method
for mapping geochemical anomalies by integration
of spatial and spectrum analysis. The proposed
method was demonstrated using soil geochemical
data from an area in Sumatra (Indonesia).

Singer and Kouda (2001) discussed unsuper-
vised and supervised learning methods for extracting
useful information from exploration geochemical
data.

Twarakavi et al. (2006) presented supervised
learning of geochemical anomalies under condition
of sparse data and showed that support vector
machines and robust least-square support vector
machines perform better than neural networks and
kriging techniques.

El-Makky and Sediek (2012) subjected multi-
element stream sediment geochemical data from
Egypt to Q-mode cluster and R-mode factor analy-
ses as well as to enrichment factor analysis to map
anomalies associated with gold–sulfide deposits and
their associated hydrothermal alteration zones. They
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found that R-mode factor analysis, compared to Q-
mode cluster analysis, provided easily and reason-
ably interpretable results, whereas the enrichment
factor analysis produced results indicative of a
promising area for further detailed exploration.

He et al. (2013) demonstrated that, using multi-
fractal and frequency distribution analyses, geo-
chemical exploration data of most elements from
secondary media (e.g., soils, stream sediments)
should be modeled with nonlinear mathematical
methods or should be transformed to linear distri-
butions before modeling with linear mathematical
methods.

Luz et al. (2014) subjected Cu- and Zn-soil
geochemical data from an area in Portugal in order
to map anomalies using the concentration–area
fractal model, which has been proposed by Cheng
et al. (1994).

None of the foregoing articles have addressed
the closure problem inherent in the statistical anal-
ysis of compositional data, such as exploration geo-
chemical data (Aitchison 1984). As this is a
significant aspect of geochemical anomaly mapping,
we have, since the publication of the last article
above, ensured that no articles involving geochemi-
cal anomaly mapping gets published in NRR with-
out ‘‘opening’’ of exploration geochemical data by
log-ratio transformation prior to any kind of statis-
tical analysis.

The above-reviewed nine articles represent only
�1% of all (=740) articles NRR has published since
1992. However, two of the above-reviewed articles
are among the most cited/applied in this field
(Table 3). This information suggests that NRR can
potentially make a strong impact to research on
geochemical anomaly mapping.

NRR PUBLICATIONS ON MINERAL
PROSPECTIVITY MAPPING

NRR Articles on Data-Driven MPM

Agterberg (1992) explained the WofE method,
which was proposed by Bonham-Carter et al. (1988,
1989) and Agterberg et al. (1990), for integrating
evidential layers for MPM with emphasis on undis-
covered deposits� effect on the calculation of weights
and posterior probabilities. He distinguished be-
tween statistics that are sensitive to unit cell size and
statistics that are more-or-less independent of it. He
concluded that positive weights of evidence in the

WofE method can be compared with coefficients of
evidence in the logistic regression (LR) method.

Goossens (1993) used remote sensing (Landsat
TM, airborne magnetic and radiometric) datasets to
assess potential for granite-related mineralization in
a 20-km9 20-km area in Spain. The nature of pixels
surrounding a pixel classified as having potential was
considered when deciding whether classification is
correct. Weights were assigned to uncertainty of
interpretation. Interpreted and weighed data were
integrated in supervised classification to derive a
probability map highlighting zones with potential for
granite-related mineralization that were confirmed
by all datasets.

Pan (1993b) demonstrated the indicator
favorability theory in a case study for data-driven
MPM in order to account for spatial correlations of
geophysical, geochemical and geological datasets
with assumption that mineral potential can be
modeled by a combination (H) of a set of response
variables derived from the datasets. The indicator
favorability theory estimates mineral prospectivity
of every location in two stages: (1) estimation of a
linear combination of response variables by maxi-
mizing variance var(H) and (2) estimation of
favorability function (F) by minimizing variance
var[F�H]. The first stage is essentially a principal
components analysis (PCA) of data at known de-
posit locations, and the coefficients of the target
indicators are applied to the corresponding datasets
covering the entire study area to map mineral
potential.

Pan and Porterfield (1995) demonstrated a
comprehensive methodology particularly for large-
scale MPM in order to design optimal in-fill drilling
(to check continuity of ore-grade and convert a part
of geological resources into minable reserves) and
select step-out drilling targets (for finding new ore-
bodies around known ore deposits) in a gold-mining
district. The central information synthesizer is
canonical or indicator favorability analysis. The
study resulted in delineation of several drilling tar-
gets.

Cheng et al. (1996) used the concepts of frac-
tal/multi-fractal dimensions and fractal measure to
estimate prior and posterior probabilities of a small
unit cell in a study area to contain at least one
mineral deposit occurrence. This resulted in a new
version of the WofE method for MPM. The method
was demonstrated in a case study to map potential
for gold mineralization in the Iskut River area,
northwestern British Columbia (Canada), where
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occurrences of gold deposits, which have frac-
tal/multi-fractal properties, were integrated with
several geochemical, geophysical and geological
evidence layers.

Rostirolla et al. (1998) used WofE (Agterberg
1992) and PCA (Pan 1993b) in two case studies of
MPM in Brazil. The results of both methods in ei-
ther case study are fairly similar.

Cheng and Agterberg (1999) demonstrated a
new approach of WofE modeling based on fuzzy sets
and fuzzy probabilities in a MPM case study for gold
deposits in Meguma Terrane, Nova Scotia (Canada).
In this new hybrid method, fuzzy sets of subjective
genetic elements are generated instead of converting
data into binary or ternary evidence; fuzzy proba-
bilities are then defined to derive posterior proba-
bility of a unit cell to contain mineral deposits based
on fuzzy evidence. The hybrid method provides for
objective or subjective definition of a fuzzy mem-
bership function of evidence as well as for objective
definition of fuzzy or conditional probabilities. In a
purely data-driven approach, derived posterior
probabilities are completely dependent on existing
data, but when the hybrid method is applied, they
depend partly on expert knowledge.

Harris and Pan (1999) described a probabilistic
neural network (PNN), which is a particular artificial
neural network (ANN) architecture designed to
compute the probability for membership in each of
two or more classes (e.g., mineralized and barren),
to classify mineralized and non-mineralized cells
using geological, geochemical and geophysical vari-
ables. They have shown that the PNN outperforms
two traditional multivariate supervised classification
methodologies, namely LR and discriminant analy-
sis (DA), for MPM.

Sahoo and Pandalai (1999) used LR to integrate
indicator patterns for estimation of the probability
of occurrence of gold deposits in a part of the
auriferous Archaean Hutti–Maski schist belt. They
used data consisting of categorical and continuous
variables obtained from a coded lineament map and
geochemical anomaly maps of the pathfinder ele-
ments of gold in soil and groundwater. Their study
shows that LR is adequate for identifying mineral-
ized areas with the type of data used.

Raines (1999) applied the WofE method to
construct a prospectivity model for epithermal-Au
deposits in the Great Basin (western USA). He
concluded that the WofE MPM model is reasonable
for the delineation permissive areas for epithermal
deposits that are comparable to expert�s delineation

and that have objective, reproducible and well-de-
fined characteristics, and provided a quantitative
measure of confidence.

Singer and Kouda (1999) compared the WofE
method to PNN using data from Chisel Lake–An-
derson Lake, Manitoba (Canada). Despite the
sparse deposits in the study area, the results
demonstrate the PNN�s ability to derive unbiased
probability estimates and lower error rates com-
pared to those derived by the WofE method. The
WofE method resulted in strong bias, and errors are
mostly known barren areas misclassified as
prospective. Although the Chi-square test for inde-
pendence indicated no significant correlations
among the evidential layers, the test for expected
number of deposits indicated that the results of the
WofE method violated the assumption of condi-
tional independence (CI). However, the PNN has no
problem dealing with the CI assumption except that
its performance strongly depends on having a com-
pletely representative training set.

Venkataraman et al. (2000) applied the WofE
method and a FL algorithm to integrate information
interpreted from remote sensing, geochemical, geo-
logical and ground-based datasets of Rajpura–Dar-
iba, Rajasthan (India) to target potential base metal
mineralized areas. Both their WofE and fuzzy MPM
models showed four classes of potential zones of
sulfide mineralization; however, their fuzzy model
predicted more new potential areas.

Carranza and Hale (2000) applied the WofE
method to integrate binary predictor patterns of
geological features for prediction of gold potential
using two sets—small-scale (n = 63) and large-scale
(n = 19) occurrences—of gold deposits. The derived
spatial associations between the binary predictor
patterns and either set of gold occurrences, which
indicate the geological features that are useful for
mapping of prospectivity for gold in the Baguio
District (Philippines), are consistent with the known
geological controls on gold mineralization in the
district. The resulting MPM maps based on the two
sets of mineral occurrences data are similar, indi-
cating that small-scale occurrences, which often
outnumber large-scale occurrences, are important in
MPM for economic deposits of the type sought.

Chen et al. (2001) introduced the concept of
geo-anomaly unit (GU) as an area with distinct
features that can be delineated by combining maps
of ore-forming factors using computer techniques.
The factor maps are binary (i.e., square cells coded
with either 0 or 1 for absence or presence, respec-
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tively, of ore-forming features) and integrated by
PCA to derive a score map of linear combination of
ore-forming features. Cells with high scores are
suggested as exploration targets.

Harris et al. (2001) used two data-driven
methods (WofE, LR) and two knowledge-driven
methods (weighted index and Boolean overlay) to
produce gold prospectivity maps of the Swayze
greenstone belt, Ontario (Canada), using geological,
geochemical, geophysical and remotely sensed
(Landsat) datasets assembled in a GIS. The derived
gold prospectivity maps are more or less different as
the evidential layers were purposely generated in
different ways according to each modeling method.
Some of the several areas classified by all modeling
methods to have high gold potential coincide with
known gold prospects. However, the data-driven
prospectivity maps were better predictors of the
known gold prospects.

Mihalasky and Bonham-Carter (2001) used the
WofE method to quantify the spatial association of
lithodiversity with metallic mineral sites in Nevada.
They calculated lithodiversity by counting the
number of unique geological map units within
square-shaped sample neighborhoods of different
sizes. They found that the spatial association be-
tween mineral sites and lithodiversity increased with
increasing lithodiversity and that this relationship
was consistent for (1) both basin-range and range-
only regions, (2) four sizes of sample neighborhoods,
(3) various mineral site subsets, (4) three scales of
geological maps and (5) areas not covered by large-
scale maps. They interpreted high lithodiversity to
likely reflect the occurrence of complex structural,
stratigraphic, and intrusive relationships that are
thought to control, focus, localize, or expose min-
eralization. They proposed that lithodiversity mea-
surements in areas that are not well explored may
help delineate regional-scale exploration targets.

Carranza and Hale (2001a) used fuzzy sets of
favorable distances to geological features and
favorable lithologic formations, based upon quali-
tative and quantitative knowledge of spatial associ-
ations between known gold occurrences and
geological features in the Baguio District (Philip-
pines) and then combined the fuzzy predictor maps
using FL as the inference engine. Their results,
which are comparable to their previous work using
WofE modeling (Carranza and Hale 2000), demon-
strate the usefulness of fuzzy modeling of mineral
potential.

Scott and Dimitrakopoulos (2001), in a case
study in Australia, estimated mineral potential using
the US Geological Survey three-part resource
assessment process (Singer 1993) and data-driven
GIS-based MPM by WofE. The results of their case
study recognize that quantitative resource assess-
ment and GIS-based MPM are complementary pro-
cesses that support mineral resources development.

In a district-scale MPM case study for por-
phyry-Cu mineralization, Carranza and Hale
(2002a) applied the WofE method to analyze the
spatial association between known porphyry-Cu
deposits and geologic features in Benguet, Philip-
pines. They found that the porphyry-Cu occurrences
are spatially associated with contacts of porphyry
plutons, margins of batholithic plutons and strike-
slip fault discontinuities and that the porphyry plu-
tons are spatially associated with margins of bath-
olithic plutons and strike-slip fault discontinuities.
Based on these significant spatial associations, they
further applied the WofE method to map zones
favorable for porphyry-Cu mineralization and zones
favorable for porphyry pluton emplacement in
Benguet Province, Philippines. Validations of the
predictive models show their usefulness for delin-
eating targets for follow-up exploration.

Paganelli et al. (2002) applied the WofE meth-
od to determine the spatial associations of known
kimberlite locations with variously trending linea-
ments at the Buffalo Head Hills area (Canada).
They then used structural lineament maps, Bouguer
gravity data, magnetic characteristics of the Buffalo
High and Buffalo Utikuma terranes, and the
boundary between those two terranes to derive a
map of favorability for kimberlite emplacement. The
results show highest favorability for kimberlite
emplacement along the boundary between the Buf-
falo High and Utikuma terranes and correspondence
with NNE-trending lineaments and their intersec-
tions with NE and ENE lineaments.

Raines and Mihalasky (2002) used a combina-
tion of WofE and weighted LR to generate pluton-
related deposit tract maps and compared these maps
with tract maps generated by US Geological Survey
experts. They found that, in general, there is a very
strong spatial correlation between the data- and
knowledge-driven tract maps. This study suggests
that, similar to the findings of Scott and Dimi-
trakopoulos (2001), data-driven MPM can be the
first part of the 3-part quantitative mineral resource
assessment proposed by Singer (1993).
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Agterberg and Cheng (2002) revisited the
requirement of the WofE that updating the prior
probability of mineral deposit occurrence with two
or more evidential map layers is allowed only if the
evidential layers exhibit CI with respect to known
mineral deposits. They provided formal proof that
CI of evidential layers implies that the sum of pos-
terior probabilities weighted by unit cell area equals
the number of known mineral deposits. They then
proposed the ‘‘omnibus test’’ for CI, which is exact
and simpler to use than existing tests of CI adapted
from discrete multivariate statistics.

As the performance of ANNs for MPM is
undermined by the paucity of deposit training pat-
terns relative to barren training patterns, Brown
et al. (2003a) proposed to overcome this problem by
adding random noise to the original training patterns
in order to create additional synthetic deposit
training data. In the Kalgoorlie Terrane study area,
the number of deposit training patterns increased
from approximately 50–1000 by adding noise to the
original deposit training data, which resulted in sig-
nificant increase in both the classification perfor-
mance of a trained multilayer perceptron (MLP)
neural network, a feed-forward ANN, and the
quality of the resultant prospectivity map.

Porwal et al. (2003a) described a GIS-based
application of a radial basis functional link net
(RBFLN), another type of ANN, to map potential
for sedimentary exhalative (SEDEX) base metal
deposits in an area in the Aravalli metallogenic
province (western India). They trained a series of
RBFLNs to determine the network architecture and
estimate parameters that mapped the maximum
number of validation vectors correctly to their
respective targets. The trained RBFLN with the best
performance with respect to the validation dataset
was used for processing all feature vectors to gen-
erate a predictive map that was further reclassified
into a prospectivity map showing zones with high,
moderate and low prospectivity for SEDEX base
metal deposits in the study area. The usefulness of
RBFLN for MPM is indicated by the consistency of
the spatial distribution of mapped high prospectivity
zones with the conceptual models of base metal
metallogeny in the study area.

Bougrain et al. (2003) used ANN to extract
from a GIS database knowledge about factors rele-
vant to the formation of precious and base metal
deposits in the Andes. Results of the analysis indi-
cate as much as 25 attributes as known or potential
factors relevant to the formation of gold deposits in

the Andes Cordillera. They used the trained ANN to
distinguish potentially mineralized sites from non-
mineralized sites. Their study demonstrates how
ANN can be applied efficiently to assist mineral
exploration, where general domain knowledge alone
is inadequate to satisfactorily model the plausible
controls on mineralization from a continent-scale
database.

Brown et al. (2003b) proposed that the use of
evidential layers represented as fuzzy membership
variables is a useful method for integrating subjec-
tive knowledge with empirical data in an ANN ap-
proach to MPM. They used a MLP neural network
to integrate up to 17 variables to derive prospectivity
maps for orogenic gold deposits in the Archean
Kalgoorlie Terrane of Western Australia. They used
two types of fuzzy membership variables. For the
first type, the spatial associations of data with known
gold deposits were used to determine fuzzy mem-
bership values. The second type of fuzzy member-
ship variables represents rheological contrast at
lithologic boundaries, in which fuzzy membership
values, although based on geological field data, are
subjective. The methods described can be applied to
various subjective data (e.g., favorability of tectonic
environment, reactivation along major faults or host
stratigraphy) used in regional exploration programs,
but which normally would not be used as inputs in
an ANN approach.

Harris et al. (2003) compared the performance
of WofE, PNN, LR and DA for data-driven MPM in
three case studies with contrasting scale and geo-
logic information, and using randomly selected cells
for training and validation in every case study. The
deposit-scale Carlin study reveals that the perfor-
mances of the various methods from lowest to
highest are: PNN, DA, LR and WofE. The district-
scale Alamos study shows that the performances of
the various methods from lowest to highest are: DA,
PNN and WofE. Unlike findings from the Alamos
and Carlin studies, the regional-scale Nevada study
DA, LR, PNN and WofE. Their study also demon-
strated that the inferior performance of WofE is the
result of the loss of information when data of the
variables are discretized into binary maps to satisfy
procedure requirement by WofE.

Carranza (2004) applied the WofE method to
map potential for porphyry-Cu prospects in an area
measuring �920 km2 with 12 known porphyry-Cu
prospects. Uncertainty due to missing geochemical
evidence is shown to have an influence on tests of
assumption of CI among predictor maps with respect
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to prospects. However, for the final predictive
model, the assumption of CI, which was initially
rejected based on the omnibus test, was accepted
based on a new omnibus test (Agterberg and Cheng
2002). Validation of the final predictive model
demonstrates the plausibility of the WofE method
for MPM in large areas with few mineral prospects.

Agterberg and Bonham-Carter (2005) con-
tended that the random cell selection procedure
followed by Harris et al. (2003) for training and
validation of MPM necessarily results in better
performance for the more flexible methods (i.e.,
DA, LR and PNN), but this did not necessarily
indicate that these methods are better than WofE.
They showed, by comparison with LR modeling,
which does not need discretization of data, that the
discretization of data into binary evidence in the
WofE method is usually advantageous as it prevents
occurrences of extremely high posterior probabili-
ties. They concluded further that mineral occur-
rences must not be randomly sampled together with
their surrounding environments in small cells but
must be modeled as discoveries at points.

Carranza et al. (2005) demonstrated the appli-
cation of data-driven evidential belief functions
(EBFs), initially proposed by Carranza and Hale
(2003), to map prospectivity for aquamarine-bearing
pegmatites in the Lundazi District (eastern Zambia).
Data-driven EBFs not only represent spatial asso-
ciation of target deposits with an evidential layer but
also take into account spatial relationships among
classes of evidences in an evidential layer. Spatial
data that provide positive or negative evidence of
prospectivity can be determined by data-driven
EBFs. Data-driven EBFs of only positive evidence
of prospectivity must be integrated for MPM. Vali-
dation of the results illustrated the usefulness of
data-driven EBFs for MPM.

Skabar (2005) presented a new approach
whereby MLP neural networks can be trained to
yield output values that can be interpreted strictly as
posterior probabilities. This approach uses all data
in the generation of a model, thereby eliminating
dependence on the choice of training data. The
approach was followed to map prospectivity for gold
in the Castlemaine region of Victoria (Australia).
Comparison of the results with those of a method
for estimating probability density functions showed
that the MLP approach and the density estimation-
based approach performed roughly equally per
validation with the bootstrap ‘‘leave-one-out’’
method.

Chen et al. (2005) applied WofE modeling for
MPM in large areas with small number of mineral
prospects. They used predictor layers derived from a
digital database that includes 1:200,000 scale geo-
logical, geochemical, and geophysical maps, and re-
mote sensing images in study area. Their results
show four main metal ore belts occupying 29% of
their study area in China, which delineate 81% of
the known porphyry-Cu occurrences.

Porwal et al. (2006a) developed a hybrid fuzzy
WofE model for MPM that uses as inputs knowl-
edge-based fuzzy membership values and generates
outputs of data-based conditional probabilities. A
knowledge-driven logistic membership function is
used to derive fuzzy membership values, thereby
allowing treatment of systemic uncertainty and
generation of multi-class evidential layers. The fuzzy
evidential layers are then integrated using the WofE
method. The hybrid fuzzy WofE model was applied
to regional-scale mapping of prospectivity for base
metal mineralization in the south-central part of the
Aravalli metallogenic province (western India).
Validation of the results demonstrated the useful-
ness of the hybrid fuzzy WofE model for MPM.

De Quadros et al. (2006) compared the per-
formances of the WofE and fuzzy methods for MPM
based on a conceptual model for structurally con-
trolled lode gold–quartz vein deposits in an area in
Brazil. The found that, compared to the FL method,
the WofE method delineated smaller highly favor-
able zones and that the WofE method produced
higher biased probability within favorable zones.

Daneshfar et al. (2006) used the WofE and LR
methods separately for MPM to delineate areas with
potential for Zn–Pb Mississippi valley-type miner-
alization using evidential layers derived from
Landsat TM data and regional geological data. Their
two sets of results did not exhibit remarkable dif-
ferences from each another, and the validation of
the results demonstrated the usefulness of either the
WofE or LR method for MPM.

Nykänen and Ojala (2007) validated predictive
WofE and LR models of mineral prospectivity by
the bootstrap ‘‘leave-one-out’’ method, actual field
testing and follow-up analysis of previously drilled
core within predicted highly prospective areas. All
these methods of validation indicate that the WofE
and LR mineral prospectivity models have success-
fully delineated both known and new areas of gold
mineralization.

Behnia (2007) used the GIS-based RBFLN
method for predictive mapping in Central Iran to
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delineate areas with potential for Proterozoic min-
eralization characterized mainly by several iron,
apatite and uranium deposits. The results showed
that a successful classification depends on the exis-
tence of spatially well-distributed deposits and non-
deposits throughout the study area.

Raines et al. (2007) applied WofE modeling to
compare the use of geological maps of different
scales as inputs to GIS-based MPM to delineate
permissive tracts for porphyry deposits in the USA,
as the first step of a mineral resource assessment.
The results indicate that porphyry tracts delineated
using input from 1:2,500,000-scale geologic maps are
similar to porphyry tracts delineated using input
from either 1:10,000,000 or 1:35,000,000-scale geo-
logical maps. This finding demonstrates that con-
ceptual context from small-scale maps is more
appropriate for porphyry tract definition than from
larger scale maps. The study also demonstrates the
usefulness of the WofE method for analysis of
strengths of spatial associations between mineral
potential maps and known mineral occurrences.

Nykänen (2008) also used the RBFLN method
to produce a series of prospectivity maps for the
under-explored Paleoproterozoic Central Lapland
Greenstone Belt, Northern Fennoscandian Shield,
Finland, which is thought to be highly prospective
for orogenic gold mineralization. They found that,
when applied to the same evidential layers that are
proxies for conceptual geological controls, the
RBFLN method performed similarly as the LR
method but outperforms the WofE and the FL
methods. They also found that the performance of
the RBFLN method improved when the training
feature vectors were weighted according to the size
of the known gold deposits.

For situations of MPM where mineral deposit
occurrences are known, Fabbri and Chung (2008)
discussed strategies for blind testing of MPM. They
also described how to create a prediction rate graph,
for validation of predictive models, whereby the X-
axis of the graph represents proportion of a study
area predicted to be prospective and the Y-axis
represents proportion of ‘‘undiscovered’’ occur-
rences within the predicted prospective area. Such
prediction rate graph is similar to the occurrence–
area plots described by Agterberg and Bonham-
Carter (2005), but the prediction rate graph makes
use of occurrences for blind testing (i.e., occurrences
not used for generation of a predictive prospectivity
model).

Deng (2009) had shown that, when the CI
assumption in the WofE method is violated, bias in
posterior probability estimates has an intuitive and
convenient interpretation, and then, he derived a
formal expression for the bias. Then, using the cor-
relation structure of the predictor patterns, he
developed a modified WofE model to correct for the
bias. For validation of the proposed modified WofE
model in a case study, he proposed to use the receiver
operator characteristic (ROC) curve analysis as it is
often employed for binary response models (e.g.,
mineral occurrence is a binary variable). Results of
validation using ROC curves demonstrated the use-
fulness of the proposed modified WofE model.

Oh and Lee (2010) performed a GIS-based
ANN for mapping prospectivity for hydrothermal
Au–Ag mineralization in the Taebaeksan District
(Korea) using four different training datasets, de-
rived by likelihood ratio and WofE methods, to
analyze the effect of training. The results of their
study showed that ANN performed best, followed
by likelihood ratio and WofE.

Because the application of the WofE method to
MPM often results in violation of the CI assumption,
Agterberg (2011) proposed a modified WofE
method whereby WofE is performed first and then
WLR is applied to the weights. The results of the
proposed modified WofE method are similar to
those when the modified WofE method proposed by
Deng (2009) is applied to correct for bias due to
violation of the CI assumption.

Integration of several spatial data relevant to
MPM is advantageous. However, for methods that
involve estimating densities (e.g., PNNs) a high-di-
mensional input is disadvantageous due to the so-
called curse of dimensionality. In view of this, Ska-
bar (2011) described a substitute approach to the
estimation of densities, using similarity-based
learning, whereby he showed how (a) to estimate,
using the concept of eigenvector graph centrality,
the density of a set of deposit training examples
from a graphical model of such examples and (b) to
estimate from these data the likelihood of a test
example without creating a new graph. Testing the
proposed approach to a case study for gold deposits
showed that, in terms of predictive capability, it is
superior to conventional density estimation methods
and is a bit better than MLP neural networks.

Mejı́a-Herrera et al. (2015) used curvature and
proximity to certain geological features as predictor
variables in LR to predict Cu potentials in the
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Kupferschiefer. Curvature is geometric attribute
measurable in horizons of a surface structural
model. Their LR models show positive correlation
between curvature estimated on the surface depict-
ing the mineralized layer and predicted probabilities
of Cu potentials.

Carranza (2015) applied data-driven EBFs for
MPM (cf. Carranza et al. 2005) to the same study
area, measuring �920 km2 with 12 known porphyry-
Cu prospects, where he applied the WofE method to
map potential for porphyry-Cu prospects. The re-
sults indicate that method of data-driven EBFs is as
efficient as the WofE method for MPM in areas
where as few as 12 prospects are known and where
evidential layers contain missing values.

Index overlay and Boolean logic are two
methods traditionally used for knowledge-driven
MPM. As the assignment of evidential weights based
on expert opinion introduces bias that is difficult, if
not impossible, to quantify, Yousefi and Carranza
(2016) proposed a data-driven index overlay method
for MPM, in which weights of evidential layers are
estimated from data, and a data-driven Boolean lo-
gic method for MPM, in which thresholds for cre-
ating binary evidential layers are established based
on data. The results of their MPM case study for
porphyry-Cu deposits in an area in the Kerman
Province in southeast Iran demonstrate the useful-
ness of the proposed methods.

Ford et al. (2016) examined the performances
of the data-driven WofE and EBF methods and the
knowledge-driven FL method of MPM to target for
orogenic gold mineralization using incomplete data
from the Carajás mineral province (Brazil). The
results of their study demonstrate that the WofE
method is the most effective, compared to the EBF
and FL methods, for MPM with incomplete data.
This paper by Ford et al. (2016) is the first to
introduce in NRR the mineral systems approach to
GIS-based MPM.

The random forests (RF) is a machine learning
algorithm that has been shown recently as a viable
method for data-driven MPM (Rodriguez-Galiano
et al. 2014, 2015; Carranza and Laborte 2015a, b;
Harris et al. 2015). Carranza and Laborte (2016)
carried out a case study to map prospectivity for
hydrothermal Au–Cu mineralization in Catandu-
anes Island (Philippines), where 17 prospects of
hydrothermal Au–Cu deposits exist, in order to
examine further the ability of RF modeling (a) for
data-driven MPM in areas with few occurrences (i.e.,
<20) of mineral deposits and (b) for treatment of

evidential layers with missing values. The results
show that: (a) RF outperforms data-driven EBFs;
(b) RF allows analysis of spatial associations be-
tween known prospects and each evidential layer,
just as data-driven EBFs; and (c) and missing values
in evidential layers can be treated in RF through
RF-based imputation, whereas in data-driven EBFs,
missing values are assigned maximum uncertainty.
The case study demonstrates the usefulness of the
RF algorithm for data-driven MPM in regions with
few occurrences of the deposit type sought. This
paper by Carranza and Laborte (2016) adapts a
conceptual mineral systems model as framework for
data-driven MPM.

In a MPM case study for gold deposits around
the Huritz Group and Nueltin Suite, Nunavut (Ca-
nada), McKay and Harris (2016) compared the
performance of the RF method to that of a knowl-
edge-driven methodology involving weighted index
overlay and FL methods. The results showed that
the RF method outperformed knowledge-driven
methodology and illustrated several advantages to
the RF method, namely: (a) ability to take both
categorical and/or continuous data as variable in-
puts, (b) ability to estimate importance of each input
variable and (c) an unbiased internal estimation of
mapping error, which makes cross-validation of final
outputs to determine accuracy unnecessary.

Geranian et al. (2016) compared the perfor-
mance of DA and support vector machine (SVM)
for modeling subsurface gold mineralization by
integrating surface soil geochemical anomalies and
borehole data at the Sari Gunay gold deposit, NW
Iran. The results of their study indicate that SVM
outperforms DA in data-driven MPM.

Thus, NRR has several publications of research
on novel methods for data-driven MPM as well as
research on case-to-case innovation of existing
methods for data-driven MPM.

NRR Articles on Knowledge-Driven MPM

McLaren (1992) described probably the first or
one of the earliest applications of the weighted index
overlay method for MPM. He classified mineral
prospectivity of British Columbia (Canada) using
three unique themes of field data (geological setting,
geochemistry and mineral occurrences) and based
on two factors (favorability and degree of confi-
dence). He assessed prospectivity according to how
well evidential data satisfy criteria defined from
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established mineral deposit models. He assessed
degree of confidence depending on number of data
themes determined to be favorable. Qualitative
descriptions of each prospectivity class suggest the
possibility for future exploration as an index of ex-
pected land use.

Reddy et al. (1992) proposed the use of GIS to
develop an expert system for regional-scale MPM
for volcanogenic massive sulfide (VMS) deposits in
the Early Proterozoic Snow Lake greenstone belt of
northwest Manitoba (Canada). Their expert system
consisted of an inference network to model expert
knowledge, to propagate evidence from input maps
and to integrate information by FL and Bayesian
updating to derive prospectivity maps depicting
evaluation of hypotheses. A model�s sensitivity to
changes in the parameters was evaluated by vali-
dating areas with predicted high prospectivity
against the spatial distribution of known VMS de-
posits.

Chung and Fabbri (1993) used an artificially
constructed dataset to demonstrate three represen-
tation methods—probability measures, Dempster-
Shafer EBFs, and fuzzy membership functions—and
their corresponding estimation procedures with
analyses of the implications and of the assumptions
that are required in each method to thematic map-
ping. They also discussed difficulties associated with
the construction of probability measures, EBFs and
fuzzy membership functions and proposed alterna-
tive procedures to overcome those difficulties.

An et al. (1994b) demonstrated EBFs for
managing uncertainties in the integration of evi-
dential data for MPM. The EBFs provide the
capability to distinguish between negative informa-
tion and lack of information, which is desirable when
integrating diverse datasets with different spatial
resolutions and spatial extents. Their study demon-
strated that EBFs can provide a realistic quantitative
model of mineral potential.

Rehder (1994) demonstrated an expert system
for MPM, which constructs an inference network for
assessing prospectivity for epigenetic gold deposits.
He described three different approaches for con-
structing an inference network, discussed aspects of
human reasoning and compared it with machine
reasoning for assessing data as evidence of mineral
prospectivity, and discussed some actual problems
concerning uncertainty, contradictory evidence and
prior probabilities. Included in the exploration
model are technical aspects like costs and schedule.

An et al. (1994a) formulated an object-oriented
modeling framework and respective reasoning pro-
cesses using EBFs for a knowledge-based approach
to integration of evidential layers. The mechanism
developed for uncertainty propagation also worked
well for MPM using real mineral exploration data-
sets from the Snow Lake area, northern Manitoba
(Canada).

Cheng (1996) proposed fuzzy relations to derive
weights for qualitative variables according to their
partial order relations. They proposed two asymmetric
measure indexes (incidence coefficient and probability
difference) for quantifying asymmetric associations
between evidential layers, fromwhich the partial order
relations can be generated. The combination of the
fuzzy relations method with the asymmetric measure
indexes leads to new methods for map overlay and
data integration for MPM. Two types of models were
demonstrated by an artificial example for MPM.

Carranza et al. (1999) demonstrated the appli-
cation of a conceptual mineral exploration model
and GIS to classify prospectivity for nickeliferous
laterite in an area in northeastern Philippines. They
modeled and integrated evidence maps in a way
similar to that described by McLaren (1992) to fur-
nish a nickeliferous laterite potential map. They
compared this map with present land-use classifica-
tion and policy in the area and found that the
potential zones are in areas where mineral resources
development is prohibited. Their study illustrated
that MPM is a critical support to land-use policy-
making to ensure that prospective land is considered
in future mineral resource development.

Carranza and Hale (2001a) applied the theory
of fuzzy sets to map prospectivity for gold in the
Baguio District (Philippines). Maps of lithologic
units and proximity to geological features, trans-
formed into fuzzy evidence maps based upon
empirical and expert knowledge of spatial associa-
tions of geological features with known gold occur-
rences in the district, were combined using FL as the
inference engine. The results demonstrate the use-
fulness of the fuzzy set approach for MPM.

De Araújo and Macedo (2002) assigned expert-
driven weights to geological, geochemical and air-
borne geophysical layers of evidence and integrated
these for MPM in an area in the Ribeira Valley, São
Paulo and Paraná States (Brazil) using weighted
linear combination (WLC) and order weighted
average (OWA) methods, which are variants of the
weighted index overlay method. The evidence layers
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chosen and expert-driven weights were based on two
mineralization models: (1) Perau type, sedimentary
exhalative, and (2) Panelas type, vein-type carbon-
ate hosted. The OWA method yielded the better
results, with prospectivity maps depicting several
classes of prospectivity occupying relatively minor
areas. The WLC method yielded more coherent re-
sults but lacking details for minor areas. Both
methods are inexpensive and viable for MPM in
regions similar to the studied one.

Porwal et al. (2003b) proposed new fuzzy
models for MPM, namely: (1) a knowledge-driven
fuzzy model, which transforms input evidential val-
ues into fuzzy membership values by using a logistic
function, and (2) a data-driven model, which derives
fuzzy membership values of input evidential maps
by using a piecewise linear function based on
quantified spatial associations of evidential layers
with known mineral deposits. They also described a
graphical procedure for defuzzification and classifi-
cation of output fuzzy prospectivity maps. The two
new fuzzy models were demonstrated for mapping
prospectivity for base metal deposits in an area in
south-central Aravalli metallogenic province, Ra-
jasthan (western India). Cross-comparison of the
prospectivity maps derived by the proposed models
indicates their strong similarity. Validation of both
models again known deposits indicated their use-
fulness for delineating prospective zones to guide
future exploration work.

Harris et al. (2008) performed MPM for four
different mineral deposit types (i.e., SEDEX Zn–
Pb–Ag, carbonate-hosted Zn–Pb–Ag, intrusion-re-
lated skarn and gemstones, and Carlin-type gold)
within the Greater Nahanni Ecosystem. They fol-
lowed an expert-driven approach to weighting of
evidence layers similar to the WLC method used by
De Araújo and Macedo (2002). Their validation of
the individual mineral potential maps, using plots of
number of mineral occurrences as a function of area,
which depict a validation method that is essentially
the same as the one proposed by Agterberg and
Bonham-Carter (2005), showed strong goodness of
fit with known occurrences per deposit type. Finally,
they derived a composite mineral potential map by
combining the four potential maps using a maximum
operator.

Pazand et al. (2011) proposed the analytic
hierarchy process (AHP) to evaluate weights of
evidence layers for GIS-based knowledge-driven
evaluation of potential for porphyry-Cu mineraliza-
tion in an area in Iran using evidence layers derived

from geological, geochemical, and geophysical, and
remote sensing data. The results demonstrated
acceptable outcomes for porphyry-Cu exploration in
the study area.

Lusty et al. (2012) applied knowledge-driven
FL modeling to map prospectivity for Caledonian-
age turbidite-hosted orogenic gold mineralization in
the Southern Uplands–Down–Longford Terrane,
using geochemical and geophysical data from in
conjunction with other spatial geoscience datasets.
They emphasized that, since FL modeling depends
on subjective judgment, it is important to under-
stand well the key controls on the mineralization
being sought and their relative importance, limited
to the components of the model that can be mapped
from available data.

Elliott et al. (2016) applied weighted index
overlay and FL methods to determine new
prospective sites for natural sand resources in the
Central Texas Frac Sand District. The results of
their study showed that the distribution of weights in
the FL method clearly identifies prospective loca-
tions with less ambiguity compared to weighted in-
dex overlay method.

Asadi et al. (2016) integrated the AHP and the
TOPSIS (Technique for Order of Preference by
Similarity to Ideal Solution) algorithm, following
Pazand and Hezarkhani (2015), to map prospectivity
for porphyry-Cu in a district in central Iran with very
few known porphyry-Cu occurrences. With mapped
highly favorable to favorable areas covering roughly
2% of the study district and delineating most of the
few known porphyry-Cu occurrences, several
prospective areas with no known porphyry-Cu
occurrences are now recognized as exploration tar-
gets.

Thus, NRR has quite a good number of publi-
cations of research on novel methods for knowledge-
driven MPM as well as research on case-to-case
innovation of existing methods for knowledge-dri-
ven MPM.

Impact of NRR Articles on Development of MPM

The above-reviewed 51 and 16 articles on,
respectively, data- and knowledge-driven MPM
represent only �7 and �2%, respectively, of all
(=751) articles NRR has published from volume 1 in
1992 to volume 26 in 2017. However, some of the
above-reviewed articles are among the most cited/
applied in this field (Tables 4, 5). This information
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indicates that NRR has made and continues to make
strong impact to research on GIS-based MPM.

ORGANIZATION OF THE SPECIAL ISSUE

There are 10 articles in this special issue. The
first four articles are relevant to geochemical
anomaly mapping and the last six to MPM.

Articles on Geochemical Anomaly Mapping

Carranza (2017) showed that anomalies of geo-
chemical enrichment factors are no better than
anomalies of log-ratio-transformed geochemical
data. This study demonstrates further that explo-
ration of geochemical data, being compositional data,
should first be ‘‘opened’’ by log-ratio transformation
in order to address the closure problem inherent in the
statistical analysis of such data (cf. Aitchison 1984;
Filzmoser et al. 2009a, b, Filzmoser et al. 2010).

Yousefi (2017) proposed and demonstrated a
method of pixel-based modeling of geochemical
landscape in order to avoid estimation errors
resulting from interpolation of point lithogeochem-
ical data. In this method, the square pixel covering
each composite rock sample is considered its area of
influence. By using this method together with the
concept of multiplicative geochemical halos and the
concentration–area fractal modeling, anomalies of
multiplicative geochemical halos were delineated
and then integrated to model metal zoning for vec-
toring into porphyry-Cu mineralization. Validation
of the results against stockwork distribution and
locations of Cu occurrences demonstrates that the
proposed pixel-based method and the metal zoning
concept is a powerful tool for targeting areas with
potential for porphyry-Cu deposits.

Parsa et al. (2017) subjected log-ratio-trans-
formed stream sediment geochemical data to robust
principal components analysis to derive a multi-
variate geochemical signature of porphyry-Cu de-
posits in their area, and then, they subjected
positively shifted values of multivariate mineraliza-
tion-related geochemical signature to singularity
mapping, as a filtering method, to enhance subtle
but significant geochemical anomalies. The superi-
ority of anomalies extracted from the filtered mul-
tivariate geochemical signature over anomalies
extracted from the non-filtered geochemical signa-

ture was indicated by the higher success rate former
compared to that of the latter.

Zuo (2017) reviewed the state of the art of
applications of machine learning in identifying geo-
chemical anomalies.

Articles on Mineral Potential Mapping

Hariharan et al. (2017) applied the synthetic
minority over-sampling technique to modify the ini-
tial dataset and bring the deposit-to-non-deposit ratio
closer to 50:50 in their RF-based gold prospectivity
modeling of the Tanami Region, a greenfields terrain
in Western Australia. They then objectively deter-
mined an optimal threshold prospectivity value by
using statistical measures such as data sensitivity,
specificity, kappa and percent correct classification.
Their RF regression modeling with the modified da-
taset of close to 50:50 deposit-to non-deposit ratio
delineated �5% of the region as high prospectivity
areas as compared to only �1% by the original da-
taset, implying that the original ‘‘sparse’’ dataset led
to underestimation of prospectivity.

Tessema (2017) discussed the chromite mineral
system in the Bushveld Complex (BC) in South
Africa as the framework for data-driven predictive
mapping of prospectivity, using RBFLN, for chro-
mite deposits in the Western Limb and the
Nietverdiend layered mafic intrusion of the BC. The
RBFLN model correctly classified 73% of the vali-
dation deposits into highly prospective areas, which
cover 6.5% of the study area, and the RBFLN cor-
rectly classified all the non-deposit validation points
into low prospectivity areas, which occupy 86.6% of
the study area. Results of cross-validating the
RBFLN model with a fuzzy WofE model show that
the two models agree well on broad-scale targeting
of high prospectivity areas for further exploration of
chromite deposits.

Mutele et al. (2017) presented prospectivity
mapping by FL modeling based on a mineral system
model of critical processes responsible for the for-
mation of polymetallic Sn–F–REE mineralization
associated with the Bushveld granites of the Bush-
veld Igneous Complex, South Africa. They used
spatial proxies of proximity to differentiated granites
(representing heat and metal-rich fluid sources), Rb
geochemical map (representing fluid-focusing
mechanism), principal component maps (PC4 Y–Th
and PC14 Sn–W, representing fluid pathways for
high- and low-temperature mineralization, respec-
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tively) and proximity to roof rocks (representing
traps). This study yielded encouraging results with
delineation of 13 new exploration targets.

Duarte Campos et al. (2017) adopted themineral
systems approach to MPM in the Gurupi Orogenic
Gold Belt, north–northeast Brazil. They used the
knowledge-driven multi-class overlay method to
weight and integrate spatial predictors of prospec-
tivity derived from up-to-date regional-scale geolog-
ical, geochemical and geophysical datasets compiled
by the Geological Survey of Brazil. This study re-
sulted in considerable reduction in the search area
and delineation of new exploration targets.

Feizi et al. (2017) presented a novel hybridAHP-
Shannon Entropy approach for assigning weights to
evidence for MPM in a case study for porphyry-Cu
potential mapping in Iran. They evaluated their out-
put mineral potential map by field checking and
chemical analysis of rock samples. They found out-
cropswith evidence of a porphyry system in areaswith
high potential values, and they foundgood correlation
between high potential values and Cu content of rock
samples taken from the field.

Nykänen et al. (2017) combined a mineral de-
posit model and a mineral systems model into a
conceptual model for MPM, which they tested in an
active mineral exploration terrain within the Paleo-
proterozoic Peräpohja Belt (PB) in the Northern
Fennoscandian Shield, Finland, where recent min-
eral exploration activities have indicated several
gold-bearing mineral occurrences. They used the
ROC spatial statistical technique to optimize
rescaling of input datasets and integration of data
using FL. Spatial coincidence of high prospectivity
values with current exploration licenses and explo-
ration drilling sites for gold indicates the validity of
their conceptual mineral prospectivity model.

CONCLUDING REMARKS

The Natural Resources Research journal leads
the promotion, through publication, of develop-
ments in research of methods for mineral potential
mapping (Fig. 7). Since its foundation in 1992, the
journal has contributed significantly to the publica-
tion of research on development of robust numerical
methods for the analysis and integration of spatial
datasets relevant to mineral potential mapping. It
was only in recent years that the journal has started
to publish research on development of geologically
focused quantitative models of mineral potential.

The reason for the latter is not that research on
development of geologically focused models of
mineral potential does not fall within the scope of
the journal but because academics involved in this
research field prefers to publish in peer-reviewed
journals that are abstracted/indexed in the Science
Citation Index Expanded� (or SciSearch�) and
Journal Citation Reports� (JCR) Science Edition.
However, Natural Resources Research has just re-
cently been selected for coverage in SciSearch and
JCR as well as in Current Contents�/Physical
Chemical and Earth Sciences (see editorial of the
author at http://link.springer.com/article/10.1007/
s11053-017-9328-5). This recognition from the Clari-
vate Analytics (formerly the Institute for Scientific
Information) will make Natural Resources Research
more attractive to researchers in the fields of geo-
chemical anomaly and mineral potential mapping,
and so we can foresee a raise in the number of sub-
mitted papers in these fields in the years to come.
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