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This article addresses the problem of the prediction of the breccia pipe elevation named
Braden at the El Teniente mine in Chile. This mine is one of the world�s largest known
porphyry-copper ore bodies. Knowing the exact location of the pipe surface is important, as
it constitutes the internal limit of the deposit. The problem is tackled by applying a non-
stationary geostatistical method based on space deformation, which involves transforming
the study domain into a new domain where a standard stationary geostatistical approach is
more appropriate. Data from the study domain is mapped into the deformed domain, and
classical stationary geostatistical techniques for prediction can then be applied. The pre-
dicted results are then mapped back into the original domain. According to the results, this
non-stationary geostatistical method outperforms the conventional stationary one in terms
of prediction accuracy and conveys a more informative uncertainty model of the predictions.
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INTRODUCTION

A classical problem in geostatistical applications
is the prediction of a physical quantity over the whole
study region from a finite set of indexed continuous
spatial data. This problem involves modeling and
estimating theunderlying spatial dependence structure
of the measured data. Commonly, this is achieved
through statistical tools such as computing a variogram
or covariogram for the whole study domain under the
stationarity assumption. However, the stationarity
assumption that states that the spatial dependence
structure is translation invariant over the whole study
domain is more an exception than a generality. Sta-
tionary assumption is driven more by mathematical

convenience than by reality. In practice, it can be
doubtful due to many factors as specific landscape of
the study region or other localized effects. These local
influences can be reflected by computing local sta-
tionary variograms whose characteristics may vary
across the study domain. In such cases, a stationary
geostatistical approach is not appropriate because it
could produce less accurate predictions, including an
incorrect assessment of the prediction error.

In this paper, we are interested in the problem
of predicting the breccia pipe elevation named
Braden at the El Teniente mine in Chile. This mine
is located approximately 70 km southeast of Santi-
ago on the western margin of the Andean Cordillera
and within the confines of the central Chilean por-
phyry Cu belt. As described by Skewes et al. (2002),
Maksaev et al. (2004), and Spencer et al. (2015), the
supergiant El Teniente deposit is one of the world�s
largest and most complex porphyry-copper ore sys-
tems, containing an estimated premining resource of
approximately 95 million metric tons Cu and 2.5
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million metric tons Mo. The center of the deposit is
composed of a late-stage diatreme known as the
Braden pipe, which is 1200 m in diameter at the
surface and close to 600 m at a depth of 1800 m. The
pipe is poorly mineralized and surrounded by dif-
ferent kinds of mineralized geological units. As the
edge of the pipe constitutes the limit of the deposit
and of the mining operation, predicting it accurately
is important. To achieve that, a non-stationary geo-
statistical method based on space deformation is
applied (Fouedjio et al. 2015). Our aim by using a
non-stationary geostatistical approach is to provide
an accurate prediction and reliable prediction
uncertainty comparatively to those based on a sta-
tionary geostatistical approach.

The space deformation approach introduced by
Sampson and Guttorp (1992) is one of the most
studied non-stationary methods. It involves trans-
forming the study region into a new region where a
classical stationary geostatistical approach is more
suitable. Data from the study region are mapped into
the deformed region, and standard geostatistical
techniques for prediction can then be applied. The
predicted results are then mapped back into the
original region. Some variants of this approach have
been proposed by Mardia and Goodall (1993), Smith
(1996), Meiring et al. (1997), Perrin and Monestiez
(1998), Damian et al. (2001), Schmidt and O�Hagan
(2003), Iovleff and Perrin (2004), Vera et al. (2008,
2009), Schmidt et al. (2011), Bornn et al. (2012), and
Castro Morales et al. (2013). Some theoretical as-
pects have been established by Perrin and Meiring
(1999), Perrin and Senoussi (2000), Perrin and Meir-
ing (2003), Genton andPerrin (2004), and Porcu et al.
(2010). Although this approach has been introduced a
long time ago, it has not been used much in geosta-
tistical applications because it requires replicated
data. However, many geostatistical applications in-
volved only one measurement at each location. An-
deres and Stein (2008) and Anderes and Chatterjee
(2009) are the first authors to propose a space defor-
mation approach under the single-realization frame-
work. However, the proposed approach requires very
dense data and has not been applied to real datasets.
Following the work of Sampson and Guttorp (1992),
Fouedjio et al. (2015) propose a space deformation
method based on a unique realization. In the spirit of
the space deformation approach, non-Euclidean dis-
tance-based approaches have been developed. The
idea is to define a new distance (non-Euclidean dis-
tance) measure between locations in the study do-
main in order to better account for non-stationarity.

Since the use of a non-Euclidean distance can make
stationary second-ordermodels not valid, locations in
the study domain are transformed into a Euclidean
space where the Euclidean distance between loca-
tions approximates the non-Euclidean distance.
Almendral et al. (2008) and Boisvert and Deutsch
(2011) define new distance that honors the study area
in terms of varying local anisotropy. However, the
calculation of this distance requires that the parame-
ters of anisotropy at each location of the study area
are known. McBratney and Minasny (2013) also
propose a similar approach based on the calculation
of a certain geographical distance. Although, non-
Euclidean distance-based approaches can be re-
garded as space deformation approaches, they do not
provide a second-order non-stationary model.

The rest of the paper is organized as follows.
The non-stationary geostatistical method based on
space deformation is described in Sect. 2. The results
obtained by applying this non-stationary geostatis-
tical approach on the breccia pipe elevation dataset
are presented in Sect. 3. Section 4 concludes with
some remarks.

SPACE DEFORMATION APPROACH

Model

Consider Zð:Þ ¼ fZðxÞ : x 2 G � Rp; p � 1g a
random field defined on a fixed continuous study do-
main G and reflecting the underlying studied phe-
nomenon.Z(.) is governed by the following equation:

ZðxÞ ¼ Yðf ðxÞÞ; 8x 2 G; ð1Þ

where Yð:Þ ¼ fYðuÞ : u 2 D � Rq; q � pg represents
an isotropic stationary random field; f : G ! D is a
deterministic non-linear smooth bijective function
from the study domain G onto the deformed domain
D. In principle, we can get q � p, although most
frequently q ¼ p.

The resulting valid non-stationary spatial
dependence structure (non-stationary variogram)
from Eq. (1) is given by

cðx; yÞ � 1

2
VðZðxÞ � ZðyÞÞ ¼ c0ðkf ðxÞ � f ðyÞkÞ;

8ðx; yÞ 2 G�G;

ð2Þ

where c0ð:Þ is the isotropic stationary variogram of
Y(.) and k:k is the Euclidean norm in Rq.
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The space deformation model represented by
Eq. (2) allows the use of all valid isotropic stationary
variogram models. It thus tries to keep the simplicity
of an isotropic stationary variogram structure. As
described in Fouedjio et al. (2015), the deformation
function f(.) shrinks the study domain G in areas of
relatively high spatial continuity while stretches it in
areas of relatively low spatial continuity, such that an
isotropic stationary variogram can model the spatial
dependence structure in the deformed domain D.

Inference

Let Z ¼ ðZðs1Þ; . . . ;ZðsnÞÞT be an ðn� 1Þ vector
of observations from the random field Z(.) and asso-
ciated with locations fs1; . . . ; sng � G. The objective is
to estimate the non-stationary spatial dependence
structuremodel depictedbyEq. (2)basedonmeasured
data. Since the two parameters f(.) and c0ð:Þ in Eq. (2)
are unknown, they need to be estimated. This is
achieved using a step-by-step estimation procedure
proposed by Fouedjio et al. (2015). Firstly, a non-sta-
tionary variogram kernel estimator is defined. Sec-
ondly, a dissimilarity matrix is built from the non-
stationary variogram kernel estimator, and then it is
used to construct the deformed domain through the
non-metric multidimensional scaling (NMDS) proce-
dure. Thirdly, the estimation of the deformation
function f(.) is carried out by interpolating between a
set of locations in the study domain G and the esti-
mations of their deformations in the deformed domain
D using the class of thin-plate spline radial basis func-
tions. Fourthly, the estimation of c0ð:Þ is carried out by
calculating the classical experimental variogram on
transformed data in the deformed domainD and then
by fitting it from amixture of basic isotropic stationary
variogram models.

Step 1

A non-stationary variogram kernel estimator of
the model depicted by Eq. (2) is defined as
(Fouedjio et al. 2015)

bcðx; y; kÞ ¼
Pn

i;j¼1 Kk ðx; yÞ; ðsi; sjÞ
� �

ZðsiÞ � ZðsjÞ
� �2

2
Pn

i;j¼1 Kk ðx; yÞ; ðsi; sjÞ
� �

1fx6¼yg; 8ðx; yÞ 2 G�G; ð3Þ

where Kk ðx; yÞ; ðsi; sjÞ
� �

¼ Kðx; si; kÞKðy; sj; kÞ, with
Kð:; :; kÞ a non-negative, symmetric kernel on
Rp � Rp with bandwidth k[0.

The estimator defined by Eq. (3) is a kernel-
weighted local average of squared increments of the
regionalized variable. It measures the spatial dis-
similarity between two arbitrary locations in the
study domain G. The role of the kernel is to weight
observations with respect to a reference location so
that nearby observations get more weight, while
remote locations receive less. Several kernels can be
chosen, the most common are (Wand and Jones
1995)

1. uniform kernel Kðx; y; kÞ / 1kx�yk�k;
2. triangular kernel

Kðx; y; kÞ / ðk� kx� ykÞ1kx�yk�k;
3. Epanechnikov kernel

Kðx; y; kÞ / ðk2 � kx� yk2Þ1kx�yk�k;
4. Gaussian kernel

Kðx; y; kÞ / expð� 1
2k2

kx� yk2Þ.

Figure 1 shows different kernels and how they
distribute the weight of a target location on a
region. In this work, our choice is the Epanech-
nikov kernel, which is an isotropic kernel with
compact support and showing optimality prop-
erties in density estimation (Wand and Jones
1995). According to Fouedjio et al. (2015), the
computational burden of the estimator defined
by Eq. (3) is greatly reduced using a compactly
supported kernel, as it reduces the number of
terms to compute.

Step 2

Given the non-stationary variogram kernel
estimator defined by Eq. (3) in step 1 and a repre-

sentative set of m 	 n locations X ¼ ½x1; . . . ; xm
T
referred to as anchor locations over the study do-
main G, a dissimilarity matrix Dðk;xÞ ¼ ½dijðk;xÞ
 is
built as (Fouedjio et al. 2015)

Dðk;xÞ ¼ x~Ck þ ð1� xÞ ~D; ð4Þ

where ~Ck ¼
bc ijðkÞ�minðbc ijðkÞÞ

maxðbc ijðkÞÞ�minðbc ijðkÞÞ

� �

; ~D¼ dij�minðdijÞ
maxðdijÞ�minðdijÞ

h i

,

with cijðkÞ being the non-stationary variogram esti-
mator defined by Eq. (3) at locations xi and xj; dij is
the Euclidean distance between xi and xj; x2 ½0;1
 is
a mixing parameter.

The dissimilarity matrix Dðk;xÞ includes not only
dissimilarities observed in the regionalized variable
but also spatial proximities. This combination also
allows to reduce via x the risk that the deformation
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function f(.) is not a bijection. From Dðk;xÞ, we seek a

new configuration of q-dimensional locations

U ¼ ½u1; . . . ; um
T � D such that the following rela-
tions are satisfied as much as possible:

/ðdijðk;xÞÞ � kui � ujk � hijðUÞ; ð5Þ

where /ð:Þ is a monotonic function that preserves
the rank order of the dissimilarities.

In other words, we look for a configuration of
anchor locations U in a given dimension space such
that the rank order of the configuration distances is
consistent with the rank order of the dissimilarities.
This is achieved by minimizing the loss function
called stress defined as (Fouedjio et al. 2015)

Sðk;xÞðUÞ ¼ min
/

X

i\j

pijðkÞ½/ðdijðk;xÞÞ � hijðUÞ
2
P

i\j pijðkÞh2ijðUÞ

" #1
2

;

ð6Þ

where pijðkÞ ¼
Pn

k;l¼1 Kk ðxi; xjÞ; ðsk; slÞ
� �

=kxi � xjk
are weights that enable to take into account a vari-
able sampling density over the domain.

The minimization problem described by the
Eq. (6) is solved using the non-metric multidimen-

sional scaling (NMDS) iterative algorithm of Krus-
kal-Shepard (Kruskal 1964a). Globally, the method
operates as follows: we start from an initial config-

uration Uð0Þ as anchor locations X. We seek the

/ðdijðk;xÞÞ such that
P

i\j pijðkÞ½hijðUð0ÞÞ�
/ðdijðk;xÞÞ
2 is minimum. This problem has an un-

ique solution: isotonic regression (Kruskal 1964b).
The value of stress is so deduced. We modify the
configuration via small displacements of locations
according to a gradient method to decrease the
stress. We return to the isotonic regression step, and
so on until convergence. For details on the NMDS
algorithm, see Cox and Cox (2000) and Borg and
Groenen (2005).

The stress defined in Eq. (6) assesses the con-
cordance between dissimilarities and corresponding
distances. It is invariant by translation, rotation, or
rescaling of the configuration. It is normalized and
therefore does not depend on the size of the con-
figuration. Kruskal (1964a) proposed an assessment
of the goodness of fit of any NMDS solution
through different levels of stress values: 0.20 =
poor, 0.10 = fair, 0.05 = good, 0.025 = excellent, and
0.00 = perfect. However, this evaluation must be

Figure 1. Kernel functions: a uniform, b triangular, c Epanechnikov, and d Gaussian.
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regarded just as an indication of the goodness of fit
of an NMDS solution. The goodness of fit of an
NMDS solution is visualized in a Shepard diagram,
a scatter plot of the dissimilarities against the cor-
responding distances in deformed domain with the
isotonic regression. In most geostatistical applica-
tions, the dimension of the study region is 2d or 3d.
For illustrative purposes, the preferred number of
dimensions to be chosen for NMDS is 2 or 3.
However, if the results of the deformation are not
satisfactory (poor goodness of fit or non-significant
difference between original and deformed do-
mains), NMDS in higher dimensions can be con-
sidered at the expense of the visualization and the
interpretation of the deformed domain.

The construction of the deformed domain de-
pends partly on anchor locations. The set of anchor
locations may be chosen as a sparse grid over the
study domain or a reduced subset of data locations.
The sampling density, which may vary over the do-
main, can be accounted by non-uniform distribution
of the anchor locations. It is not necessary to work
with a very dense grid of anchor locations, since the
dissimilarities calculated for pairs of anchor loca-
tions that are very close can be unnecessary and
redundant because of their high correlation. The
number of anchor locations is a trade-off between
the computing time and the accuracy of the resulting
deformation. The computational burden of the
NMDS algorithm is roughly proportional to the
number of anchor locations. From our experience,
100 to 300 anchor locations can be sufficient to build
the deformed domain.

Step 3

The estimation of deformation function f(.) is
carried out by interpolating between the configura-
tion of anchor locations X in the study domain G
and the estimations of their deformations U (step 2)
in the domain D using the class of thin-plate spline
radial basis functions. Specifically, the thin-plate
spline estimator of f(.) is given by

bf ðxÞ ¼ ðbf 1ðxÞ; . . . ; bf qðxÞÞ
T ¼ cþAxþ VTrðxÞ; ð7Þ

where c is ðq� 1Þ;A is
ðq� pÞ;V is ðm� qÞ; rðxÞ ¼ ðrðx� x1Þ;
. . . ; rðx� xmÞÞT and x1; . . . ; xm are the anchor loca-
tions seen as the centers of the radial basis function
rðhÞ ¼ khk2 logðkhkÞ1khk[0.

The parameters c;A; and V are determined by

resolving the system of equations bf ðXÞ ¼ U under

the constraints 1TV ¼ 0 and XTV ¼ 0 (Dryden and
Mardia 1998). Specifically, we have

R

V

cT

AT

2

6

4

3

7

5 ¼
U

0

0

2

6

4

3

7

5; ð8Þ

where R ¼
S 1 X
1T 0 0
XT 0 0

2

4

3

5 with S ¼ ½rðxi � xjÞ
i;j¼1...m.

The matrix R is symmetric and positive definite
subject to the existence of the inverse of S. In this
case, its inverse exists and we get

V

cT

AT

2

6

4

3

7

5 ¼ R�1

U

0

0

2

6

4

3

7

5: ð9Þ

Step 4

The estimation of the isotropic stationary spa-
tial dependence structure c0ð:Þ is carried out by
calculating the classical experimental variogram of

transformed data ðYðbf ðs1ÞÞ; . . . ;Yðbf ðsnÞÞÞ
T

in the
deformed domain D and then by fitting the experi-
mental variogram from a set of theoretical isotropic
stationary variograms. We use a robust method
developed by Desassis and Renard (2012), which
automatically finds a model that fits the experi-
mental variogram. From a linear combination of
some authorized basic structures, a numerical algo-
rithm is used to estimate a parsimonious model that
minimizes a weighted distance between the model
and the experimental variogram.

Specifically, given the experimental variogram
of transformed data fĉ0ðkhjkÞ; hj 2 Rp; j ¼ 1; . . . ; Jg
and a family of parametric basic structures (nor-

malized) fcðh1Þ1 ; . . . ; cðhKÞK g, the goal is to find a linear

combination cðWÞ
0 ðkhkÞ ¼

PK
k¼1 bkc

ðhkÞ
k ðkhkÞ with

positive coefficients such that

SðWÞ ¼ 1

2

X
J

j¼1

xj cðWÞ
0 ðkhjkÞ � ĉ0ðkhjkÞ

� �2

; ð10Þ

is minimal for the vector of parameters
W ¼ ðh1; . . . ; hK; b1; . . . ; bKÞ; with fxj; j ¼ 1; . . . ; Jg a
set of weights, e.g., xj ¼ Nj=khjk, where Nj is the
number of pairs used in the computation of ĉ0ðkhjkÞ.
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Kriging

Since Zð:Þ ¼ Yðf ð:ÞÞ, kriging with unknown
constant mean (ordinary kriging) of the non-sta-
tionary random field Z(.) in the study domain G can
be transposed to the isotropic stationary random
field Y(.) in the deformed domain D where standard
stationary geostatistical techniques already exist
(Chilès and Delfiner 2012). Given measured data

Z ¼ ðZðs1Þ; . . . ;ZðsnÞÞT, the prediction of Z(.) at
unsampled location s0 2 G is given by the ordinary
kriging estimator:

bZðs0Þ ¼ bY ðu0Þ ¼
X
n

i¼1

aiðu0ÞYðuiÞ; ð11Þ

which minimizes the mean square error EðbZðs0Þ�
Zðs0ÞÞ2 under the constraint:

Pn
i¼1 aiðu0Þ ¼ 1, where

ui ¼ bf ðsiÞ;YðuiÞ ¼ ZðsiÞ; i ¼ 0; . . . ; n represents the
transformed data. The kriging weights ½aiðu0
i¼1;...;n

are computed by solving the well-known ordinary
kriging system in the stationary framework (Chilès
and Delfiner 2012).

Note that with regard to the stationary ap-
proach, the action of the deformation function
modifies the conventional kriging system through
the following items: (i) the distance between a pre-
dicted location and a sampled location is changed;
(ii) the geometric configuration of locations is
modified, especially the support of the block model;
and (iii) the spatial dependence structure of the
regionalization is changed.

To predict the non-stationary random field Z(.)
on target grid locations, we can proceed as follows:

1. obtain the image of the target grid locations
and data locations through bf ð:Þ;

2. krige the transformed target grid locations
from bc0ð:Þ and transformed data locations;

3. obtain the kriging on the target grid locations
by simple correspondence.

The space deformation method relies on two
hyper-parameters ðk;xÞ used in the computa-
tion of the dissimilarity matrix Dðk;xÞ. With the
estimation of the spatial dependence structure

Figure 2. Elevation data, El Teniente Mine, Chile.
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being rarely a goal per se but an intermediate
step before kriging, the hyper-parameters are
selected by a data-driven method consisting of
choosing the hyper-parameter values that give
the best cross-validation mean square predic-
tion error (Fouedjio et al. 2015):

MSPEðk;xÞ ¼ 1

n

X
n

i¼1

ZðsiÞ � bZ�iðsi; k;xÞ
� �2

; ð12Þ

where bZ�iðsi; k;xÞ is the kriging at location si using
all measured data excluding fZðsiÞg.

APPLICATION TO BRECCIA PIPE
ELEVATION

Data Description

The non-stationary geostatistical approach
based on space deformation described in Sect. 2 is
applied to the elevation data of the breccia pipe at
El Teniente Mine, Chile. A representation of data
given in Figure 2a shows that data have a circular
configuration with high values located at margins of
the mine, whereas the central part exhibits low val-
ues. The data are denser at the margin of the domain
and less dense at the center. The dataset contains
n ¼ 816 measurements divided into a training set
( n1 ¼ 616 measurements) and a validation set
( n2 ¼ 200 measurements) as shown in Figure 2b.
The training set serves to calibrate the model, and
the validation set serves to assess the prediction
performances. A comparison scheme of kriging with
unknown constant mean (ordinary kriging) under
stationary and non-stationary approaches is carried
out through the validation dataset. Summary statis-
tics of training, validation, and whole data are given
in Table 1. The histogram and boxplot of data values
are slightly skewed with values ranging from 1429 to
2906 m, a mean of 2392 m, and a median of 2401 m
(Fig. 2c, d). The data present some outliers corre-
sponding to the lowest values, which are located at
the center of the domain.

Exploring Evidence of Variogram Non-stationarity

To explore an evidence of non-stationarity of the
underlying spatial dependence structure of observed
data, a local stationary variogram (Lloyd 2010) is
computed at some locations across the domain under

study (Fig. 3). There is a clear evidence of variogram
non-stationarity, as the variographic parameters (sill
and range) vary spatially. Specifically, we can see that
locations 1, 2, and 3 (Eastmargin area) formanarea of
relatively high spatial variability or low spatial cor-
relation,while locations 4, 5, and 6 (Westmargin area)
constitute an area of relatively low spatial variability
or high spatial correlation. Indeed, the latter area has
a long range (�300 m)and lowvariance (�45,000 m2)
compared to the former area, which has a small range
(�200 m) and high variance (�60,000 m2). This dif-
ference between the two sub-areas may be related to
lithologic conditions. Thus, a non-stationary geosta-
tistical approach based on space deformation is
appropriate because its aim is to deal with this type of
non-stationarity. Indeed, it operates by contracting
the study domain in areas of relatively high spatial
continuity and by stretching it in areas of relatively
low spatial continuity, such that an isotropic station-
ary variogram is suitable to model the spatial depen-
dence structure in the deformed domain.

Space Deformation Results

Figure 4a and c shows, respectively, the data
locations in the study domain G and their image in
the deformed domain D. The deformed domain is
constructed using only a reduced set of 179 anchor
locations as presented in Figure 4a (black cross)
instead of all data points, allowing to reduce the
computational burden. We observe that the defor-
mation shrinks the study domain in the West margin
region while stretches it in the East margin region.
This means that each of these regions corresponds to
an area of relatively high and low spatial correlation
(or low and high spatial variability), thereby con-
firming the result obtained during the exploratory
analysis of non-stationarity in Sect. 3.2.

Table 1. Summary statistics of measured elevation data, El

Teniente Mine, Chile

Training

( n1 ¼ 616)

Validation

( n2 ¼ 200)

Whole

( n ¼ 816)

Min 1755 1429 1429

1st Quartile 2284 2162 2259

Median 2418 2354 2401

Mean 2417 2315 2392

3rd Quartile 2602 2526 2577

Max 2906 2817 2906

SD 200 262 221
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Figure 4b and d presents the variograms corre-
sponding, respectively, to an isotropic stationary model
in the study and deformed domains. The two stationary
variograms are quite different. Indeed, by deforming
the study domain more correlated data locations be-
come closer, while less correlated data locations be-
come more distant. The range of the stationary
variogram in the deformed domain is bigger than the
range of the stationary variogram in the original do-
main. The difference between the sills is small.We note
that the small nugget effect component present in the
stationary variogram in the original domain is absent in
the stationary variogram in the deformed domain. In-
deed, the nugget effect component is present in the

region of relatively high spatial variability (East margin
region). Thus when the deformation stretches this re-
gion, the nugget effect component vanishes. The non-
stationary modeling by space deformation and the sta-
tionary one lead, respectively, to the following models:

bc0ðkhkÞ ¼ 9947� Exp 96ðkhkÞ þ 32;757

� Sph 323ðkhkÞ; ð13Þ

bc1ðkhkÞ ¼ 3050� Nug ðkhkÞ þ 40;999

� Sph 181ðkhkÞ; ð14Þ

where bc0ð:Þ is a nested isotropic stationary vari-
ogram (exponential and spherical) with total vari-

Figure 3. The study domain: a measured data and b–d local stationary variograms at some locations.
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ance 42,704 m2 and bc1ð:Þ is a nested isotropic sta-
tionary variogram (small nugget effect and spheri-
cal) with total variance 44,049 m2.

According to the hyper-parameter selection
presented in Sect. 2.3, Figure 5a and b shows,
respectively, the mean square prediction error for
cross-validation and external validation. The opti-
mum values in cross-validation correspond to
k ¼ 1446 m and x ¼ 0:90. These optimum values are
consistent with those given by the external validation.
The Shepard diagram of the NMDS algorithm asso-
ciatedwith the deformed domain is shown in Figure 6.
The corresponding value of stress is equal to 8 %.

A visualization of the variogram at certain
points (with all other points) through the level
contours for estimated stationary and non-stationary
models is shown in Figure 7. We can see how the
non-stationary spatial dependence structure changes
from one place to another as compared to the sta-
tionary one. The region of high spatial continuity
(West margin area) has a long-radius contour level
(long range), while the region of low spatial conti-

nuity (East margin area) has a small-radius contour
level (small range). This difference between the
estimated stationary and non-stationary models will
reflect on both the prediction accuracy and the
prediction uncertainty accuracy (Sect. 3.4).

Model Assessment

To assess the predictive performance of the
space deformation non-stationary geostatistical ap-
proach, an external validation procedure is adopted:
the regionalized variable is predicted at 200 valida-
tion data locations. Some well-known prediction
performance criteria are considered: mean absolute
error (MAE), root mean square error (RMSE),
normalized mean square error (NMSE), logarithmic
score (LogS), and continued ranked probability

score (CRPS). If bZðsiÞ denotes the kriging at a vali-
dation data location si computed from all training

data and r̂2ðsiÞ the corresponding kriging variance,
we have

Figure 4. Study domain G: a data locations and anchor locations and b the estimated isotropic stationary

variogram. Deformed domain D: c data locations and d the estimated isotropic stationary variogram.
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ẐðsiÞ � ZðsiÞ
� �2

" #1
2

;

NMSE ¼ 1

n2

X
n2

i¼1
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For MAE, RMSE, LogS, and CRPS, the smaller the
better; for NMSE the nearer to one the better. The
prediction accuracy is measured through MAE and
RMSE criteria. The scores NMSE, LogS, and CRPS
take into account the prediction and the prediction
variance, thus allowing to assess the prediction
uncertainty accuracy. The criteria MAE, RMSE,
and NMSE do not depend on the distribution of
measured data. The LogS score is equivalent to the
pseudo-likelihood in the Gaussian framework. The
CRPS criterion corresponds to the distance between
the distribution function of the predicted variable
and the measured data (itself expressed as a distri-
bution function). It is generally calculated in the
Gaussian setting where it admits a closed-form
expression. Although the LogS and CRPS scores are
usually calculated in the Gaussian context, they are
quite robust. The probability Gaussian-type confi-
dence interval is calculated also at each validation
location (i.e., using ẐðsiÞ 
 1:96r̂ðsiÞ), and the pro-

portion of validation locations where the 95 %
confidence interval actually includes the true value is
computed (PCI). This proportion should be near
95 % for an accurate modeling of uncertainty. The
correlation between true and estimated values
(Rho) is computed also, the closer to one the better.
A description of these different goodness-of-fit
measures is given for example in Chilès and Delfiner
(2012), Zhang and Wang (2010), and Gneiting and
Raftery (2007).

Scatterplots of predicted values versus mea-
sured values for the stationary and non-stationary
approaches are presented in Figure 8. The compar-
ison shows that the space deformation approach
provides a more accurate prediction. This is evi-
denced by a reduced mean absolute error (MAE)

Figure 5. Hyper-parameter selection through the mean square prediction error MSPEðk;xÞ for a cross-

validation and b external validation.

Figure 6. Shepard diagram of the NMDS algorithm cor-

responding to the deformed domain.
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and root mean square error (RMSE), and by an
increased correlation coefficient between true and
predicted values (Rho), as Table 2 shows. The cost
of not using the non-stationary approach in this case
is substantial: on average, the prediction at valida-
tion locations is about 20 % better for the non-sta-
tionary approach compared to the stationary
approach, in terms of RMSE. The reliability of the
prediction variances measured through NMSE,
LogS, CRPS, and PCI criteria (Table 2) shows that
the space deformation approach is more accurate for
modeling of uncertainty compared to the stationary
approach. When considering the proportion of vali-
dation locations included in the 95 % confidence
interval, the space deformation approach shows 12
locations outside (94 % of locations included in that
interval), while the stationary approach shows 16
locations outside (92 % of locations included in that

interval) as shown in Figure 8 and reported in
Table 2 (we expect about 200� 0:05 ¼ 10 locations
outside). Specifically, the stationary approach has
more difficulty in predicting the lowest values (lo-
cated at the center) compared to the non-stationary
approach.

Figure 7. Variogram level contours at few points for a the estimated stationary model and b the estimated

non-stationary model. Level contours correspond to the values: 10,000 m2 (black), 20,000 m2 (red), and

30,000 m2 (green).

Figure 8. Scatterplots of predicted versus measured values for a the stationary approach and b the non-

stationary approach.

Table 2. Validation statistics of the prediction performance

Criterion Stationary approach Non-stationary approach

MAE 79.7 64.8

RMSE 154.4 122.8

Rho 0.82 0.89

NMSE 0.98 1.07

LogS 2439 2365

CRPS 123.6 98.8

PCI 0.92 0.94
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The kriged values and kriging standard devia-
tions of the stationary and non-stationary methods
are shown in Figure 9. The overall look of the pre-
dicted values associated with each method differs
notably (Fig. 9a and c). This difference is particu-
larly marked at the center of the domain where
there are not enough data locations. The stationary
and non-stationary methods differed sharply in
describing the uncertainty associated with the pre-
dictions (Fig. 9b and d). We can see that the space
deformation approach provides low prediction
standard deviations in the area of low spatial vari-
ability or high spatial correlation (West margin
area), while it gives high prediction standard devia-
tions in the area of high spatial variability or low
spatial correlation (East margin area). Thus, pre-
diction standard deviations reflect not only the
sample configuration and availability around esti-
mates, but also the local variability. However, krig-
ing standard deviations� map for the stationary
approach shows slight differences in the prediction

standard deviations over the margin areas of the
mine, which were dependent on the sampling
intensity. Such a pattern was expected as the sta-
tionary approach assumes the same variogram
model over the area. The space deformation method
takes into account the local characteristics of the
regionalization (spatially varying range and vari-
ance) that the stationary method is unable to cap-
ture. This feature allows the space deformation
approach to outperform the stationary approach in
terms of prediction accuracy and reduced uncer-
tainty.

CONCLUDING REMARKS

This paper demonstrated the added value of
using the generic non-stationary geostatistical
method based on space deformation to predict the
elevation of the breccia pipe named Braden at the El
Teniente mine, Chile. In this case study, this non-

Figure 9. Predictions and prediction standard deviations based on a, b the estimated stationary model and

c, d the estimated non-stationary model.
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stationary approach has provided a better prediction
uncertainty accuracy compared to the stationary
approach. The non-stationary geostatistical method
based on space deformation integrates some spa-
tially local characteristics of the regionalization that
the stationary approach is unable to capture.
Moreover, as an exploratory tool for the non-sta-
tionarity, it allows to identify areas of high and low
spatial continuity, giving a better understanding of
the spatial behavior of the regionalized variable of
interest. This approach potentially brings major
improvement to decision-making procedures such as
delineating areas.

Like any non-stationary geostatistical approach,
the space deformation method requires enough data
to be able to properly capture the non-stationarity,
and it is computationally intensive compared to a
stationary method. Where there are enough data to
allow reliable inference, it outperforms a stationary
method in terms of prediction accuracy and predic-
tion uncertainty accuracy as in this case study. Fur-
thermore, it works well only for smoothly varying
non-stationarity. Thus, it can be difficult to apply on
sparse data or data with abrupt spatial structure
variations. In such cases, it may be advisable to
proceed under a stationary framework.
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