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This paper combines knowledge- and data-driven prospectivity mapping approaches by
using the receiver operating characteristics (ROC) spatial statistical technique to optimize
the process of rescaling input datasets and the process of data integration when using a fuzzy
logic prospectivity mapping method. The methodology is tested in an active mineral
exploration terrain within the Paleoproterozoic Peräpohja Belt (PB) in the Northern
Fennoscandian Shield, Finland. The PB comprises a greenschist to amphibolite facies,
complexly deformed supracrustal sequence of variable quartzites, mafic volcanic rocks and
volcaniclastic rocks, carbonate rocks, black shales, mica schists and graywackes. These for-
mations were deposited on Archean basement and 2.44 Ga layered intrusions, during the
multiple rifting of the Archean basement (2.44–1.92 Ga). Younger intrusive units in the PB
comprise 2.20–2.13 Ga gabbroic sills or dikes and 1.98 Ga A-type granites. Metamorphism
and complex deformation of the PB took place during the Svecofennian orogeny (1.9–
1.8 Ga) and were followed by intrusions of post-orogenic granitoids (1.81–1.77 Ga). The
recent mineral exploration activities have indicated several gold-bearing mineral occur-
rences within the PB. The Rompas Au-U mineralization is hosted within deformed and
metamorphosed calc-silicate veins enclosed within mafic volcanic rocks and contains ura-
nium-bearing zones without gold and very high-grade (>10,000 g/t Au) gold pockets with
uraninite and uraninite-pyrobitumen nodules. In the vicinity of the Rompas, a magnesium
skarn hosted disseminated-stockwork gold mineralization was also recognized at the Palo-
kas-Rajapalot prospect. The exploration criteria translated into a fuzzy logic prospectivity
model included data derived from regional till geochemistry (Fe, Cu, Co, Ni, Au, Te, K),
high-resolution airborne geophysics (magnetic field total intensity, electromagnetic, gamma
radiation), ground gravity and regional bedrock map (structures). The current exploration
licenses and exploration drilling sites for gold were used to validate the knowledge-driven
mineral prospectivity model.

KEY WORDS: Prospectivity, Fuzzy logic, Receiver operating characteristics, Gold, Uranium, Paleo-
proterozoic, Rompas, Peräpohja Belt, Finland.

INTRODUCTION

A mineral prospectivity model defines and
delineates areas favorable for a mineral deposit
type of interest. Geographical information systems
(GIS) provide a robust platform with many appli-
cations to integrate digital map data into a map that
defines mineral potential of an exploration terrain.
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According to Bonham-Carter (1994), we can divide
the different prospectivity mapping techniques into
two main approaches: (1) empirical or data-driven
and (2) conceptual or knowledge-driven. For
empirical models, we need known examples of
mineral deposits within the study area. Data-driven
techniques include, e.g., weights of evidence, logistic
regression and artificial neural networks (Bonham-
Carter 1994). In turn, a conceptual prospectivity
model can be constructed without prior knowledge
of existence of mineral deposits. Knowledge-driven-
techniques include, e.g., fuzzy logic, evidential be-
lief functions, the Dempster–Shafer models and
decision tree approaches (Carranza 2008). The
combination of these two approaches has been
conducted earlier in several cases by incorporating
fuzzy logic with other techniques in order to avoid
loss of information (e.g., Brown et al. 2003; Porwal
et al. 2003, 2004, 2006; Nykänen et al. 2008). It has
also been previously observed that hybrid models
are more commonly used than purely empirical or
purely conceptual models (Hronsky and Groves
2008).

This paper combines empirical and conceptual
approaches by using a statistical technique called
receiver operating characteristics (ROC) method to
optimize the process of rescaling input datasets and
the process of data integration when using fuzzy
logic technique for prospectivity mapping. The
proposed dynamic, hybrid approach, aims at updat-
ing the models by adding new data during an
exploration related modeling project. Moreover,
through the developed approach a classical concep-
tual or knowledge-driven fuzzy logic method can be
transferred into a data-driven method. In compar-
ison with the data-driven weights-of-evidence
(WofE) method, the advantage of the fuzzy logic
method is that there is no need to classify the data
into a limited number of classes thereby avoiding
loss of information due to the generalization re-
quired by, e.g., WofE (e.g., Nykänen et al. 2008;
Yousefi and Nykänen 2016).

STUDY AREA

The Peräpohja Belt (PB) is located in the
Northern Fennoscandian Shield, adjacent to the
Arctic Circle (Fig. 1). The PB comprises a green-
schist to amphibolite facies, complexly deformed

supracrustal sequence of variable quartzites, mafic
volcanic rocks and volcaniclastic rocks, carbonate
rocks, black shales, mica schists and graywackes ca.
2.44 to �1.91 Ga (Fig. 2). These formations were
deposited on the Archean basement and 2.44 Ga
layered intrusions, during the multiple rifting of the
Archean basement (2.44–1.92 Ga). Later intrusive
units comprise 2.20–2.13 Ga gabbroic sills or dikes
and 1.98 Ga A-type granites. Metamorphism and
complex deformation of the PB took place during
the Svecofennian orogeny (1.9–1.8 Ga) and was
followed by intrusions of post-orogenic granitoids
(1.81–1.77 Ga) (Perttunen and Vaasjoki 2001; Ranta
et al. 2015). The belt is characterized by fold-and-
thrust belt style deformation leading to numerous
laterally continuous, doubly plunging fault-bound
synforms and antiforms (Piippo et al. 2015). The
map-scale structures may be linked to N–S com-
pression, with later orthogonal overprint of less-
significant magnitudes (Lahtinen et al. 2015). The
recent mineral exploration activities have recog-
nized several gold-bearing mineral occurrences
within the PB. For example, the Rompas-Rajapalot
Au mineralization occurs in an area of approxi-
mately 80–100 km2 in the northern part of the PB
(Fig. 2). In this area, the high-grade gold zones are
hosted by calc-silicate-bearing albitites, carbonate-
rich rocks, quartzites and amphibolites of volcanic
origin in the vicinity of 1.78 Ga tourmaline-rich,
undeformed, post-orogenic granite stocks and peg-
matites, as well as migmatites with similar leuco-
some ages along the southern boundary of the
Central Lapland Granitoid Complex (Ranta et al.
2015, 2016; Vanhanen et al. 2015). Widespread
occurrences of carbonaceous material-rich sulfidic
schist also characterize this area. Native gold is
confined to sulfide-rich disseminations and thin (1–
30 cm) quartz-tourmaline veins in Ca-depleted and
Mg–Fe-rich zones of antophyllite and cordierite-
bearing rocks with intense chlorite, biotite, tourma-
line and talc alteration in the eastern part of the area
(e.g., the Palokas prospect; Ranta et al. 2016). In the
Rompas prospect, in the western part of the area,
coarse-grained visible gold locally occurs in very
high grade (up to >10,000 g/t Au), sulfide-poor
pockets at sites where late brittle fractures with
carbonate infillings cut coarse-grained uraninite and
pyrobitumen in metamorphosed and strongly folded
calc-silicate veins hosted by amphibolite (Molnár
et al. 2016a). Boron isotope data from tourmaline-
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rich alteration zones in various parts of the Rompas-
Rajapalot area and from tourmaline granites (Ranta
et al. 2016) and from the Rompas area (Molnár,
unpublished data) suggest to a uniform, most prob-
ably magmatic origin of hydrothermal fluids (Ranta

et al. 2016). In concordance with this hypothesis,
Re–Os dating of molybdenite from Palokas and Pb–
Pb model ages from the Rompas area indicate
1.78 Ga as the age of mineralization (Molnár et al.
2016a, b).

Figure 1. Location of the study area. Generalized bedrock map is modified from Koistinen et al. (2001).
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EXPLORATION MODEL AND DATASETS

The first step in a prospectivity modeling pro-
ject is the definition of the exploration model that
will be used to select relevant data for the modeling.
It may be based on descriptive or conceptual min-
eral deposits models, or on practical exploration
expertise (Nykänen et al. 2015). A classical mineral
systems model (Wyborn et al. 1994; Knox-Robinson
and Wyborn 1997; Hronsky and Groves 2008;
McCuaig et al. 2010) would include data that can be
used as proxies for three key elements of a mineral
systems model (e.g., McCuaig et al. 2010; Kreuzer
et al. 2015): (1) source of metals, fluids and heat; (2)
transport channels or conduits; (3) physical, chemi-
cal, mechanical or other traps; (4) deposition; and
(5) preservation. Here, we chose to use a combina-
tion of the mineral deposit model and the practical
exploration model. This method can be called as a
Venn-diagram approach (cf. Hronsky and Groves
2008), in which we identify areas where a number of
critical parameters in the targeting model inter-
sect. We selected appropriate data on the basis of
their expected exploration importance (Table 1) but
we also emphasize their linkage to various geologi-
cal processes that can be connected to a mineral
systems model (e.g., Groves et al. 1998, McCuaig
and Kerrich 1998, Goldfarb et al. 2001; Nykänen

et al. 2008) relevant to the observations at Rompas
and Rajapalot. This model emphasizes the signifi-
cance of late- to post-orogenic granite intrusions
(sources of heat) and carbonaceous material and
sulfide-rich metasedimentary rocks (possible sources
of metals), as well as post-peak metamorphic brittle
structures (transportation pathways of gold-bearing
fluids) and occurrences of reactive rock units (Ca–
Mg–Fe-silicate rocks) and U-anomalies (traps). The
geochemical data reflect sources of metals by indi-
cating either presence of the mineralization system
itself or the alteration halo around mineral deposits.
The structural interpretations and geophysical data
mostly reflect the presence of transport conduits of
mineralizing fluids (faults and deformation zones)
and also possible structural traps for deposition of
gold (antiforms). By expressing and combining these
parameters in GIS as digital maps, we can highlight
areas where most of these criteria meet.

The datasets used for this study include
derivatives from a 1:200,000 scale geological map,
high-resolution airborne geophysics, ground gravity
survey and regional till geochemical survey. Inter-
pretation of the main geological structures based on
airborne geophysics and a preliminary structural
synthesis of field mapping (Piippo et al. 2015) was
used as evidence layers for prospectivity modeling.
The included features are: (1) major deformation

Figure 2. Bedrock map of Peräpohja Belt based on Bedrock of Finland—DigiKP (2016).
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zones, which demarcate PB-scale structural discon-
tinuities associated with major abrupt transitions in
the structural geometry and/or lithology of the su-
pracrustal sequence; (2) inferred major deformation
zones interpreted as blind continuations of the rec-
ognized zones; (3) large faults typically associated
with asymmetric thrust-style folds; and (4) traces of
map-scale antiforms, which were recognized from
the dip data and from the patterns of the lithological
maps (Fig. 2). We calculated a proximity grid with
50 m9 50 m cell size for these structural interpre-
tation maps.

Finland has been covered by high-resolution
airborne geophysical surveys flown at an average
40 m terrain clearance and 200 m line spacing (Airo
2005). The airborne system comprised magnetic,
electromagnetic and gamma radiation sensors,
which simultaneously measured data during flight.
In the current study area, the airborne surveys were
carried out between 1977 and 2004 with the flight
altitude from 31 to 38 m. The flight direction was E–
W or N–S.

The airborne magnetic data acquisition system
used either a proton (1977–1991) or cesium (1992–
2004) magnetometers installed on the rear boom of
the aircraft. Secular and other magnetic field vari-
ations were corrected according to data from a
base-station registration. The line data were lev-
elled using an in-house program, and final levelling
was performed using tie lines. The frequency do-
main electromagnetic (EM) system measured in-
phase and quadrature components using the trans-
mitter and receiver coils located either in both
wingtips of the aircraft (Twin Otter and Cessna) or,
in the case of DC-3 during 1970�s, in the nose and
tail. In-phase and quadrature components can be
further transformed to the apparent resistivity val-
ues (Pirttijärvi 1995; Hautaniemi et al. 2005). In
this study, apparent resistivity values calculated
from 3.1 kHz EM data were used. The radiometric
measurement unit consisted of a set of NaI detec-
tors and a gamma-ray spectrometer (Airo 2005).
The uranium window of the gamma-ray spectra was
used in this study. Low resistivity zones and low
magnetic zones were considered regional-scale
alteration patterns following the reasoning of
Nykänen and Salmirinne (2007) and Nykänen et al.
(2008).

The gravity dataset has been collected during
1945–1996 by the Finnish Geodetic Institute with a
point density of 1 observation per 2.5 km2 (Kivi-
niemi 1980; Kääriäinen and Mäkinen 1997). This
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regional gravity dataset mainly reflects large intru-
sions, crustal-scale structures, lithological units,
fault- and shear zones (Nykänen et al. 2015). For this
study, we used the locations of maximum values of
spatial gravity gradients that can be obtained using
the multiscale edge detection technique (Hornby
et al. 1999), whereby so-called gravity worms were
created (Lahti et al. 2014). The edge detection is
automatically repeated at different upward contin-
uation levels that model theoretical surveys per-
formed at different heights above ground level.

The regional till geochemical survey was con-
ducted in the 1980s (Salminen 1995) with a sampling
density of one sample per 4 km2. The sampling was
performed with a portable percussion drill equipped
with a throughflow bit. The samples of chemically
unaltered parent till were collected as a composite of
3–5 sub-samples, from an average depth of 1.5 m.
The samples were dried and the<0.06 mm fraction
sieved for analysis. A hot aqua-regia digest was used
and Al, Ba, Ca, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn,
Mo, Ni, P, Pb, Sc, Sr, Th, Ti, V, Y, Zn and Zr were
determined with ICP-AES. In addition, Au, Te and
Pd were analyzed with graphite furnace AAS
(Kontas 1981; Kontas et al. 1990). Distance of glacial
transportation is less than 1 km within the current

study area according to Sarala (2015) based on gla-
cial terrain type on regional scale.

FUZZY LOGIC DATA INTEGRATION AND
ROC VALIDATION

The fuzzy logic technique, based on fuzzy set
theory introduced by Zadeh (1965), is a flexible
method for emulating the decision-making process
during mineral exploration in various scales from
global to target scale. The membership value of a
fuzzy set is defined on a continuous scale from full
membership to full non-membership (e.g., from
prospective to non-prospective or favorable to non-
favorable), and can be expressed as follows: a fuzzy
set of A is a set of ordered pairs:

A ¼ x; lA xð Þ½ �jx 2 Xf g ð1Þ

where X is a collection of objects and lA(x) is the
membership function of x in A, which can be linear
or non-linear. This means that lA(x) defines the
degree of membership of x in A.

As mentioned earlier, a prospectivity mapping
analysis starts by defining an exploration model,
which can be based on a mineral systems model (e.g.,

Figure 3. Fuzzy logic model flowchart.
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McCuaig et al. 2010) that will form the basis for the
selection of evidential (supporting) datasets or, on the
other hand, a simple exploration model can also be
based on practical exploration expertise (e.g., Nykä-
nen et al. 2015). In the second phase in prospectivity
mapping analysis, the selected data are preprocessed
into meaningful map patterns, which can be called
anomaly or evidential maps. In this study, a set of map
data was first selected based on previous studies on
orogenic gold prospectivity in Central Lapland (Ny-
känen and Salmirinne 2007; Nykänen et al. 2008) and
modified to fit the intrusion related model proposed
here. Then, each map was rescaled from zero (non-
prospective to one (prospective) based on subjective
expert opinion. The geochemical and geophysical

datasets described in Table 1 were rescaled using the
following fuzzy membership function [Eq. 2], adop-
ted from Tsoukalas and Uhrig (1997):

lðxÞ ¼ 1=ð1 þ ðx=f2Þð�f1ÞÞ ð2Þ

where f1 = spread (range from 1 to 10) and
f2 = midpoint (range from min to max of input
data). We used negative (ascending) spread value
for the apparent resistivity, magnetics and the
proximity to structures, and positive (descending)
spread value for the geochemical data. The spread
parameter defines the shape of the function and
midpoint defines the fuzzy membership value of 0.5
within the input data range. Spread was set at 3–8 so
the functions had moderate steepness. By changing
the spread value, it is possible to create several input
maps that can be tested in the data integration
process. For a midpoint value, we selected to use the
mean value of each dataset.

When using the kind of logistic function, as
Eq. 2, there is no need to reclassify the input data
into discrete classes as integer grids but we can use
continuous values as floating point grid format (e.g.,
Nykänen et al. 2008; Yousefi et al. 2012, 2014;
Nykänen et al. 2015; Yousefi and Nykänen 2016).

The rescaled evidential maps listed in Table 1
were integrated using a variety of fuzzy operators
(Bonham-Carter 1994) to produce a single prospec-
tivity map. This map defines the most favorable areas
for gold exploration taking into account the selected
input maps selected and processed by an expert. The
model is documented in a flowchart describing the
datasets and the operators in Figure 3. We used two
different operators. (1) The ‘‘fuzzy AND’’ operator
is equivalent to logical intersection in GIS termi-
nology. It returns the minimum value of the inputs in
each location and is also called as ‘‘minimum-oper-
ator’’ (Bonham-Carter 1994). The ‘‘fuzzy AND’’
operator restricts the most favorable areas into nar-
row zones where all the selected element concen-
trations are considered as favorable. This is useful
with the sparse geochemical data but can also lead
into false negative results due to spatially incomplete
data. (2) The ‘‘fuzzy gamma’’ operator is combina-
tion of ‘‘fuzzy algebraic sum’’ and ‘‘fuzzy algebraic
product’’ (Bonham-Carter, 1994). The gamma value
used in this paper varied from 0.6 to 0.9.

Then, we used the ROC technique (Obu-
chowski 2003; Fawcett 2006) for statistical prospec-
tivity model validation. Previous studies (e.g.,
Robinson and Larkins 2007; Nykänen et al. 2015)

Figure 4. Example of ROC curves for fuzzy models.
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have demonstrated that the ROC technique can be
used for spatial predictive model validation. This
requires that an adequate number of known exam-
ples of the deposit type in question exists. The
locations of known deposits represent ‘‘true posi-
tive’’ sites. In addition, a set of ‘‘true negative’’ sites
representing areas where no mineral occurrences are
found is required to generate the receiver operating
characteristics (ROC) curves. The locations of the
active exploration sites within Peräpohja Belt were
used to validate the model results. We used the
location of 29 gold exploration drilling sites and 23
exploration license areas totaling 52 sites for vali-
dation as true positive sites. Furthermore, to avoid
bias due to number of either true positive or true
negative sites, we used a number of random points
generated within the study area equal to the number
of true positive sites. Nykänen et al. (2015) sug-
gested using the locations of other deposit types or
randomly selected locations within the study area. In
this paper, we propose that instead of using a single
set of random points, it is preferable to test the effect
of randomization by generating several sets of ran-
dom points and calculate the area under a ROC
curve (AUC) values for each set. Therefore, we

generated 10 sets of random points. The resulting
mean, median and standard deviation (std) values
for these are reported in Table 2.

A ROC curve (Fig. 4) is a plot of the sensitivity
(true positive rate: TP/(TP + FN)) on the y-axis
compared to 1–specificity (false positive rate: FP/
(FP + TN)) on the x-axis; where TP is true positive,
FP false positive, TN true negative and FN false
negative. The AUC can be used as a measure of the
accuracy of a diagnostic test and can also be used to
measure the performance of a spatial predictive
model, as in this paper. The AUC values may vary
from 0 to 1, with an AUC value of 1 indicating the
result is perfectly accurate having a sensitivity value
of 1 and a 1–specificity value of 0. A totally random
model would result in an AUC value of 0.5 and the
curve would follow the chance diagonal. The ROC
curve and AUC calculations were made by using an
in-house built Python code. The integrated data,
geochemistry (Fig. 5a), geophysics (Fig. 5b) and
structures (Fig. 5c) result in higher AUC values than
most of the input datasets individually. Geophysical
evidence maps in general are not performing as well
as the geochemical and geological evidence maps
(Table 2).

Table 2. Area under a ROC curve (AUC) values for evidence data and output models (N = 10)

Model Mean Median Std

Airborne U radiation 0.57 0.59 0.04

Airborne magnetics 0.61 0.62 0.02

Fe in till 0.63 0.63 0.02

Airborne apparent resist. 0.68 0.67 0.04

Co in till 0.68 0.68 0.05

Gravity worms 0.69 0.69 0.04

Large faults 0.69 0.68 0.04

Au in till 0.71 0.71 0.04

Major structures 0.73 0.72 0.03

Sulfides in till (Gamma) 0.73 0.74 0.03

Ni in till 0.75 0.76 0.06

Geophysics (Gamma) 0.76 0.74 0.04

K in till 0.76 0.76 0.03

Antiforms 0.76 0.76 0.06

Au and Te in till (Gamma) 0.78 0.77 0.04

Geochemistry (Gamma) 0.79 0.80 0.05

Cu in till 0.81 0.82 0.03

gamma1a 0.83 0.83 0.03

Structures (Gamma) 0.83 0.83 0.04

Te in till 0.84 0.84 0.03

and1a 0.86 0.86 0.02

gamma1b 0.86 0.86 0.02

and1b 0.86 0.86 0.02
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RESULTS

As mentioned earlier, for the fuzzy combina-
tions we used two different operators: fuzzy AND
and fuzzy gamma. The minimum operator Fuzzy
AND, which is equivalent to logical intersection of
the input sets, returns always the minimum value of
the input sets and it can be considered as a ‘‘con-
servative’’ choice. The fuzzy gamma operator can
be considered as a flexible compromise between
the ‘‘increasive’’ fuzzy algebraic sum and ‘‘decrea-
sive’’ fuzzy algebraic product operators (Bonham-
Carter 1994). The optimal gamma value for each
fuzzy gamma combination was chosen by selecting
the one that returns the highest AUC value in
ROC analysis.

For simplification and allowing comparability,
we have classified the resulting fuzzy combination
maps into 10 classes using equal intervals from 0 to
1. This enables visual comparison between the re-
sults in addition to the numerical validation AUC
values given by the ROC analysis.

The geochemical evidence dataset was used to
describe the presence of mineralizing processes ei-
ther as direct observation of gold, a pathfinder ele-
ment Te or metals reflecting presence of sulfide
minerals (Fe, Cu, Co and Ni). In addition, K was
used as a proxy to potassic alteration zones (Ta-
ble 1). The fuzzy combination of geochemical evi-
dence (Fig. 5a) was achieved using fuzzy gamma
operator with gamma value of 0.75 for combination
of Au–Te and Fe–Cu–Co–Ni (Fig. 3). The final
combination used a gamma value of 0.6. The AUC
values for geochemical evidence are ranging from
0.63 (Fe) to 0.84 (Te) (Table 2).

The geophysical evidence datasets were used as
proxies for alteration zones and structures that can
be considered as physical traps for mineralization.
We selected electromagnetics, gamma radiation,
magnetic field total intensity and gravity. The fuzzy
combination of geophysics (Fig. 5b) was achieved by
combining these maps using fuzzy gamma operator
with gamma value of 0.85. All the geophysical evi-
dence has relatively low AUC values below 0.70
(Table 2). However, the AUC value for fuzzy gam-
ma combination of these is 0.76, which can be con-
sidered as a moderate result.

The geological evidence used in this study in-
cluded only the structural interpretations, which are
based on field observations and high-resolution air-
borne geophysics. These structures were classified
into two main groups: major structural discontinu-

ities (faults and deformation zones) and antiforms.
These can be considered to act either as pathways or
traps for the mineralizing fluids during the ore
forming processes. We used fuzzy gamma operator
with gamma value of 0.75 to combine these datasets
(Fig. 5c). The AUC values were ranging from 0.69 to
0.76 for the inputs and the combination of them all
return AUC value of 0.83.

The final prospectivity maps were created using
fuzzy gamma and fuzzy AND operators. We used
gamma value of 0.7. Both of these models return
high AUC value of 0.86 and the standard deviation
only 0.02. The current exploration targets coincide
with the high favorability areas and are fairly local-
ized in a small area (Fig. 6).

DISCUSSION

The validation of a spatial predictive model is
crucial, and it is important to understand the per-
formance and the level of confidence of the model.
When dealing with a data-driven technique, we have
to leave out a portion of the training sites to be used
as validation sites. For validation of knowledge-dri-
ven models, we can use all the known occurrences if
they exist. The demonstrated validation techniques
include cross-validation (Agterberg and Bonham-
Carter 2005; Chung and Fabbri 2008; Fabbri and
Chung 2008), jack-knifing (Bonham-Carter 1994;
Nykänen and Salmirinne 2007) and ROC validation
(Robinson and Larkins 2007; Nykänen et al. 2015).
The main difference between these validation tech-
niques is that the ROC technique is not only con-
sidering the true positive sites (known deposit sites)
but also the true negative sites (known not-deposit
sites). It is a great challenge to define true negative
sites for a spatial model. Nykänen et al. (2015)
suggested using random points to represent the true
negative sites and we have modified this approach
by running the ROC analysis for 10 successive sets
of true negative sites with identical set of true pos-
itive sites. This gives us an estimate of the variability
caused by the use of random points. The level of this
variation is from 2 to 8% in AUC values. The lower
variation occurs within the combined models and the
higher variation within the input datasets. It seems
that, even though the input data might have low
AUC values, their fuzzy combinations result in
higher AUC values. This suggests that, even though
an evidence dataset does not have clear spatial
association with the known deposits, it can be used
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in a fuzzy combination together with other evidence
successfully. Therefore, a pure data-driven approach
like WofE might have neglected such evidence data.
In addition, the knowledge-driven approach allows

testing of different mineral systems models in a
flexible manner without being biased due to use of
training sites.

Figure 5. (a) Combined geochemistry (AUCmed = 0.80± 0.05), (b)

combined geophysics (AUCmed = 0.74± 0.04), and (c) combined geology

(AUCmed = 0.83± 0.04).
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The use of the mineral system concept as a basis
for mineral prospectivity model is also challenging.
According to McCuaig et al. (2010), the main chal-
lenge is that the geological processes cannot be
mapped; only the results of these processes and
these need to be translated into mappable features
in the geoscience datasets. So, the geoscience map
data are actually used as proxies for the mineral
systems parameters and eventually the geological
and ore forming processes. A geological map is
essentially a model, i.e., a generalization of the real
world. This also causes uncertainty to prospectivity
models when data derived from a geological map are
used as an input to prospectivity modeling. Lisitsin
et al. (2013) postulate that when critical processes
related to a mineral systems model can only be
recognized indirectly by proxy, there is an additional
uncertainty of the representativeness of the proxies
expressed by evidential maps. Furthermore, to be
able to assess the uncertainty, Lisitsin et al. (2013)
propose the method of probabilistic fuzzy logic
prospectivity modeling and they used Monte Carlo
simulations to assess uncertainty of model outputs.
The current paper proposes another approach,
which is using ROC or other validation technique to
ensure the spatial association between the evidential

data and the deposit type in question. This is, how-
ever, impossible if the known examples do not exist
within the study area in a greenfields exploration
terrain.

There are vast areas that can be considered as
favorable for the Rompas-Rajapalot-type gold de-
posits within the current study area according to the
prospectivity models presented in this paper, but are
nevertheless lacking active mineral exploration.
These areas might include new exploration targets
or alternatively, if these remain barren, we have
missed some key parameters in the model that re-
strict the location of gold deposit near the current
exploration camp of Rompas-Rajapalot. One possi-
ble missing key parameter can be the post-orogenic
granitoids suggested by Molnár et al. (2016a). These
granitoids, however, are not properly or accurately
depicted in a present geological map and remain
enigmatic until new relevant data have been ac-
quired either by drilling or geophysical surveys and
appropriate data processing and modeling have been
conducted. However, in this paper, the potassic
alteration zones defined by K anomalies in till geo-
chemistry together with U radiation anomalies can
be considered as proxies for these granitoids.

Figure 5. continued.
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CONCLUSIONS

The Au-U mineralization at Rompas is hosted
within deformed and metamorphosed calc-silicate

veins enclosed within mafic volcanic rocks and con-
tains both U-bearing zones without gold and very
high-grade (>10,000 g/t Au) gold pockets with ur-
aninite and uraninite-pyrobitumen nodules. The

Figure 6. (a) Fuzzy AND (AUCmed = 0.86± 0.02) and (b) fuzzy gamma (AUCmed = 0.86± 0.02).

582 Nykänen, Niiranen, Molnár, Lahti, Korhonen, Cook, and Skyttä



disseminated Au mineralization at Rajapalot (8 km
east of Rompas) is confined to Fe-rich Ca–Mg–sili-
cate (skarn) rocks. The exploration criteria based on
a mineral system concept were translated into a
fuzzy logic prospectivity model including the fol-
lowing datasets:

� data derived from regional till geochemistry
(Fe, Cu, Co, Ni, Au, Te, K);

� high-resolution airborne geophysics (mag-
netic field total intensity, apparent resistivity,
gamma radiation);

� ground gravity; and
� regional bedrock map (structures).

The current exploration targets for gold were
used as the examples of known mineral occurrences
to validate the knowledge-driven mineral prospec-
tivity model using ROC validation technique. Final
prospectivity maps presented in this paper define
well the known Rompas-Rajapalot-type gold
occurrences with the AUC scores above 0.8. The
ROC technique using random points as true nega-
tive sites is a suitable validation technique for spatial
models and can be used in model optimization.
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