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The Salafchegan area in central Iran is a greenfield region of high porphyry Cu–Au
potential, for which a sound prospectivity model is required to guide mineral exploration.
Satellite imagery, geological geochemical, geophysical, and mineral occurrence datasets of
the area were used to run an innovative integration model for porphyry Cu–Au exploration.
Five favorable multi-class evidence maps, representing diagnostic porphyry Cu–Au recog-
nition criteria (intermediate igneous intrusive and sub-volcanic host rocks, structural con-
trols, hydrothermal alterations, stream sediment Cu anomalies, magnetic signatures), were
combined using analytic hierarchy process and technique for order preference by similarity
to ideal solution to calculate a final map of porphyry Cu–Au potential in the Salafchegan
area.
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INTRODUCTION

Different data integration algorithms, which
have been used for mineral potential mapping in
recent years, are categorized as either data driven or
knowledge driven (Bonham-Carter 1994; Pan and
Harris 2000; Carranza 2009, 2011; Abedi et al. 2013).

Examples of data-driven techniques are artificial
neural networks (Porwal et al. 2003a; Abedi and
Nouruzi 2012), weights-of-evidence (Bonham-Car-
ter et al. 1989; Asadi and Hale 2001; Ford et al.
2015), support vector machine (Zuo and Carranza
2011; Abedi et al. 2012b; Geranian et al. 2015), and
random forests (Carranza and Laborte 2015a, b, c;
McKay and Harris 2015). In these and other data-
driven techniques, known mineral deposits in a re-
gion of interest are used as �training points� to
establish spatial relationships with particular geo-
logical, geochemical, and geophysical features
(Carranza et al. 2008; Abedi et al. 2013). These
methods are appropriate for well-explored regions
and the trained model is used for extracting features
that are similar to those associated with known
mineral deposits in a study area. Knowledge-driven
techniques are suitable for greenfields or less-ex-
plored regions (Carranza 2011). In these techniques,
the prepared predictor maps are combined based on
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the expert opinion. The most commonly used
methods of this category are index overlay (Bon-
ham-Carter et al. 1989; Carranza et al. 1999; Yousefi
and Carranza 2015) and fuzzy logic (An et al. 1991;
Porwal et al. 2003b; Abedi et al. 2012c). Porwal et al.
(2004) and Asadi et al. (2015) used a hybrid fuzzy-
neural network data integration modeling. In this
type of modeling, expert knowledge is used for
weighing the spatial proxies, and the weights are
fine-tuned using a neural network which is trained
by known mineral occurrences.

Mineral potential mapping is a multi-criteria
decisionmaking (MCDM) activity (Abedi et al. 2012a,
d, 2013).VariousMCDMalgorithmshavebeenusedas
a tool for mineral potential mapping by Pazand et al.
(2011, 2012) and Abedi et al. (2012a). They proposed
ELECTRE (Abedi et al. 2012d) and PROMETHEE
(Abedi et al. 2012e) algorithms as knowledge-driven
techniques for mineral potential mapping and used
these methods for finding the best location for extra
drilling in a copper deposit. Pazand et al. (2012) pro-
posed the TOPSIS method as a tool for preparing
prospectivity maps for porphyry copper exploration.
The analytic hierarchy process (AHP) is another
MCDMtechnique,whichneeds a pairwise comparison
matrix for determination of weights of exploration
criteria, that is used in mineral potential mapping
(Hosseinali and Alesheikh 2008; Pazand et al. 2011;
Abedi et al. 2013). Pazand and Hezarkhani (2015)
proposed a combined AHP–TOPSIS method to map
porphyry Cu potential in Siahrud area, NW Iran.

In this paper, the integrated AHP–TOPSIS
algorithm, initially proposed by Pazand and Hezar-
khani (2015), was used to map high-potential zones
in an area in central Iran with very few known
mineral deposit occurrences. The proposed algo-
rithm consists of two main steps. In the first step, the
criteria weight vector is obtained from the AHP. In
the second step, the TOPSIS algorithm is used for
integration of different data sets. TOPSIS is based
on the distance of attributes (pixels are considered
as attributes) to positive (best alternative) and neg-
ative (the worst alternative) ideal solution. The ideal
solutions are determined by the user or from existing
data. Simplicity and no need of prior knowledge by
decision maker are the most important advantages
of this method in comparison to other MCDM
algorithms such as ELECTRE (Abedi et al. 2012d),
PROMETHEE (Abedi et al. 2012e), and the well-
known fuzzy logic method (Porwal et al. 2003a, b).
The only requirement in the TOPSIS method is the
criteria weight vector as other knowledge-driven

algorithms that are determined in the first step by
AHP method.

The proposed algorithm is demonstrated here
for mapping favorable areas of porphyry Cu–Au
mineralizations in the northern part of the 1:100,000
scale Salafchegan geological map sheet, which con-
tains very few known porphyry Cu–Au occurrences.
The Salafchegan area is a sparsely vegetated and
mountainous region, located in the central part of
Urumieh–Dokhtar volcanic arc (UDMA), the main
porphyry copper belt of Iran (Fig. 1). Dalli, with a
total inferred resource of 20 million tons at 0.5 % Cu
and 0.65 g/t Au, is the largest porphyry Cu–Au de-
posit in the central UDMA. Spectral remote-sensing
and catchment basin analysis of stream sediment
geochemical data were employed, respectively, to
map hydrothermal alterations and geochemical sig-
natures that could be associated with this type of
mineralization. Magnetic data were interpreted to
map intrusive rocks and structures associated with
porphyry Cu–Au mineralization. Then, an inte-
grated AHP–TOPSIS model was used as an inno-
vative integration modeling approach to integrate
geological, spectral, magnetic, and geochemical da-
tasets. This integration model takes advantages of
the MCDM, and the results were used to construct a
predictive model to locate high-potential areas of
porphyry Cu–Au mineralizations for district-scale
exploration in the study area.

BACKGROUND THEORY OF PROPOSED
AHP–TOPSIS ALGORITHM

In the AHP–TOPSIS data integration ap-
proach, the weight vector of criteria for input
exploration data is calculated primarily using the
AHP method. Then, if an acceptable consistency
ratio is obtained, the alternatives are ranked using
the TOPSIS method. The background theory of
AHP and TOPSIS methods is explained in the fol-
lowing paragraphs.

AHP

The AHP was proposed by Saaty (1977, 1980) to
model subjective decision-making processes based on
multiple attributes in a hierarchical system (Tzeng and
Huang 2011). In the AHPmethod, a decision problem
is considered as a hierarchical structure and, according
to their properties, it is decomposed into elements and
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levels corresponding to the common characteristic of
the elements. The first level is the final goal of the
problem, and the intermediate levels correspond to
criteria and sub-criteria, while the lowest level contains
the decision alternatives.

The elements of each level are compared pair-
wise to a specific element in the immediate upper
level. Table 1 shows the pairwise comparison scale
of real numbers from 1 to 9 used in the AHP that
was first developed by Saaty (1977). It allows con-
verting the qualitative judgments into numerical
values with intangible attributes.

The pairwise comparison matrix for ‘‘n’’ criteria
{c1, c2, c3, …, cn} in the second level, with respect to
the final goal, is formed as

A ¼

a11 a12 � � � a1n
a21 a22 � � � a2n
� � � � � � � � � � � �
an1 an2 � � � ann

2
664

3
775;

where aij represents the pairwise comparison rating
between the elements i and j of a level with respect
to the upper level. The entries aij are governed by
the following rules:

aij[ 0; aij¼ 1=aji; aii ¼ 1 8 i:

There are some simple methods for calculating the
weight vector from the pairwise comparison matrix
A, and the eigenvalue approach proposed by Saaty
(1977, 1980) is one of them. Based on the eigenvalue
approach (Saaty 1980, 2000), the weight vector can
be estimated by finding the principal eigenvector w
of the matrix A, thus

Aw ¼ kmaxw:

When the vector w is normalized, it becomes the
weight vector of elements of one level with respect
to the upper level. kmax is the largest eigenvalue of
the matrix A. In cases where the pairwise compar-
ison matrix satisfies transitivity for all pairwise
comparisons, it is said to be consistent and it verifies
the following relation:

aij ¼ aik � akj; 8i; j; k:

Saaty (1980) has shown that to maintain reasonable
consistency when deriving weight vector from paired
comparisons, the number of factors being considered
must be less than or equal to nine. AHP allows
inconsistency, but provides a measure of the incon-
sistency in each set of judgments. The consistency of
the judgmental matrix can be determined by a mea-
sure called the consistency ratio (CR), defined as

Figure 1. Generalized geologic map of Iran (modified after Aghanabati (2004) and location of study area.
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CR ¼ CI

RI
;

where CI is called the consistency index and RI is
the random index. Furthermore, Saaty (1980, 2000)
provided average consistencies (RI values) of ran-
domly generated matrices (Table 2). The CI for a
matrix of order n is defined as

CR ¼ kmax � n

n� 1
:

In general, a consistency ratio of 0.1 or less is
considered acceptable. If the value is higher, the
judgments may not be reliable and should be elicited
again.

TOPSIS

TOPSIS is a well-known ranking method for
MCDM that was proposed by Hwang and Yoon
(1981), and then developed by Lai et al. (1994) and
Yoon and Hwang (1995). The logic of the TOPSIS
approach is to define ideal and anti-ideal solutions
(Liang 1999), which are based on the concept of
relative closeness in compliance with that the
shorter (or longer) the distance of an alternative to
ideal (or anti-ideal), the higher the priority ranking
(Zeleny 1982).

On the basis of many criteria to rank, various
situations are evaluated and compared for the
MCDM problems. Therefore, a set of alternatives
A = {a, b, c,…} are evaluated by n criteria C = {c1,
c2, c3,…} and the aim is to find the best alternative in
the set of A based on the comparison of criterion
vector C.

TOPSIS has a simple algorithm with attractive
property in that limited subjective input is needed
from decision makers (Jahanshahloo et al. 2006;
Tzeng and Huang 2011; Opricovic and Tzeng 2004).
The only subjective input needed is weights (Olson
2004), which, in this paper, are determined by AHP
method. The procedure of TOPSIS can be summa-

rized in the following simple steps (Hwang and
Yoon 1981; Jahanshahloo et al. 2006; Tzeng and
Huang 2011):

(1) Establish a decision matrix for the ranking.
The structure of the matrix can be ex-
pressed as follows:

c1 c2 cj cn

D ¼

A1

A2

:

:

Ai

:

Am

g11 g12 � � � g1j � � � g1n

g21 g22 � � � g2j � � � g2n

: : � � � : � � � :

: : � � � : � � � :

gi1 gi2 � � � gij � � � gin

: : � � � : � � � :

gm1 gm2 � � � gmj � � � gmn

2
666666666664

3
777777777775

where Ai denotes the alternatives i, i = 1, 2, 3, ….,
m; cj represents jth attribute or criterion, j = 1, 2, …,
n, related to ith alternative; and gij is a crisp value
indicating the performance rating of each alternative
Ai with respect to each criterion cj:

(2) Calculate the normalized decision matrix.
The normalized value rij is calculated as

rij ¼ gij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

g2ij

s
; i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n:

(3) Calculate the weighted normalized decision
matrix. The weighted normalized value vij is
calculated as

vij ¼ wjrij; i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n;

where wj is the weight of the ith attribute or criterion

and
Pn
j¼1

wj ¼ 1:

(4) Determine the positive ideal and negative
ideal solutions.

A� ¼ fv�1; . . . ;v�ng ¼ fðmax
i

vij j 2 J0Þ;j ðmin
i

vij j 2 J00Þg
��

A� ¼ fv�1 ; . . . ;v�n g ¼ fðmin
i

vij j 2 J0Þ;j ðmax
i

vij j 2 J00Þg
�� ;

where J0 is the set of benefit criteria and J00 is the set
of cost criteria.

Table 1. Ratio scales in AHP method (from Saaty 1977)

Intensity 1 3 5 7 9 2, 4, 6, 8

Linguistic Equal Moderate Strong Demonstrated Extreme Intermediate value

420 Asadi, Fatehi, Sansoleimani, and Carranza



(5) Calculate the separation measures using the
n-dimensional Euclidean distance. The
separation of each alternative from the
ideal solution and negative ideal solution
are given as

D�
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1

ðvij � v�j Þ
2

vuut ; i ¼ 1; 2; . . . ;m:

D�
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1

ðvij � v�j Þ
2

vuut ; i ¼ 1; 2; . . . ;m:

(6) Calculate the relative closeness to the ideal
solution. The relative closeness of the
alternative Ai with respect to A* is defined
as

RC ¼ D�
i

ðD�
i þD�

i Þ
; i ¼ 1; 2; . . . ;m:

(7) Ranking the alternative based on relative
closeness.

The best alternative is the one that has
the higher RC. By sorting the calculated
relative closeness, the best alternatives are
ranked.

MINERAL POTENTIAL TARGETING
ELEMENTS

Genetic and spatial information from the
known Dalli porphyry Cu–Au deposit of the study
area as well as information from typical porphyry
Cu–Au genetic modeling was used to identify the
targeting elements (exploration criteria) for district-
scale exploration in the Salafchegan area (Table 3).

Two sets of characteristics were defined from the
generic Cu–Au porphyry deposit models and the Dalli
deposit and conjunctively used to recognize the key
targeting elements for district-scale exploration of Cu–
Au porphyry mineralization in the Salafchegan area.
These characteristics are as follows: (1) host lithologies
of Miocene diorite, quartz-diorite to granodiorite

intrusions and their contact with Eocene andesite
porphyry; (2) silicic, potassic, andphyllic hydrothermal
alterations surrounded by argillic and propylitic alter-
ations; (3) ferric iron oxides of mostly hematite and
goethite; (4) strong copper and gold geochemical
anomalies associatedwitharsenic, iron, andpotassium;
(5) strongmagnetic signatures associated with the host
intrusions andmineralized potassic alterations; and (6)
NE–SW trending structures.

Then, the geological map (1:100,000 scale), and
Enhanced Thematic Mapper (ETM+) and Advanced
Spaceborne Thermal Infrared (ASTER) satellite
imagery data, as well as geochemical, geophysical, and
field data were utilized to search for the above-men-
tioned porphyry Cu–Au targeting elements.

Lithology

A wide range of igneous rocks are host to por-
phyry Cu (Au, Mo) mineralization. Singer et al. (2005,
2008) compiled the host rocks of 407 porphyry copper
deposits and indicated that intermediate intrusive
rocks are the most important and frequent hosts to
porphyry Cu (Au, Mo) mineralization (Fig. 2).

Mineralization at Dalli is hosted by altered
Miocene intermediate intrusive rocks, such as
quartz-diorite, that intruded Eocene andesite por-
phyry. High-grade mineralization occurs at the
contact of the quartz-diorite intrusion and andesite
porphyry. A northeast-trending structural corridor
provided the favorable site for porphyry intrusion
and pathway for mineralizing hydrothermal solu-
tions. The alteration system covers an area of
20 km2 and mostly comprises mineralized potassic
and phyllic alterations, surrounded by extensive
barren argillic (kaolinite) and propylitic (chlorite)
alterations (Ayati et al. 2013).

Based on the above-mentioned information, the
1:100,000 scale geological map of the study area was
reclassified into eight lithological classes. Some of
these classes are favorable hosts to porphyry Cu–Au
mineralization. Figure 3 shows the reclassified geo-
logical map of the area overlain by the known por-
phyry occurrences.

Table 2. Values of RI for different matrix sizes (Tzeng and Huang 2011)

Number of elements 3 4 5 6 7 8 9 10 11 12 13

RI 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49 1.51 1.54 1.56
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Structures

Structures provide pathways for mineralizing
fluids and porous zones for trapping metals. Faults,
extracted from the 1:100,000 scale geological map of
the study area, were used to prepare a lineament
density raster map with a grid-cell size of 100 m
(Fig. 4). The known porphyry Cu–Au deposits/pro-
spects of the study area (e.g., Dalli and Zavarian)

occur in zones with moderate lineament density
(Fig. 4).

Hydrothermal Alteration

Hydrothermal alterations and iron oxides are
important distal or direct features in porphyry Cu–
Au exploration. In recent years, ASTER and

Table 3. Characteristics of Dalli Cu–Au porphyry deposit compared with typical Cu–Au porphyry deposits

Characteristic features Typical porphyry Cu–Au mineralization

(Halter et al. 2004; Sillitoe 2010;

Richards and Mumin 2013)

Dalli porphyry Cu–Au deposit

(Asadi 2008; Ayati et al. 2008;

John et al. 2010; Ayati et al. 2013)

Geodynamic setting Subduction and post-subduction Subduction, continental volcanic arc

Host rock Diorite to granodiorite Miocene diorite to quartz-diorite intrusions and

their contacts with Eocene andesite porphyry

Magmatic association Calc-alkaline to mildly alkaline; intermediate

to felsic intrusion

Calc-alkaline intermediate to felsic intrusion

Source of fluids Magmatic Magmatic

Hydrothermal alteration Potassic, siliceous, and propylitic

(±phyllic and argillic)

K-feldspar, secondary biotite, silica, sericite

surrounded by kaolinite, chlorite, and epidote

Mineralogy Chalcopyrite, bornite, magnetite;

native gold abundant

pyrite with K-feldspar and sericite

Magnetite, specular hematite, goethite,

chalcopyrite, malachite, bornite, chalcocite,

native gold, and native copper

Element association Cu–Au–Ag–Fe–Sn–W–K–Mo–Na–S–SiO2 Cu–Au–Fe–As, K–(Na)–S–SiO2

Structural controls Transpression or transtension NE–SW trending extensional faults

(up to 1.5-km-wide structural corridors

Original depth of

mineralization (km)

1–5 3–4

Age Dominant in phanerozoic 17–20 Ma (Miocene

Figure 2. Histogram of major host rocks of porphyry Cu (Au, Mo) deposits (Singer et al. 2005, 2008).
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ETM+ satellite imagery data have been extensively
used for mapping alterations (Abrams et al. 1983;
Amos and Greenbaum 1989; Sabins 1999; Galvao
et al. 2005; Rowan et al. 2005; Gabr et al. 2010; Pour
et al. 2011, Honarmand et al. 2012; Pour and Hashim

2012; Feizi and Mansuri 2013; Shahriari et al. 2013;
Pournamdari et al. 2014; Shahriari et al. 2014). The
main hydrothermal alterations associated with Dalli
and other typical porphyry Cu–Au deposits are
potassic, silica, hydroxyl-bearing clay, phyllic, and
propylitic alterations. Iron oxides, closely associated
with these alterations, are also important features of
interest in porphyry Cu–Au exploration.

Spectral angle mapper (SAM) (Kruse et al.
1993) and Least Square Fit (Ls-Fit) methods were
applied to ASTER and ETM+ satellite imagery data
to map hydrothermal alterations and iron oxides.
Hydroxyl clay minerals such as kaolinite (argillic
alteration) and iron oxides were mapped from
Landsat ETM+ data using the LS-Fit method, while
chlorite and silicification were mapped from AS-
TER data using the SAM method. The hydrother-
mal alterations including silicification, OH-bearing
clays, and chlorite were combined with mapped iron
oxides to be used as an important input map in the
data integration modeling (Fig. 5).

Geochemistry

A sample catchment basin analysis (CBA) was
conducted using stream sediment geochemical data
in the study area to generate geochemical anomalies
associated with copper mineralization. Two hundred
fifty stream sediment samples were collected and
analyzed for 12 elements by the Geological Survey
of Iran using ICP method at Zar Azma and Kan
Pajuh laboratories in Iran. The samples were ana-
lyzed for Cu among those 12 elements, but not for
gold or other important elements associated with
Cu–Au mineralization of the study area. Therefore,
we only used the Cu analytical results for mapping
stream sediment geochemical anomalies for data
integration modeling. To obtain a raster map of Cu
anomaly, catchment basins were prepared using the
locations of stream sediment samples and digital
elevation model of the area. Then, the Cu concen-
tration of each sample is assigned to its related
catchment basin. Dalli and Zavarian and their sur-
rounding areas show strong catchment basin Cu
anomalies (Fig. 6).

Magnetic Features

Magnetic data have been widely used to map
porphyry intrusive rocks, structures, and hydrother-

Figure 3. Reclassified geological map of the study area.

Figure 4. Lineament density map of the Salafchegan area.
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mal alterations in porphyry Cu–Au exploration
(Thoman et al. 2000, Holden et al. 2011; Abedi et al.
2013). According to Clark (2014), induced magnetic
anomalies, caused by Au-rich porphyry Cu systems,
have specific semi-predictable characteristics. A
magnetic intrusion and the associated magnetite-
bearing potassic alteration zone, typically create a
circular positive magnetic anomaly. This sub-circular

magnetic high is surrounded by an annular negative
magnetic anomaly caused by propylitic and phyllic
alteration zones. This negative magnetic anomaly is
caused by destruction of magnetite in the volcanic
country rock. The distinctive circular magnetic peak
at its center contrasts sharply with the surrounding
zones (Holden et al. 2011). Therefore, high-ampli-
tude magnetic anomalies are expected to occur in
porphyry intrusive rocks and potassic alteration in
the porphyry Cu–Au deposits.

Recently, Holden et al. (2011) proposed an
automatic circular feature extraction to enhance the
magnetic anomalies related to porphyry copper de-
posits. On the other hand, derivative-based methods
have been used for many years in magnetic data
interpretation. In this paper, we used the tilt angle
method as a tool for enhancing the magnetic
anomalies, associated with porphyry intrusive rocks
(Miller and Singh 1994; Verduzco et al. 2004). The
tilt angle, T, is a useful filter for enhancing subtle
anomalies in potential field data and was first pro-
posed by Miller and Singh (1994) as

T ¼ tan�1 @M

@z
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@M

@x

� �2

þ @M

@y

� �2
s2

4
3
5;

where @M
@x ;

@M
@y ; and

@M
@z are the first-order derivatives

of the magnetic field M in the x, y, and z directions,
respectively. The tilt angle has many interesting
properties, for example, due to the nature of the
arctan trigonometric function, all tilt amplitudes are
restricted to values between �90� and +90� regard-
less of the amplitude of the vertical or the absolute
value of the total horizontal gradient (Salem et al.
2007). The positive values are located on the mag-
netic body and zero value along its boundary. This
method can also be applied to the reduced-to-the-
pole (RTP) magnetic map. In the RTP map, the
inclination effect of magnetic field is corrected and
high values are located on the magnetic body, while
in the total magnetic intensity map magnetic sources
show a dipolar anomaly and maximum values have a
distance with the center of the mass.

In this study, the aeromagnetic data were ex-
tracted from the nation-wide airborne magnetic data
of Iran (flight-line spacing of 7.5 km). Figure 7
shows the RTP and tilt angle maps of the study area.
The tilt angle map highlighted positive magnetic
anomalies that can be related to porphyry intrusive
rocks associated with porphyry Cu–Au mineraliza-
tion (Fig. 7).

Figure 6. Sample catchment basin geochemical Cu map.

Figure 5. Hydrothermal alterations and iron oxides mapped

from Landsat ETM+ and ASTER data.
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DATA INTEGRATION MODELING

An integrated AHP–TOPSIS method was used
to combine the input exploration data and create a
final porphyry Cu–Au prospectivity map of the
Salafchegan area. First, a hierarchy structure for
porphyry Cu–Au exploration in the study area was
designed using the input exploration maps (Fig. 8).
Then, a pairwise comparison matrix was created and
five input criteria were compared to indicate por-
phyry Cu–Au potential of the area. On the basis of
the calculated weights, the relative importance of

each of the criteria with respect to the porphyry Cu–
Au potential is shown in Table 4. The criteria weight
vector was calculated from the pairwise comparison
matrix and the AHP method. The consistency ratio
for this pairwise comparison is CR = 0.017 which is
less than 0.1 and thus this value is acceptable (Tzeng
and Huang 2011).

The geological and alteration criteria have
some sub-criteria that their relative weights must be
determined. The geological criterion consists of se-
ven sub-criteria (lithological units). The comparison
matrix for the lithological units with respect to the
geological criterion was prepared using the targeting
elements generated from the Dalli Cu–Au porphyry
deposit and generic porphyry Cu–Au deposit models
(Table 3). Then, the weights for the seven litholog-
ical classes were calculated using the AHP method
(Table 5).

The alteration criterion has three sub-criteria
including the iron oxides, OH-bearing clay, and
propylitic alterations. The relative weights of these
alteration sub-criteria were also calculated using the
AHP method (Table 6).

For applying the proposed AHP–TOPSIS
algorithm, cell values of raster maps associated with
the five criteria and lithological and alteration sub-
criteria were extracted to make a decision matrix.
Using the developed MATLAB codes for the pro-
posed AHP–TOPSIS method, the relative closeness

Figure 7. Reduced-to-the-pole (RTP) magnetic map (left) and tilt angle of RTP magnetic data (right).

Figure 8. Hierarchical structure for mapping the porphyry Cu–

Au potential of the study area. Geology classes are described in

Table 4. Each pixel has attributes A1 to An.
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to the ideal solution for each alternative (cell pixels)
was calculated.

A final porphyry Cu–Au prospectivity map was
created and reclassified into three classes. The
thresholds for classification of favorability map were
determined using the favorability—area fractal
modeling in a similar way to concentration—area
fractal modeling mentioned in literatures (Agter-
berg 1995; Cheng 1999; Carranza 2009). Figure 9
shows the log–log plot of fractal result, which indi-
cates three straight lines with breaks in C1 and C2
that are considered as thresholds for classification.
Figure 10 shows the porphyry Cu–Au prospectivity
map, which accurately depicts the prominent por-
phyry Cu–Au mineralized zones (Dalli and Zavar-
ian) to be located in the high favorability class. In
addition, an area with high potential (similar to Dalli

Table 4. Pairwise comparison matrix of the main criteria used for mapping porphyry Cu–Au potential

Criteria Alteration Structure Geology Geochemistry Geophysics Weights

Alteration 1 2 3 1/2 5 0.27

Structure 1/2 1 2 1/3 4 0.16

Geology 1/3 1/2 1 1/4 3 0.1

Geochemistry 2 4 4 1 7 0.42

Geophysics 1/5 1/4 1/3 1/7 1 0.05

CR = 0.017

Table 5. Comparison matrix of the weights for the seven lithological classes estimated using the AHP

Lithologies Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Weights

Class 1: intermediate to basic intrusions 1 2 3 4 6 7 9 0.35

Class 2: sub-volcanics (e.g., andesite and dacite porphyry) 1/2 1 2 3 5 6 7 0.24

Class 3: intermediate to basic volcanics (e.g., andesite and basalt) 1/3 1/2 1 3 5 6 7 0.19

Class 4: pyroclastic and tuffs 1/4 1/3 1/3 1 3 5 6 0.11

Class 5: carbonate rocks 1/6 1/5 0.2 1/3 1 3 5 0.06

Class 6: conglomerate, sandstone, marl, and shale 1/7 1/6 1/6 0.2 1/3 1 3 0.03

Class 7: alluvium 1/9 1/7 1/7 1/6 0.2 1/3 1 0.02

CR = 0.065

Table 6. Comparison matrix of weights for the alteration sub-criteria estimated using AHP

Alterations Iron oxide OH-bearing clay Propylitic Weights

Iron oxide 1 2 3 0.54

OH-bearing clay 1/2 1 3/2 0.27

Propylitic 1/3 2/3 1 0.19

CR = 0.033

Figure 9. Log–log plot of favorability area.
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and Zavarian porphyry Cu–Au mineralized areas)
was determined in the northwest of the area. This
area needs follow-up exploration.

DISCUSSION AND CONCLUSION

In this paper, an innovative data integration
approach based on an MCDM method (i.e., the
integrated AHP–TOPSIS) is proposed for mineral
potential mapping. This method is based on the two
most popular MCDM algorithms known as AHP
and TOPSIS. In this algorithm, the criteria weight
vector is obtained based on the pairwise comparison
matrix and AHP algorithm and the alternatives are
ranked by TOPSIS. The pairwise comparison matrix
is prepared by expertise in porphyry Cu–Au poten-
tial mapping. After that, the alternatives (the raster
map pixels) are ranked by the TOPSIS algorithm.
This strategy has some similarity to both data-driven
and knowledge-driven algorithms. It needs a criteria
weight vector as a knowledge-driven algorithm, but
it does not employ an inference system as in
knowledge-driven methods (e.g., fuzzy logic). The
ranking strategy is only based on the distance of
alternatives to positive and negative ideals, similar
to the fuzzy c-means clustering (for two clusters)
whereby the similarity of each alternative is mea-
sured by comparison to cluster prototypes (the

prototypes of clusters are positive and negative ideal
solutions). Therefore, the proposed method is not a
pure knowledge- or data-driven method, but is a
hybrid method. The proposed algorithm only needs
the comparison matrix as primary information for
obtaining the criteria weight vector, whereas other
knowledge-driven methods, such as fuzzy logic, need
more primary information of the membership func-
tion for fuzzification of input data in addition to
criteria weight vector.

The AHP–TOPSIS algorithm was used for
integrating datasets from a greenfield area with very
few known deposits in the central part of Urumieh–
Dokhtar magmatic arc, the main volcanic arc and
porphyry copper belt of Iran. Five exploration layers
(hydrothermal alterations, structural features,
catchment basin geochemical anomaly map of cop-
per, total magnetic intensity map of airborne data,
and 1:1000000 scale lithological map) of the study
area were prepared and integrated to create a final
favorability map. On the basis of the fractal method,
the final favorability map was classified as three
classes of high favorable, favorable, and low favor-
able zones. The high favorable classes cover about
0.05 percent of the study area and contain the three
known prominent deposits, namely Dalli south and
Dalli north porphyry Cu–Au deposits and the
Zavarian 1 porphyry Cu–Au prospect. The favorable
classes cover about 1.5 percent of the study area and
Zavarian 2 porphyry Cu–Au prospect locates in
these classes. Kahak, which is an iron-skarn deposit,
lies in the low favorable class. Several unknown high
favorable and favorable areas are now recognized
northeast of the Dalli deposits and east of the
Zavarian deposits. Follow-up exploration of these
high-potential areas is recommended.
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