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This paper is concerned with the problem of predicting the surface elevation of the Braden
breccia pipe at the El Teniente mine in Chile. This mine is one of the world�s largest and
most complex porphyry-copper ore systems. As the pipe surface constitutes the limit of the
deposit and the mining operation, predicting it accurately is important. The problem is
tackled by applying a geostatistical approach based on closed-form non-stationary covari-
ance functions with locally varying anisotropy. This approach relies on the mild assumption
of local stationarity and involves a kernel-based experimental local variogram a weighted
local least-squares method for the inference of local covariance parameters and a kernel
smoothing technique for knitting the local covariance parameters together for kriging pur-
pose. According to the results, this non-stationary geostatistical method outperforms the
traditional stationary geostatistical method in terms of prediction and prediction uncertainty
accuracies.

KEY WORDS: Mining, Geostatistics, Non-stationarity, Locally varying anisotropy, Covariance func-
tion, Kriging , Simulation.

INTRODUCTION

One of the most important goals in geostatisti-
cal applications is the prediction of a physical
quantity of interest over the entire study domain
from measurements in some locations. This problem
is fundamentally based on modeling and estimation
of the spatial dependence structure of data.
Describing the spatial dependence structure of data
is usually carried out using statistical tools such as
the variogram or covariogram, which is calculated
over the entire study domain under the stationarity
assumption. However, this assumption that states

that the spatial dependence structure of data re-
mains constant over the entire study domain is dri-
ven more by mathematical convenience than by
reality. In practice, it can be doubtful due to some
local influences or localized effects, which can be
reflected by computing local stationary variograms
whose characteristics may vary spatially. The use of
a stationary geostatistical approach in such cases is
not suitable because it could produce less accurate
predictions, including an incorrect assessment of the
prediction error.

Various approaches have been proposed over
the years to deal with non-stationarity of the spatial
dependence structure of data (Guttorp and Schmidt
2013; Sampson et al. 2001; Guttorp and Sampson
1994). One of the most interesting is the classes of
explicit non-stationary covariance functions with
locally varying anisotropy developed by Paciorek and
Schervish (2006) and Stein (2005). The covariance
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functions belonging to these classes are locally sta-
tionary and their parameters can vary spatially
yielding local variances, ranges, geometric aniso-
tropies, and other. The estimation of these spatially
varying parameters is a challenging problem. Pa-
ciorek and Schervish (2006) suggest to estimate
these parameters as in the moving windows non-
stationary geostatistical approach based on the var-
iogram (Haas 1990a, b; Harris et al. 2010; Magneron
et al. 2010; Machuca-Mory and Deutsch 2013). An-
deres and Stein (2011) propose a weighted local
likelihood approach where the influence of faraway
observations is smoothly down-weighted. Fouedjio
et al. (2016) propose a distribution-free approach
involving a local stationary variogram kernel esti-
mator, a weighted local least-squares method in
combination with a kernel smoothing method.

In this article, we address the problem of pre-
dicting the surface elevation of the breccia pipe
called Braden at the El Teniente mine in Chile. As
described by Skewes et al. (2002), Maksaev et al.
(2004), and Spencer et al. (2015), the supergiant El
Teniente deposit is one of the world�s largest and
most complex porphyry-copper ore bodies, con-
taining an estimated premining resource of approx-
imately 95 million metric tons Cu and 2.5 million
metric tons Mo. The mine is located approximately
70 km southeast of Santiago on the western margin
of the Andean Cordillera and within the confines of
the central Chilean porphyry Cu belt. The center of
the deposit is composed of a late-stage diatreme
known as the Braden pipe, which is 1200 m in
diameter at the surface and close to 600 m at a depth
of 1800 m. The pipe is poorly mineralized and sur-
rounded by different kinds of mineralized geological
units. Knowing the exact location of the pipe surface
is important because it constitutes the internal limit
of the deposit and the mining operation. To do this,
a geostatistical approach based on closed-form non-
stationary covariance functions with locally varying
anisotropy proposed by Fouedjio et al. (2016) is
used. Previously, Fouedjio (2015) applied a non-
stationary geostatistical approach based on space
deformation to address this problem. The purpose of
this present contribution is to highlight the added
value of a non-stationary geostatistical approach
compared to a stationary one.

The remainder of paper is structured as follows.
The geostatistical approach based on closed-form
non-stationary covariance functions with locally
varying anisotropy is described in ‘‘Closed-Form
Non-stationary Covariances Based Approach’’ sec-

tion. The application of this non-stationary geosta-
tistical approach on the breccia pipe elevation
dataset is presented in ‘‘Application to Breccia Pipe
Elevation’’ section. Comparisons are made to the
conventional stationary method. Concluding re-
marks are provided in ‘‘Concluding Remarks’’ sec-
tion.

CLOSED-FORM NON-STATIONARY
COVARIANCES BASED APPROACH

Modeling

Consider Yð�Þ ¼ fYðxÞ : x 2 G � Rp; p � 1g a
random field defined on a fixed continuous study
domain G and reflecting the studied phenomenon.
We consider that Yð�Þ is governed by the following
equation:

YðxÞ ¼ mðxÞ þ rðxÞZðxÞ; 8x 2 G; ð1Þ

where mð�Þ : Rp ! R is an unknown fixed function,
rð�Þ:Rp ! Rþ is an unknown positive fixed function,
and Zð�Þ is a zero expectation, unit variance random
field with correlation function defined by

RNSðx;yÞ¼/xyR
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8h2Rp: Rð�Þ :Rp!PDpðRÞ;x 7!Rx is a mapping from

Rp to PDpðRÞ the set of real-valued positive definite

p-dimensional square matrices; RSð�Þ is a continuous
isotropic stationary correlation function, positive

definite on Rp, for all p2NI.
The class of closed-form non-stationary covari-

ance functions depicted by Eq. (2) is that developed
by Paciorek and Schervish (2006). Fouedjio et al.
(2016) shows that this class is obtained by convolving
an orthogonal random measure with a spatially
varying random weighting function. The intuition
behind this class is that at each location x is assigned a
matrix Rx interpreted as a locally varying geometric
anisotropy matrix. The correlation between two
locations x and y is obtained by averaging the two
matrices at x and y. In this way, the local character-
istics at both locations influence the correlation of the
corresponding target values, allowing to account for
the non-stationarity. One will note that this class
provides non-stationary versions of some well-known
stationary correlation functions, for a specific choice

of the isotropic stationary correlation function RSð�Þ
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(Gaussian, exponential, power exponential, and
Matérn). However, this class does not enable the use
of isotropic stationary correlation function with
compact support like the spherical model (Paciorek
and Schervish 2006; Fouedjio et al. 2016). Indeed, the

correlation functionRSð�Þ specified in Eq. (2) must be
positive definite in all dimensions.

From model defined in Eq. (1), the two first
moments of the random field Yð�Þ are given by

EðYðxÞÞ ¼ mðxÞ; 8x 2 G; ð3Þ

Cov ðYðxÞ;YðyÞÞ ¼ rðxÞrðyÞRNSðx; yÞ
� CNSðx; yÞ; 8ðx; yÞ 2 G�G: ð4Þ

Then, the non-stationarity of the random field Yð�Þ is
characterized by the spatially varying parameters
mð�Þ, rð�Þ , andRð�Þ defined at any location of the study
domain. Under the local stationarity assumption
(Matheron 1971), parameters are smooth functions
varying slowly in space so that at any location x0 2 G,
we can define a neighborhood Vx0 ¼ fx 2 G; k
x0 � xk � bg wherein the mean mð�Þ and the covari-
ance function CNSð�; �Þ are approximately stationary.
Thus, 8ðx; yÞ 2 Vx0 � Vx0 Eqs. (3) and (4) are reduced
as follows:

mðxÞ 	 mðyÞ 	 mðx0Þ; ð5Þ

CNSðx; yÞ 	 r2ðx0ÞRS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� yÞTR�1
x0
ðx� yÞ

q

� �

� CSðx� y; x0Þ:
ð6Þ

Thus, locally, the mean mð�Þ is constant as shown in
Eq. (5) and the non-stationary covariance function
depicted by Eq. (4) is reduced to the anisotropic
stationary covariance function given in Eq. (6). The
anisotropy matrix Rx0 at any location x0 2 G is
parameterized through the spectral decomposition,
thus ensuring its positive definiteness. Formally, we
have Rx0 ¼ Wx0Kx0W

T
x0
, where Kx0 is the diagonal

matrix of eigenvalues and Wx0 is the eigenvector
matrix formulated in 2d as follows:

Kx0 ¼
k21ðx0Þ 0

0 k22ðx0Þ

 !

; Wx0 ¼
coswðx0Þ sinwðx0Þ
�sinwðx0Þ coswðx0Þ

� �

;

where k1ðx0Þ;k2ðx0Þ[0 controls the local ranges and
wðx0Þ2½0;pÞ specifies the local azimuth.

Inference

Suppose that n data Yðs1Þ; . . . ;YðsnÞ are col-
lected, at known spatial locations, s1; . . . ; sn 2 G.
The goal is to estimate the mean function mð�Þ, the
standard deviation function rð�Þ , and the anisotropy
function Rð�Þ characterized by k1ð�Þ; k2ð�Þ and wð�Þ.
This is achieved by using a step-by-step estimation
procedure developed by Fouedjio et al. (2016) and
similar to one proposed by Machuca-Mory and
Deutsch (2013). First, a local stationary variogram
kernel estimator is defined at any location of inter-
est. Then, this is used in a weighted local least-
squares procedure to estimate parameters at a rep-
resentative set of locations referred to as anchor
locations. Finally, a kernel smoothing technique is
used to make available the parameter values at any
location of interest.

Step 1

A non-parametric kernel moment estimator of

the local stationary variogram cðh; x0Þ ¼ r2ðx0Þ�
CSðh; x0Þ at a fixed location x0 2 G and for a spatial
lag h 2 Rp; khk � b is defined as follows (Fouedjio
et al. 2016):

bc�ðh; x0Þ ¼
P

VðhÞ K
I

� ðx0; siÞKI

� ðx0; sjÞ½YðsiÞ � YðsjÞ
2

2
P

VðhÞ K
I
� ðx0; siÞKI

� ðx0; sjÞ
;

ð7Þ

where KI

� ðx0; siÞ ¼ K�ðx0; siÞ=
Pn

r¼1 K�ðx0; srÞ are
standardized weights and K�ð�; �Þ is a non-negative,
symmetric kernel on Rp � Rp, with bandwidth
parameter �[0. VðhÞ ¼ fðsi; sjÞ 2 G�G : si � sj ¼
hg is the set of all pairs of locations separated by
vector h. For irregularly spaced data where there are
usually not enough observations separated by ex-
actly h, VðhÞ is commonly modified by
fðsi; sjÞ 2 G�G : si � sj 2 TðhÞg, where TðhÞ is a
tolerance region surrounding h.

The role of the kernel function in Eq. (7) is to
smoothly down-weight the squared differences (for
each spatial lag) according to the distance of these
paired values from a target location. A pair of
locations receives a weight that is proportional to
the product of the individual weights. Geographi-
cally weighted estimators similar to one described by
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Eq. (7) have been proposed by Harris et al. (2010)
and Machuca-Mory and Deutsch (2013) for the
moving windows non-stationary geostatistical ap-
proach. Regarding the choice of the kernel function,
Fouedjio et al. (2016) suggest a Gaussian kernel
whose support is non-compact. Indeed, a kernel
function with non-compact support includes all
observations, then allows to avoid artifacts caused
by using only observations close to the target loca-
tion. It also reduces instability of the kernel esti-
mator of the local stationary variogram at regions
with low sampling density. Furthermore, the use of a
Gaussian kernel provides a smooth parameter esti-
mates and then it is compatible with the local sta-
tionarity assumption. The size of the local
stationarity neighborhood b is set with respect to the

bandwidth �: b ¼
ffiffiffi

3
p

� so that the standard deviation
of the isotropic stationary Gaussian kernel matches
the isotropic stationary uniform kernel, which has a
compact support. Another possible choice for b is a
quantile of the isotropic stationary Gaussian kernel
(e.g., b 	 2�).

Step 2

Let A be a set of representative locations re-
ferred to as anchor locations over the study domain
G. Given the local stationary variogram kernel
estimator defined in Eq. (7), the estimation of the
parameters vector hðx0Þ ¼ rðx0Þ; k1ðx0Þ; k2ðx0Þ;ð
wðx0ÞÞ at an anchor location x0 2 A is given by fol-
lowing minimization problem (Fouedjio et al. 2016):

bhðx0Þ ¼ argmin
h02H

kw�ðx0Þ � ðcðh0Þ � bc�ðx0ÞÞk; ð8Þ

where h0 is the vector of unknown parameters andH
is an open parameter space; cTðh0Þ ¼ ½cðhl; h0Þ
l¼1...L;
bcT �ðx0Þ ¼ ½bc�ðhl; x0Þ
l¼1...L; w

T
� ðx0Þ ¼ ½w�ðhl; x0Þ
l¼1...L,

with w�ðhl; x0Þ ¼
P

Vðhl ;x0Þ K
I

� ðx0; siÞKI

�h

�ðx0; sjÞÞ=
khlk
1=2; fhl 2 Rpgl¼1;...;L is a collection of lag vec-
tors; � is the product term by term.

Given the parameter vector estimate bhðx0Þ at
anchor location x0 2 A, which characterizes the lo-
cal stationary spatial dependence structure of data,
the mean mðx0Þ is estimated explicitly by a local
stationary kriging of the mean (Matheron 1971). As
highlighted by Fouedjio et al. (2016), the estimation
of parameters rð�Þ; k1ð�Þ; k2ð�Þ and wð�Þ governing
the non-stationary spatial dependence structure of
data does not require the prior estimation of the
mean mð�Þ. Moreover, no model is specified for the

latter. Indeed, the local stationary variogram kernel
estimator given in Eq. (7) filters out the mean mð�Þ
at short distances, because the mean is approxi-
mately equal to a constant in the quasi-stationarity
neighborhood. For distances up to the radius of the
quasi-stationarity neighborhood, the local station-
ary variogram kernel estimator thus estimates well
the local stationary spatial dependence structure,
whose parameters are estimated as shown in
Eq. (8).

Step 3

For the kriging or simulation purpose, it is
necessary to get the estimates of the spatially vary-
ing parameters at any location of interest, especially
at unobserved and observed locations. In practice, it
is unnecessary to solve the minimization problem
depicted by Eq. (8) at each location of interest. In-
deed, doing so is computationally intensive and
redundant for close locations because their estimates
are highly correlated. To reduce the computational
burden, Fouedjio et al. (2016) propose to perform
the parameter estimation as shown in step 2. Then,
using the resulting parameter estimates at anchor
locations, a kernel smoothing method is used to
make them available at any location of interest. This
idea was also proposed by Machuca-Mory and
Deutsch (2013) for the moving windows non-sta-
tionary geostatistical approach. Fouedjio et al.
(2016) suggest the Nadaraya-Watson kernel
smoother (Wand and Jones 1995), which is suit-
able and relatively simple. However, other smooth-
ers can be used as well (local polynomials, splines,
etc.). The set of anchor locations may be chosen as a
grid over the study domain. The number of anchor
locations may depend on the complexity of the true
underlying non-stationarity and especially it is a
trade-off between the computing time and the
accuracy of the estimation. Indeed, it is possible to
choose the set of anchor locations as the large grid of
locations to predict but it will be computationally
demanding.

The estimation of the spatially varying param-
eters depends on the bandwidth parameter � used in
the computation of the local stationary variogram
kernel estimator defined in Eq. (7). The estimation
of the spatial dependence structure of data being
rarely a goal per se but an intermediate step before
kriging, the bandwidth parameter is selected by a
data-driven method consisting for choosing the
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bandwidth value that gives the best cross-validation
mean square prediction error (Fouedjio et al. 2016):

MSPEð�Þ ¼ 1

n

X

n

i¼1

ZðsiÞ � bZ�iðsi; �Þ
� �2

; ð9Þ

where bZ�iðsi; �Þ is the kriging at location si using all
measured data excluding fZðsiÞg. The prediction
method is described in ‘‘Kriging’’ section.

Prediction

Kriging

Given measured data Yðs1Þ; . . . ;YðsnÞ, the point
predictor for the unknown value of the random field
Yð�Þ at an unsampled location s0 2 G is given by the
optimal linear predictor:

bY ðs0Þ ¼ mðs0Þ þ
X

n

i¼1

giðs0ÞðYðsiÞ �mðsiÞÞ; ð10Þ

where the kriging weight vector gðs0Þ ¼ ½giðs0Þ
 and
the corresponding kriging variance Qðs0Þ are
given by gðs0Þ ¼ C�1C0 and Qðs0Þ ¼ r2ðs0Þ�
CT

0 C
�1C0, with C0 ¼ ½CNSðsi; s0Þ
; C ¼ ½CNSðsi; sjÞ
.

Conditional Simulation

The unconditional simulation of the random
field Yð�Þ ¼ mð�Þ þ rð�ÞZð�Þ involves the uncondi-
tional simulation of the random field Zð�Þ with zero
expectation, unit variance and non-stationary cor-

relation function RNSð�; �Þ. Since, we are in a non-
stationary framework, conventional simulation
methods such as spectral method or turning bands
method (Lantuejoul 2002) are not adapted because
they rely on the stationarity assumption. In the
Gaussian framework, the unconditional simulation
of the random field Zð�Þ can be carried out using a
propagative version of the Gibbs sampler proposed
by Lantuejoul and Desassis (2012). This algorithm
allows to simulate a Gaussian vector at a large
number of locations compared to existing classical
algorithms such as Cholesky method or Gibbs sam-
pler. This algorithm does not rely on a Markov
assumption and requires neither the inversion nor
the factorization of a covariance matrix. From an
unconditional simulation of the random field Yð�Þ, a
conditional simulation of the latter can be obtained

through the conditioning by kriging approach as in
the stationary framework (Lantuejoul 2002).

APPLICATION TO BRECCIA PIPE
ELEVATION

Data Description

A visualization of the breccia pipe elevation
data is given in Figure 1a. The geometric configu-
ration of data is circular with high values located at
margins of the mine, whereas the central part ex-
hibits low values. There are more samples at the
margin than at the center. The dataset comprises
n ¼ 816 measurements partitioned into a training set
(n1 ¼ 616 measurements) and a validation set
(n2 ¼ 200 measurements) as shown in Figure 1b.
The training data serve to estimate the model and
the validation data serve to evaluate the prediction
performances. A summary statistics of training,
validation, and whole data are given in Table 1. The
histogram and boxplot of data are slightly skewed
with values ranging from 1429 to 2906 m, a mean of
2392 m and a median of 2401 m (Fig. 1c, d). The
data present some outliers corresponding to the
lowest values, which are located at the center of the
study domain.

Exploring Evidence of Variogram Non-stationarity

An exploration of the non-stationarity of the
spatial dependence structure of data is carried out
through the local stationary variogram (Lloyd 2010).
The latter is computed at some locations across the
study domain as shown in Figure 2. There is clear
evidence of variogram non-stationarity, as the vari-
ographic parameters (sill and range) vary spatially.
Specifically, the East margin area (including the
locations 1, 2, and 3) is an area of relatively low
spatial correlation, while the West margin area
(comprising the locations 4, 5, and 6) is an area of
relatively high spatial correlation. Indeed, the for-
mer area has a short range (�300 m) and high
variance (�60,000 m2) compared to the latter area,
which has a long range (�400 m ) and low variance
(�45,000 m2). This difference between the two sub-
areas may be related to lithologic conditions.
Moreover, the representation of data in Figure 2a
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shows a spatially varying azimuth, which follows
circular geometric configuration of data.

Model Estimation Results

Following the estimation procedure described
in ‘‘Inference’’ section, raw estimates of spatially

varying parameters mð�Þ; r2ð�Þ and Rð�Þ at anchor
locations are shown, respectively, in Figure 3b–d,
thus demonstrating the non-stationarity in the data.

One can observe for example in Figure 3c the locally
varying geometric anisotropy. As mentioned in
‘‘Conditional Simulation’’ section, such directional
effects are also quite visible in the data. Note that
the stationary approach has not detected a global
geometric anisotropy. Raw estimates of parameters
are based on the non-stationary exponential
covariance function with locally varying anisotropy.
The geometric configuration of anchor locations is
given in Figure 3a. Despite the fact that there is al-
most no data in the center of the domain, the use of
a non-compact kernel function (Gaussian kernel) in
the computing of the local stationary variogram
kernel estimator defined in Eq. (7), makes possible
the estimation because it considers all data.

According to the bandwidth selection given by
Eq. (9), Figure 4a, b shows, respectively, the mean
square prediction error for cross-validation and
external validation. The optimal value in cross-vali-
dation corresponds to � ¼ 302 m. This optimal value
is consistent with those given by the external vali-
dation. Figure 5 shows the maps of smoothed
parameters over the whole study domain for mean,

Figure 1. Elevation data, El Teniente mine, Chile.

Table 1. Summary Statistics of Measured Elevation Data, El

Teniente Mine, Chile

Training

(n1 = 616)

Validation

(n2 = 200)

Whole

(n = 816)

Minimum 1755 1429 1429

1st quartile 2284 2162 2259

Median 2418 2354 2401

Mean 2417 2315 2392

3rd quartile 2602 2526 2577

Maximum 2906 2817 2906

SD 200 262 221
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variance, anisotropy ratio, and azimuth. The vari-
ance map portrays the difference between an area of
relatively high variance (East margin region) and
low variance (West margin region), thereby con-
firming the result obtained from the exploratory
analysis of non-stationarity in ‘‘Exploring Evidence
of Variogram Non-stationarity’’ section. Moreover,
the variance map is consistent with results provided
by the space deformation non-stationary geostatis-
tical approach applied by Fouedjio (2015): areas of
low variance are contracted, while those of high
variance are stretched.

A visualization of the covariance function at
certain locations (with all other locations) via the
level contours under the estimated stationary and
non-stationary models is given in Figure 6. The
change of shape in the non-stationary spatial
dependence structure of data from one location to
another one is quite visible. The stationary model is
a nested isotropic model (small nugget effect,
exponential, and spherical), while the non-stationary
model corresponds to the non-stationary exponen-
tial covariance function with locally varying aniso-
tropy. This difference between the estimated

Figure 2. The study domain: (a) measured data and (b–d) local stationary variograms at some specified locations.
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stationary and non-stationary models is reflected by
both the prediction accuracy and the prediction
uncertainty accuracy (‘‘Evaluation of Predictions’’
section).

Evaluation of Predictions

The evaluation of the predictive performance of
the non-stationary method relative to the stationary

Figure 3. The study domain: (a) data locations (dots) and anchor locations (cross), (b)

estimated mean function dm ð�Þ at anchor locations, (c) estimated anisotropy function bRð�Þ
at anchor locations (the ellipses were scaled to ease visualization) and (d) estimated

variance function br2ð�Þ at anchor locations.

Figure 4. Bandwidth parameter selection based on the mean square prediction error

MSPEð�Þ for (a) cross-validation and (b) external validation.
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method is carried out using some well-known statistics
calculated in external validation, namely mean abso-
lute error (MAE), root mean square error (RMSE),

normalized mean square error (NMSE), logarithmic
score (LogS), and continued ranked probability score
(CRPS). These criteria are formulated as follows:

Figure 5. The study domain: smoothed parameters for (a) mean, (b) variance, (c) aniso-

tropy ratio, and (d) azimuth.

Figure 6. Covariance level contours at few locations for (a) the estimated stationary model

and (b) the estimated non-stationary model. Level contours correspond to 30,000 m2

(black), 20,000 m2 (red), and 10,000 m2 (green).
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CRPS ¼ 1

n2

X

n2

i¼1

Z þ1

�1
FiðzÞ � 1fZðsiÞ � zgð Þ2dz;

FiðzÞ ¼ PðZðsiÞ � zj training data Þ;

where bZðsiÞ is the kriging at a validation data loca-
tion si computed from all training data and r̂2ðsiÞ the
corresponding kriging variance. n2 is the number of
validation data locations.

ForMAE, RMSE, LogS and CRPS, the smaller,
the better; for NMSE, the nearer to one the better.
The prediction accuracy is measured by MAE and
RMSE. The prediction uncertainty accuracy is as-

sessed by NMSE, LogS, and CRPS, which combine
the kriging and the kriging variance. The MAE,
RMSE, and NMSE do not depend on the distribu-
tion of measured data. The LogS is equivalent to the
pseudo-likelihood in the Gaussian framework. The
CRPS corresponds to the distance between the dis-
tribution function of the predicted variable and the
measured data (itself expressed as a distribution
function). It is generally calculated in the Gaussian
setting where it admits a closed-form expression.
Although the LogS and CRPS scores are usually
calculated in the Gaussian framework, they are quite
robust. The probability Gaussian-type confidence
interval is calculated also at each validation location

(i.e., using ẐðsiÞ 
 1:96r̂ðsiÞ) and the proportion of
validation locations where the 95% confidence
interval (PCI) actually includes the true value is
computed. This proportion should be near 95% for
an accurate modeling of uncertainty. The correlation
between true and predicted values (Rho) is com-
puted also, the closer to one the better. A descrip-
tion of these criteria can be found in Chilès and
Delfiner (2012), Zhang and Wang (2010), and
Gneiting and Raftery (2007).

Scatter plots of kriged versus measured values
for the stationary and non-stationary methods are
presented in Figure 7. Globally, the non-stationary
approach provides a more accurate prediction
compared to the stationary approach. This is
demonstrated by a reduced MAE and RMSE, and
by an increased Rho (Table 2). For example, in
terms of RMSE, the improvement is about 23% with
respect to the stationary approach. The reliability of
the kriging variances by NMSE, LogS, CRPS, and
PCI (Table 2) shows that the non-stationary ap-
proach is more accurate for modeling of uncertainty

Table 2. Validation Statistics of the Prediction Performance

Criterion Stationary Approach Non-stationary Approach

MAE 79.7 61.5

RMSE 154.4 117.9

Rho 0.82 0.90

NMSE 0.98 0.73

LogS 2439 2315

CRPS 123.6 99.1

PCI 0.92 0.94

Figure 7. Scatter plots of predicted versus measured values for (a) the stationary approach

and (b) the non-stationary approach.
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Figure 8. Predictions and prediction standard deviations based on (a, b) the estimated

stationary model and (c, d) the estimated non-stationary model.

Figure 9. Two conditional simulations based on (a, b) the estimated stationary model and

(c, d) the estimated non-stationary model.
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compared to the stationary approach. When con-
sidering the proportion of validation locations in-
cluded in the 95% confidence interval, the non-
stationary approach shows 12 locations outside
(94% of locations included in that interval), while
the stationary approach shows 16 locations outside
(92% of locations included in that interval) as shown
in Figure 7 and reported in Table 2 (we expect
about 200� 0:05 ¼ 10 locations outside). Specifi-
cally, the stationary approach has more difficulty in
predicting the lowest values (located at the center)
compared to the non-stationary approach. Further-
more, we note that this non-stationary approach
gives slightly better results compared to the space
deformation non-stationary geostatistical approach
(Fouedjio 2015, Table 2).

The kriging results for the stationary and non-
stationarymethods are shown in Figure 8. The general
appearance of the map of kriged values associated
with each method differs significantly (Fig. 8a, c). The
difference is particularly marked at the center of the
domain where there are not enough data locations.
The stationary and non-stationary methods differed
notably in describing the uncertainty associated with
the predictions (Fig. 8b, d). One can see that the non-
stationary approach tends to provide a low prediction
standard deviation in the area of low spatial variability
(West margin area), while it tends to give a high pre-
diction standard deviations in the area of high spatial
variability (East margin area). Thus, prediction stan-
dard deviations reflect not only the samples configu-
ration and availability around target locations, but also
the local variability. On the other hand, kriging stan-
dard deviationsmap for the stationary approach shows
slight differences over the margin areas of the mine,
which were dependent on the sampling intensity. Such
a pattern was expected for a stationary approach be-
cause it is based on identical global structural param-
eters throughout the study domain, while the non-
stationary approach adapts to locally varying structure
of data. Figure 9 shows some conditional simulations
in the Gaussian framework, based on the estimated
stationary and non-stationary models. Conditional
simulations under the non-stationary model differ
from one under the stationary model, especially in
terms of the locally varying anisotropy.

CONCLUDING REMARKS

This paper demonstrated the added value of
using the geostatistical approach based on explicit

non-stationary covariance functions with locally
varying anisotropy, to predict the surface elevation
of the Braden breccia pipe at the El Teniente mine,
Chile. This non-stationary approach is capable of
capturing some varying spatial features such as lo-
cally varying geometric anisotropy in the data that
cannot be detected by a stationary method. Thus,
the non-stationary approach outperforms the sta-
tionary one in terms of prediction and prediction
uncertainty accuracies. Moreover, as an exploratory
tool for the non-stationarity, it allows to identify
areas of high and low spatial variability, and to de-
tect the existence of relationship between the mean
and the variance known as proportional effect.

The geostatistical approach based on explicit
non-stationary covariance functions with locally
varying anisotropy requires enough observations to
be able to properly capture the non-stationarity as
any non-stationary geostatistical approach. It is also
based on local stationarity assumption, then it works
well for smoothly varying non-stationarity. Thus, it
can be difficult to apply on sparse data or data with
abrupt spatial structure variations. In such cases, it
may be advisable to proceed under a stationary
framework or to divide the study domain if possible.
Since this non-stationary method relies on the local
stationary assumption, it should not be applied to
intrinsically locally stationary spatial processes with
unbounded local stationary variograms. Thus, it is
important to check that the local stationary vari-
ogram kernel estimator used to describe local spa-
tial variation has a sill, before deciding to use this
non-stationary method. This is done by visualizing
the local stationary variogram kernel estimator at
anchor locations. This non-stationary approach is
time-consuming compared to a stationary approach.
For this case study, the computational time is 10
times more than that of the stationary method.
However, if there are enough data to allow reliable
inference, this non-stationary method will outper-
form a stationary method in terms of prediction and
prediction uncertainty accuracies as in this case
study.
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