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A global particle swarm optimization (GPSO) technique is developed and applied to the
inversion of residual gravity anomalies caused by buried bodies with simple geometry
(spheres, horizontal, and vertical cylinders). Inversion parameters, such as density contrast
of geometries, radius of body, depth of body, location of anomaly, and shape factor, were
optimized. The GPSO algorithm was tested on noise-free synthetic data, synthetic data with
10% Gaussian noise, and five field examples from different parts of the world. The present
study shows that the GPSO method is able to determine all the model parameters accurately
even when shape factor is allowed to change in the optimization problem. However, the
shape was fixed a priori in order to obtain the most consistent appraisal of various model
parameters. For synthetic data without noise or with 10% Gaussian noise, estimates of
different parameters were very close to the actual model parameters. For the field examples,
the inversion results showed excellent agreement with results from previous studies that used
other inverse techniques. The computation time for the GPSO procedure is very short (less
than 1 s) for a swarm size of less than 50. The advantage of the GPSO method is that it is
extremely fast and does not require assumptions about the shape of the source of the
residual gravity anomaly.
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INTRODUCTION

One of the most important objectives in the
interpretation of gravity data is to define character-
ization the size, shape, and location of different
types of subsurface structures for various purposes
like exploration, mining, and subsurface geologic
mapping. Subsurface geologic structures can often
be adequately modeled from gravity data as simple

geometric shapes such as spherical, cylindrical, or
tabular bodies. Parameters that control a geometric
model�s shape and position, such as depth, length,
and radius, are estimated and the parameters that
result in a model that best estimates the gravita-
tional anomaly are considered good models.

The interpretation of gravity anomalies as ide-
alized geometric shapes has a wide range of appli-
cations (e.g., Grant and West 1965; Nettleton 1976;
Beck and Qureshi 1989; Hinze 1990; Lafehr and
Nabighian 2012; Hinze et al. 2013; Long and Kauf-
mann 2013; Lasmar et al. 2014). Various techniques
can be used to invert gravity data and estimate the
parameters of the idealized source bodies, including
graphical methods (e.g., Nettleton 1962, 1976),
Fourier transform (e.g., Odegard and Berg 1965;
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Sharma and Geldart 1968), Euler de-convolution
(e.g., Thompson 1982), Mellin transform (e.g., Mo-
han et al. 1986), ratio methods (e.g., Bowin et al.
1986; Abdelrahman et al. 1989), neural networks
(e.g., Elawadi et al. 2001), least-squares minimiza-
tion approaches (e.g., Gupta 1983; Lines and Treitel
1984; Abdelrahman and Sharafeldin 1995a), Werner
de-convolution (e.g., Hartmann et al. 1971; Jain
1976; Kilty 1983), Walsh Transformation (e.g., Shaw
and Agarwal 1990), fair function minimization (e.g.,
Asfahani and Tlas 2012), depth to extreme point
(e.g., Fedi 2007), continual least-squares methods
(e.g., Abdelrahman and Sharafeldin 1995b; Abdel-
rahman et al. 2001a, b; Essa 2012, 2013), simulta-
neous regularized inversion methods (e.g., Mehanee
2014), and very fast simulated annealing method
(Biswas 2015).

The global particle swarm optimization (GPSO)
algorithm was introduced two decades ago by
Eberhart and Kennedy (1995) but the method has
been applied in limited applications to geophysics
(Alvarez et al. 2006; Shaw and Srivastava 2007;
Sweilam et al. 2008; Juan et al. 2010; Toushmalani
2013a, b; Peksen et al. 2014). The method has been
applied to hydrological problems (Chau 2008),
seismic wavelet inversion (Sanyi et al. 2009), and
self-potential modeling (Monteiro Santos 2010; Peks
en et al. 2011). GPSO methods are commonly con-
sidered simple to apply because they are easy to
understand and code, and computationally efficient
(Eberhart and Shi 2001). In the present case study, a
basic implementation of GPSO is used to estimate
the parameters of idealized bodies (spheres and
horizontal and vertical cylinders) that would gener-

ate a given gravity anomaly, using both noise-free
and noisy synthetic data. The method is further ap-
plied to five field examples and compared with other
interpretations made using various inversion and
interpretation techniques.

FORMULATION OF THE FORWARD
PROBLEM

The common expression of a gravity anomaly
V(x) for a sphere, horizontal cylinder, and vertical
cylinder-like structure at any point on the free sur-
face along the principal profile in a cartesian coor-
dinate system (Fig. 1) is given as (e.g., Gupta 1983;
Telford et al. 1990; Abdelrahman et al. 2001a, b;
Essa 2007, 2013)

VðxÞ ¼ k
z

ðx� x0Þ2 þ ðzÞ2
n oq

2
64

3
75; ð1Þ

where q = 1.5 and k ¼ 4
3 pGrR3 for a sphere; 1 and

k = 2pGrR2 for a horizontal cylinder, and 0.5 and
k ¼ pGrR2

z for a vertical cylinder.
In Eq. (1), k is the amplitude coefficient, z is the

depth from the surface to the center of the body
(sphere or horizontal cylinder) or the depth from the
surface to the top of the object (vertical cylinder), q
is the geometric shape factor, x0 (i = 1,…,N) is the
horizontal position coordinate, r is the density con-
trast between the anomalous body and the host rock,
G is the universal gravitational constant, and R is the
radius of the buried structure.

Figure 1. A schematic diagram showing the cross-sectional views, geometries, and parameters of a sphere

(left), horizontal cylinder (center), and a vertical cylinder (right).
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The expression for the gravity anomaly forward
problem can be represented generally in discrete
form as

dcal ¼ f ðmÞ; ð2Þ

where f is a forward modeling operator, which is
non-linear in the present work, m = (R, r, x0, z, and
q)T is a model parameter vector, and dcal is a pre-
dicted data vector. With measured data dobs the
conventional way of solving an ill-posed inverse
problem for m in Eq. (2) is based on the minimiza-
tion data misfit functional, which is written as

/ mð ÞNRMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 dobsi � dcali

� �2q

dobsmax � dobsmin

0
@

1
A; ð3Þ

where N is the total number of data point in dobs and
u(m)NRMSE is the normalized root-mean square er-
ror. The latter is often expressed as a percentage,
where lower values indicate less residual variance.
The following constrained multivariate problem is
solved using particle swarm optimization algorithm:

Minimize/ mð ÞNRMSE

Subject to R � 0; z � 0

0 � q � 2;

�1\r\1 and

�1\x0\þ1

:

THE PARTICLE SWARM OPTIMIZATION
(PSO) METHOD

The PSO algorithm is based on the argument
that social sharing of information among members
of a species offers an evolutionary advantage
(Kennedy and Eberhart 1995). It is inspired by the
apparent behavior of a flock of birds collectively
searching for food in their habitat. In implementa-
tion of the algorithm, birds are represented by
‘‘particles’’ and each particle consists of (a) a loca-
tion vector in parameter space and (b) an associated
velocity vector. Particles change position at each
time step of the algorithm. The velocity vector helps
determine the location of a particle at the next time
step. As the algorithm progresses, PSO stores his-
torical data for particles from previous time steps:
(a) the best individual position obtained by each
particle so far and (b) the best global position ob-
tained by all particles so far.

Hence by knowing the above two parameters,
the collection of all particles (the ‘‘swarm’’) coor-
dinates their movements in such a way that they
progressively move toward the global optimum.
Like many optimization algorithms, PSO can be-
come trapped in a local optimum or can display non-
convergent behavior. A constriction factor (Shaw
and Srivastava 2007) can be used to mitigate these
problems by gradually contracting the search space
as the algorithm progresses. This helps the algorithm
to surpass the local minima early in the search, and
avoid non-convergence later in the search. The
remainder of this section describes the PSO algo-
rithm as implemented in this work.

Mathematical Formulation of GPSO

The particle swarm process is stochastic in nat-
ure; it uses the velocity vector and location of the best
local and global values to update the current model
parameters of each particle in the swarm and find the
corresponding optimization function value at that
location. The velocity vector associated with each
particle is updated based on the history of each par-
ticle�s model parameters and misfit-function value.
This history represents the ‘‘knowledge’’ gained by
each particle, conceptually resembling an autobio-
graphical memory, as well as the ‘‘knowledge’’ gained
by the swarm as a whole (Eberhart and Kennedy
1995). Thus, the misfit-function value of each particle
in the swarm is updated based on the social behavior
of the swarm, which adapts to its environment by
returning to promising regions of the solution space
previously discovered and searching for optimal
misfit-function values over time. Numerically, the
value of an ith model parameter for the jth particle in
the swarm at iteration k + 1 is updated as

mkþ1
i;j ¼ mk

i;j þ vkþ1
i;j Dt; ð4Þ

where vkþ1
i;j is the corresponding updated velocity vec-

tor, and Dt is the time step value, typically considered
as unity (Shi and Eberhart 1998). The velocity vector of
each value of model parameter is calculated as

vkþ1
i;j ¼wvki;jþc1r

k
1;j

pki;best�mk
i;j

� �

Dt
þc2r

k
2;j

pki;gbest�mk
i;j

� �

Dt
;

ð5Þ

where vkþ1
i;j is the velocity vector of the ith model

parameter for the jth particle in the swarm at
iteration k; mk

i;j is the value of the ith model
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parameter for the jth particle in the swarm at iter-
ation k; pki;best is the value of the ith model parameter
for the personal best misfit-function value recorded
by the jth particle in the swarm, from initialization
through iteration k; pki;gbest is the ith model parame-
ter of the global best misfit-function value recorded
by the swarm, from initialization through iteration k;
w is the inertia weight; rk1;j and rk1;j each represents a
random number in the interval [0, 1] at iteration k; c1
and c2 are the positive acceleration constants which
are used to weight the contribution of the cognitive
parameter and social parameter, respectively.

Figure 2 illustrates updating the value of ithmodel
parameter and velocity for jth particle of the swarm
usingEq. (4).Note that theupdatedmodelparameter is
affected not only by the local and global optimal
parameters, but also by the magnitude of the cognitive
parameter c1, social parameter c2 and inertia weightw.
Figure 3 shows that each particle is evaluated at step k,
and the personal best value pi;best of that particle, as
determined by the misfit function, is recorded. In
addition, the particle that has the lowest value of all the
personalbest values is denotedaspi;best, and is recorded.

The implementation of PSO in this paper uses
the following parameters: swarm size (number of
particles), number of iterations, velocity compo-
nents, acceleration coefficients, and inertia weights.
These are discussed briefly in turn.

Swarm Size and Number of Generations

Swarm size or population size is the set of
particles in the swarm. A small set of particles may
reduce the number of generations needed to obtain

a good optimization result. In contrast, a large
population size increases the computational com-
plexity. Table 1 shows the marginal benefit of dra-
matically increasing the swarm size; the number of
generations to convergence is reduced by about 20%
due to 159 increase in swarm size time to conver-
gence. The number of generations needed to obtain
a good result is also problem dependent. A too low
number of generations may stop the search process
prematurely, while a too large number of genera-
tions have the consequence of unnecessarily added
computational complexity and more time needed
(Perez and Behdinan 2007).

Velocity Components

The velocity components are very important for
updating particle�s velocity. There are three terms of
the particle�s velocity as shown in Eq. (5):

� The term vki;j is the inertia component that
provides a memory of the previous swarm
direction (i.e., movement in the immediate
past). This component represents a momen-
tum that prevents (a) drastic change in the
direction of the particles and (b) bias toward
the current direction.

� The term c1r
k
1;j

pk
i;best

�mk
i;jð Þ

Dt is the cognitive
component that measures the performance of
the particles relative to past performances.
This component represents an individual
memory of the position that was the best for
the particle. The effect of the cognitive
component is the tendency of particles to
return to positions that satisfied them most in
the past. The cognitive component referred
to as the nostalgia of the particle.

� The term c2r
k
2;j

pk
i;gbest

�mk
i;j

� �
Dt is the social com-

ponent that measures the performance of the
particles relative to a swarm. The effect of
this component is that each particle move
toward the best position found by the parti-
cle�s neighborhood.

Initialization

Particles are randomly initialized across the
entire domain of the misfit function. This is to

Figure 2. GPSO model parameters and velocity update (modi-

fied from Perez and Behdinan 2007).
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Figure 3. Flow chart for the GPSO algorithm.
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ensure, as much as possible given the population
size, that the entire misfit-function domain has the
potential to be searched, and no region is left
unexplored. This increases the chances of finding the
global optimum, if it exists. The domain is defined by
mmin and mmax, which represent the minimum and
maximum ranges of m for the ith model parameter,

respectively. Initialize a set of model parameters m0
i;j

and velocities v0i;j randomly distributed throughout

the model space bounded by specified limits as

m0
1;j ¼ mmin;j þ r1;j mmax;j �mmin;j

� �
; ð6Þ

v0i;j ¼
m0

1;j ¼ mmin;j þ r1;j mmax;j �mmin;j

� �

Dt
; ð7Þ

where mmin,j and mmax,j represent the lower and
upper model parameter variables bounds, respec-
tively, and r represents a random number in the
interval [0, 1].

Acceleration Coefficient and Inertia Weight

Perez and Behdinan (2007) demonstrated that a
particle swarm is stable only if the following condi-
tions are satisfied:

0\c1 þ c2\4 ð8Þ

c1 þ c2
2

� �
� 1\w\1: ð9Þ

If the above conditions are satisfied, the system is
guaranteed to converge to a local optimum value.
However, it is not guaranteed to converge to the
global optimum value, and its acceptability as a
solution should be verified by misfit functional (i.e.,
the convergence criterion set by the user). The final
term, w, is the inertia weight, which scales the cur-
rent velocity vector. This controls the influence of
the current velocity vector on the updated velocity
vector. Large inertia weights increase the magnitude
of the updated velocity vector, allowing the algo-

rithm to explore the solution model space globally
(Perez and Behdinan 2007), and reduce the influ-
ence of the local and global velocity terms, increas-
ing the inertia of the current velocity vector term.
Conversely, small inertia values reduce the inertia of
the current velocity vector, so that the updated
velocity vector is influenced by the local and global
terms and concentrates updated searches in the
nearby regions of the model space. A variation of
inertia weight has been proposed by decreasing lin-
early at each iteration as (Shi and Eberhart 1998)

wkþ1 ¼ wmax �
wmax � wmin

kmax

� �
k; ð10Þ

where wmax and wmin are the maximum and mini-
mum values of inertia weight, respectively, kmax is
the maximum iteration number, and k is the current
iteration number.

A desktop PC with Intel Core2Duo was used to
execute in the present work. To obtain the result,
the present GPSO approach took around 0.8 s in
which five number of model parameter has been
optimized. The program was developed in Window 7
environment using MATLAB (R2015a).

RESULTS

In the present work, the same PSO parameters
were used for synthetic (noise-free and contami-
nated) and field data. The experiments were con-
ducted with 20 tests using the following parameters:
population size = 40, the number of genera-
tion = 200, and c1 and c2 were 1.2 and 1.7, respec-
tively. The maximum and minimum values of inertia
weight were 0.9 and 0.4, respectively.

Synthetic Examples

The GPSO optimization, as described in ‘‘The
Particle Swarm Optimization (PSO) Method’’ sec-
tion, was applied to interpret noise-free and noisy
synthetic residual gravity anomaly data. Forward
models of the residual gravity anomaly were calcu-
lated for a sphere, horizontal, and vertical cylinder-
type model, with zero noise and with 10% Gaussian
noise added. In the first application of GPSO to the
synthetic gravity anomaly data, all model parame-
ters were optimized for each dataset. Subsequently,
the shape factor was fixed to its known value, 1.5 for

Table 1. Effect of population size over computation time

Population

size

Computation

time (s)

No. of generations

needed

20 0.52–0.60 139–149

40 0.76–1.09 131–141

100 1.47–2.46 122–128

400 5.36–9.16 117–121

1000 13.24–22.31 116–120
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sphere, 1.0 for horizontal cylinder, and 0.5 for ver-
tical cylinder, and the GPSO was repeated for these
values.

Model 1 (Sphere)

Synthetic data were generated using Eq. (1) for
a spherical model (Table 2). Next, 10% Gaussian
noise was added to the synthetic data, yielding a
total of two synthetic gravity anomaly datasets.
GPSO was then performed to estimate the (known)
parameters (R, r, x0, z, and q) of the idealized
bodies, using Eq. (3) as the objective function. Ini-
tially, a wide suitable search range for the various
model parameters was selected and GPSO was
executed. Figure 4 shows the convergence pattern of
various model parameters and the normalized root-
mean square error (NRMSE) after GPSO for a
single solution. The mean of the (local) particle best
values (blue curves) converge to the best global
value (red curves), because the best global value
initially has only one particle and then over time
other particles converge to the region. Therefore,
the mean of all the best individual particle values has
a greater spread and initially underestimates (for a
local maximum) the best value, gradually converging
to the best value as more particles converge on the
global best value. If the shape factor (q) is free, the
standard deviations of the various model parameters
(Table 2) tend to be higher than if the shape factor
(q) is fixed. If the shape factor is fixed to its actual
value, the misfit of the model parameters with the
actual value decreases and the final model parame-
ters are close to the actual value (Fig. 5). If the
shape factor (q) is free, the frequency distributions
of the different parameters for sphere show a wide
range of solutions for R, r, and z (Fig. 6). However,
the location of the body can be precisely determined
and the shape factor shows that it is within the range

of actual value. If the shape factor (q) is fixed, the
depth of the body and its location are more precisely
determined; however, the radius and the density
have wide frequency distributions (Fig. 7). This im-
plies that the radius and the density cannot be
determined very precisely and the parameters re-
main uncertain even if the shape factor is fixed. In
order to analyze the effect of errors in the data for
estimating the model parameters by using the
GPSO, we generated the cross-plots (Fig. 8) be-
tween various model parameters if two parameters
are kept free and the remaining parameters are
fixed. The cross-plot between density and radius
shows a wide range of solution suggesting that these
two parameters are ambiguous. However, the cross-
plots show that the other parameters can be deter-
mined very precisely. The cross-plots indicate that
except for density and radius model parameters
converge toward the global minimum of the corre-
sponding model.

Next, GPSO was applied to the noisy data (10%
Gaussian). The results of the noisy data were worse
with respect to noise-free data but the results have less
than 10% error. Adding some Gaussian noise to the
data results in some ambiguous model parameters.
The frequency distributions of the model parameters
show that the exact points are shifted from the global
minimum (Fig. 9), which results in some ambiguity of
the model parameters. The error level directly affects
the area of the global minimum of corresponding
model parameters as can be seen from the cross-plots
diagram (Fig. 10). Figure 11 depicts a comparison
between the observed and the mean model data for
noise-free and noisy synthetic data.

Model 2 (Horizontal Cylinder)

For the synthetic model of a horizontal cylinder
a forward model was generated without noise

Table 2. Comparison of actual and GPSO-estimated parameters for a spherical model of noise-free synthetic data and synthetic data with

10% Gaussian noise

Model

parameters

Actual

value

Search

range

Mean model

(noise free) q free

Mean model

(noise free) q fixed

Mean model

noise 10% q free

Mean model

noise 10% q fixed

r (g/cc) 2 1–3 1.95± 0.49 1.90± 0.55 2.40± 0.42 1.99± 0.52

R (m) 50 20–100 62.74± 17.98 51.78± 5.21 63.83± 16.97 51.56± 4.88

x0 (m) 250 200–300 250.00± 0.12 250.00± 0.11 248.75± 0.47 248.79± 1.03

z (m) 100 50–150 102.29± 4.45 100.01± 0.32 106.95± 3.99 103.33± 2.93

q 1.5 0–3 1.501± 0.08 1.5 1.57± 0.07 1.5

Misfit (%) 1.38± 1.8 0.61± 1.5 6.41± 8.1 7.6± 8.3
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Figure 4. Convergence pattern for model parameters radius (R), density contrast (r), depth (z), location (x0), and shape factor (q) for

sphere—(Model 1) when shape factor (q) is free.

Figure 5. Convergence pattern for the model parameters radius (R), density contrast (r), depth (z),

location (x0), and shape factor (q) for sphere—(Model 1) when shape factor (q) is fixed.
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(Table 3), as well as with an addition of 10%
Gaussian noise. The convergence patterns for each
of the parameters of Model 2 are similar to those of
Model 1 (Figs. 4, 5), but the figures are not shown
here for brevity and because of page limitations. The
parameter q was estimated in the first application of
GPSO, and then was fixed for subsequent applica-
tions, as in the spherical case. The frequency distri-
bution of each model parameter (depth and
location) converges toward actual value (Fig. 12)
however, the other two parameters remain uncertain
when the shape factor is fixed. The frequency dis-
tribution of model parameters using the noisy data
(10% Gaussian) (Fig. 13) are similar to those for the
sphere model (Fig. 9). The cross-plot analyzed for
horizontal cylinder model was also similar to those
of sphere model (Figs. 8, 10) and are not shown here
for brevity and because of page limitations. The final
horizontal cylinder model parameters from those of

noise-free and noisy data are compared in Table 3.
Figure 14 illustrates the difference between the ob-
served and the mean model data for noise-free and
noisy synthetic data.

Model 3 (Vertical Cylinder)

The theoretical noise-free and noisy data
inversions were also carried out for Model 3 (verti-
cal cylinder) keeping the shape factor free as well as
fixed to interpret the model parameters. The con-
vergence patterns for each of the parameters for
Model 3 are similar to those of Model 1 (Figs. 4, 5)
and are not shown here for brevity and because of
page limitations. The frequency distribution of the
model parameters obtained from the noise free for
the vertical cylinder model (Fig. 15), when the shape
factor is fixed, are similar to those for the sphere and

Figure 6. Frequency distribution of model parameters (i.e., radius (R), density contrast (r), depth (z), location (x0), and shape factor (q) for

sphere—(Model 1) when shape factor (q) is free.

Figure 7. Frequency distribution of model parameters (i.e., radius (R), density contrast (r), depth (z), and location (x0) for sphere—(Model

1) with noise-free synthetic data when shape factor (q) is fixed.
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Figure 8. Cross-plots for sphere—(Model 1) when two of five parameters are variable, rest of them are fixed, for noise-free data. a Vicinity

of variation of R and r (R = 50 m, r = 2 g/cc). b Variation of R and z (R = 50 m, z = 100 m). c Variation of r and z (r = 2 g/cc, z = 100 m).

d Variation of r and x0 (r = 2 g/cc, x0 = 250 m). e Variation of z and x0 (z = 100 m, x0 = 250 m). f Variation of x0 and q (x0 = 250 m,

q = 1.5).

Figure 9. Frequency distribution of model parameters radius (R), density contrast (r), depth (z), and location (x0) for sphere—(Model 1)

when shape factor (q) is fixed for synthetic data with 10% Gaussian noise.

Figure 10. Cross-plots for sphere—(Model 1) when two of five parameters are variable, rest of them are fixed. For synthetic with 10%

Gaussian noise. a Vicinity of variation of R and r (R = 50 m, r = 2 g/cc). b Variation of R and z (R = 50 m, z = 100 m). c Variation of r
and z (r = 2 g/cc, z = 100 m). d Variation of r and x0 (r = 2 g/cc, x0 = 250 m). e Variation of z and x0 (z = 100 m, x0 = 250 m). f Variation

of x0 and q (x0 = 250 m, q = 1.5).
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horizontal cylinder models. The frequency distribu-
tions of the model parameters obtained from the
noisy data for the vertical cylinder model (Fig. 16),
when the shape factor is fixed, are similar to those
for the sphere and horizontal cylinder models. The
final vertical cylinder model parameters from the
noise-free and noisy data are compared in Table 4.
Figure 17 illustrates the difference between the ob-
served and the mean model data for noise-free and
noisy synthetic data.

Field Examples

Humble Dome Anomaly, Houston, Texas, USA

Residual gravity data over the Humble Dome
near Houston (Texas) were taken from Nettleton
(1976). Humble Dome is a geological feature that
has been studied for its oil and gas potential. Net-
tleton (1976) analyzed the residual gravity data and

estimated the depth and dimensions of the geologic
body causing a significant negative gravity anomaly
over the Humble Dome. The gravity anomaly over
this dome was also interpreted by several authors
(Shaw and Agarwal 1990; Abdelrahman et al. 2001a;
Salem and Ravat 2003; Salem et al. 2003, 2004; Tlas
et al. 2005; Asfahani and Tlas 2012; Mehanee 2014,
Biswas 2015), all of whom assumed a spherical
structure for the geological body generating the
anomaly. Optimization methods that have been used
for interpretation of residual gravity anomaly in-
clude adaptive simulated annealing (Tlas et al.
2005), fair function minimization (Asfahani and Tlas
2012), simultaneous regularized inversion (Mehanee
2014), and very fast simulated annealing (Biswas
2015). Parameters for the spherical source of the
anomaly based on these optimization techniques are
summarized in Table 5. We applied GPSO to esti-
mate optimal parameters for a spherical source
(fixed q). The anomaly is obtained by digitizing at
610 m interval based on the earlier literature. The
estimated parameters are shown in Table 5. The
results reveal that GPSO yields results similar to
those obtained using the other optimization meth-
ods. The observed data and GPSO-predicted
anomaly are shown in Figure 18a. It must be men-
tioned that we consider the radius and the density as
model parameters in this work instead of a com-
bined amplitude coefficient (k) as mentioned in
Eq. (1). However, the main model parameters for
exploration study are to determine precisely the
location and depth of the source body along with its
radius and density.

Leona Anomaly, South Saint-Louis, Western Coast-
line, Senegal

Residual gravity data along a profile length of
30 km over an anomaly in the west coast of Senegal
(West Africa) were taken from Nettleton (1976).

Figure 11. Observed data and GPSO solution for spher-

e—(Model 1): noise-free synthetic data (top) and synthetic

data with 10% Gaussian noise (bottom).

Table 3. Comparison of actual and GPSO-estimated parameters for a horizontal cylindrical model of noise-free synthetic data and

synthetic data with 10% Gaussian noise

Model

parameters

Actual

value

Search

range

Mean model

(noise free) q free

Mean model

(noise free) q fixed

Mean model

noise 10% q free

Mean model

noise 10% q fixed

r (g/cc) �3 �5 to �1 �2.77± 0.84 �2.96± 0.94 �3.62± 0.96 �2.51± 0.84

R (m) 50 0–100 59.42± 11.23 52.67± 0.09 51.40± 13.07 56.99± 9.63

x0 (m) 250 200–300 250.01± 0.02 250.00± 0.01 249.95± 0.08 249.95± 0.18

z (m) 20 0–100 20.51± 0.82 20.00± 0.02 20.46± 0.96 20.08± 0.38

q 1.0 0–3 1.02± 0.04 1.0 1.01± 0.04 1.0

Misfit (%) 1.1± 2.3 0.18± 1.5 2.2± 3.6 1.6± 3.0
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The anomaly has been studied for its oil and gas
potential. The anomaly was digitized with an equal
interval of 500 m. This anomaly has also been pre-

viously interpreted as a spherical source body (Tlas
et al. 2005; Asfahani and Tlas 2012) and as a vertical
cylindrical source body (Mehanee 2014; Biswas
2015). The parameters of the source body estimated
in the previous study are summarized in Table 6.
The present study assumes that the source body is a
vertical cylinder. The GPSO results agree well with
the results of Mehanee (2014) and Biswas (2015),
strengthening the interpretation of the source body
as a vertical cylinder. The observed data and GPSO
vertical cylinder model are shown in Figure 18b. The
GPSO algorithm converges toward a vertical cylin-
drical body and consistently yielded better results
for vertical cylindrical body. Moreover, the results
estimated using a vertical cylindrical body is more
accurate for vertical cylinder as compared to a
spherical body.

The Karrbo Gravity Anomaly, Sweden

Residual gravity data along a profile of 25.6 m
over a pyrrhotite ore body at Karrbo (Vastmanland,

Figure 12. Frequency distribution of model parameters for horizontal cylinder—(Model 2) when shape factor (q) is fixed for noise-free

synthetic data.

Figure 13. Frequency distribution of model parameter for horizontal cylinder—(Model 2) when shape factor (q) is fixed for synthetic data

with 10% Gaussian noise.

Figure 14. Observed data and GPSO solution for Horizontal

cylinder—(Model 2): noise-free synthetic data (top) and synthetic

data with 10% Gaussian noise (bottom).
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Sweden) were taken from Shaw and Agarwal (1990).
This geologic feature has been studied for its iron
ore and sulfide mineral potential. Results of previ-
ous analysis and the present analysis are shown in
Table 7. The observed data and interpreted mean
model response from this present study are shown in
Figure 18c. The depth of the body assessed by the

present study is 4.70 m. The depths obtained by Tlas
et al. (2005) were 4.82 m, using adaptive simulated
annealing and Asfahani and Tlas (2012) was 4.84 m
using fair function minimization. The results are also
in good agreement with the other results as shown in
Table 7. The estimated misfit based on GPSO is very
low.

Figure 15. Frequency distribution of model parameters for vertical cylinder—(Model 3) when shape factor (q) is fixed for noise-free

synthetic data.

Figure 16. Frequency distribution of model parameter for vertical cylinder—(Model 3) when shape factor (q) is fixed synthetic data with

10% Gaussian noise.

Table 4. Comparison of actual and GPSO-estimated parameters for a vertical cylindrical model of noise-free synthetic data and synthetic

data with 10% Gaussian noise

Model

parameters

Actual

value

Search

range

Mean model

(noise free) q free

Mean model

(noise free) q fixed

Mean model

noise 10% q free

Mean model noise

10% q fixed

r (g/cc) 4 2–5 3.37± 0.79 3.59± 0.62 4.58± 0.54 3.47± 0.85

R (m) 80 0–150 90.17± 17.37 85.43± 8.04 118.88± 21.30 88.47± 11.14

x0 (m) 250 200–300 250.01± 0.14 249.99± 0.34 247.97± 0.60 247.93± 1.29

z (m) 50 10–150 49.96± 2.97 50.00± 0.27 63.76± 3.67 53.38± 0.95

q 0.5 0–3 0.49± 0.02 0.5 0.58± 0.29 0.5

Misfit (%) 1.8± 4 4.1± 1.6 7.4± 11.79 6.5± 7.1
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Offshore Louisiana Salt Dome Anomaly, USA

Residual gravity data over a salt dome offshore
Louisiana (USA) was taken from Nettleton (1976)
and Roy et al. 2000. This geologic feature has been

studied for its oil and gas potential. The results from
the previous and present studies are shown in
Table 8. The observed field data and interpreted
mean model response in this study are shown in
Figure 18d. The depth of the body estimated in the
present study is 2874.8 m with a misfit of about 7%.
The depths obtained by Mehanee (2014) using reg-
ularized inversion and by Biswas (2015) using very
fast simulated annealing were 2899 and 2702 m,
respectively.

Mobrun Anomaly, Noranda, Quebec, Canada

Residual gravity anomaly data over a massive
sulfide ore body in the Noranda Mining District
(Quebec, Canada) were taken from previous studies
(Siegel et al. 1957; Grant and West 1965; Roy et al.
2000). The results from previous and present studies
are shown in Table 9. The observed field data and
interpreted mean model response from the present
study are shown in Figure 18e. The depth of the
body estimated in the present study is 46.69 m.
which is very close to the depths obtained by
Mehanee (2014) and Biswas (2015).

Figure 17. Observed data and GPSO-optimized solution for

vertical cylinder—(Model 3): noise-free synthetic data (top) and

synthetic data with 10% Gaussian noise (bottom).

Table 5. Search range and estimated parameters for a spherical source body, Humble Dome Anomaly, Houston, Texas, USA

Model parameters Search range Tlas et al. (2005) Ashfahani and Tlas (2012) Mehanee (2014) Biswas (2015) Present work (GPSO)

r (g/cc) �5 to 0 – – – – �2.05± 1.26

R (km) 0–100 – – – – 19.37± 5.73

x0 (km) �5 to 5 0.01 – – 0.07 0.08± 0.08

z (km) 0–10 4.59 4.58 4.62 4.4 4.60± 0.04

q 1.5 1.47 1.48 1.5 1.5 1.5

Misfit (%) – – – – 4.3± 6.0

Figure 18. Agreements between observed data and GPSO solution using a spherical source body for the Humble Dome Anomaly,

Houston, Texas, USA; b vertical cylindrical source body for the Leona Anomaly, South Saint-Louis, Western Coastline, Senegal; c

horizontal cylindrical source body for the Karrbo Gravity Anomaly, Sweden; d horizontal cylindrical source body for the Offshore

Louisiana Salt Dome Anomaly, USA; and (e) horizontal cylindrical source body for the Mobrun Anomaly, Noranda, Quebec, Canada.
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DISCUSSION

Standard geometrical shapes of gravity anoma-
lies such as sphere, horizontal cylinder, vertical
cylinder, or sheet-type structures, cannot be found in
natural conditions. Hence, modeling and inversion
of gravity data from field surveys using standard
geometrical formulation may not give the actual

subsurface structure. If the geologic data suggest
that subsurface bodies are irregularly shaped (e.g.,
complexly folded and faulted), then modeling the
subsurface shape of such bodies as idealized spheres
or cylinders is not likely to yield meaningful results.
In such a case, the multi-dimensional objective
(misfit/error) function will be complex and, thus,
application of a simple iterative inversion approach

Table 6. Search range and estimated parameters for the Leona Anomaly, South Saint-Louis, Western Coastline, Senegal

Model

parameters

Search

range

Tlas et al.

(2005)

Ashfahani and

Tlas (2012)

Mehanee

(2014) (Sphere)

Mehanee (2014)

(vertical cylinder)

Biswas

(2015)

Present work

(GPSO)

r (g/cc) 0–5 – – – – – 2.37± 0.98

R (km) 0–100 – – – – – 33.05± 7.99

x0 (km) �20 to 20 0.22 – – – �0.4 �0.24± 0.05

z (km) 0–100 9.17 9.13 12.2 4.59 4.6 4.50± 1.78

q 0.5 1.499 1.499 1.5 0.5 0.5 0.5

Misfit (%) – – – – – 3.2± 10

Table 7. Search range and estimated parameters for the Karrbo Gravity Anomaly, Sweden

Model parameters Search range Tlas et al. (2005) Ashfahani and Tlas (2012) Biswas (2015) Present work (GPSO)

r (g/cc) 0–5 – – 9.50± 3.26

R (m) 0–20 – – 1.62± 0.83

x0 (m) �15 to 15 0.18 – 0.2 0.19± 0.03

z (m) 0–20 4.82 4.84 4.7 4.69± 0.03

q 1.0 1.02 1.02 1.0 1.0

Misfit (%) – – 1.0± 2.0

Table 8. Search range and estimated parameters for the Offshore Louisiana Salt Dome Anomaly, USA

Model parameters Search range Mehanee (2014) Biswas (2015) Present work (GPSO)

r (g/cc) �5 to 0 – – �2.51± 1.21

R (m) 200–800 – – 436.43± 129.91

x0 (m) �50 to 1000 – 506.5 451.02± 24.63

z (m) 100–5000 2899 2702.2 2874.80± 53.90

q 1.0 1.0 1.0 1.0

Misfit (%) – – 6.7± 15

Table 9. Search range and estimated parameters for the Mobrun Anomaly, Noranda, Quebec, Canada

Model parameters Search range Mehanee (2014) Biswas (2015) Present work (GPSO)

r (g/cc) 0–5 – – 2.43± 0.95

R (m) 0–50 – – 29.58± 6.57

x0 (m) �15 to 15 – 2.5 2.37± 0.41

z (m) 0–100 47 47.7 46.69± 0.47

q 1.0 1.0 1.0 1.0

Misfit (%) – – 3.04± 5.2
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may fail to demonstrate the actual subsurface
structure. Hence, global optimization is needed to
deal with such a case. Moreover, it must be
emphasized that irregular-shaped bodies cannot be
determined very accurately using any interpretation
method unless there is a good knowledge about the
geology of the area and log data.

The GPSO method consistently yields lower
misfit for theoretical and field examples. The field
examples show that the method is robust and can be
applied effectively with default parameters, whereas
other methods may not be so. When low to moderate
misfits are acceptable, it is appropriate to let GPSO
estimate the shape factor. This is demonstrated from
the results with synthetic data which yield near-true
value of the shape factor. When data are noisy, as is
the case from the field examples, we do not know
what type of noise is added in the data. However, as
demonstrated from the results with noisy data, finding
global minimum is somewhat critical but certainly not
hard to find. In some cases, we may get results within
local minima that are close to the actual global min-
ima. In such situation, both solutions are viable but
the final interpretation would be misleading. Hence,
it is preferable to estimate the shape factor and then
fix the shape factor to decide on the nature of the
body. This way we can also reduce the error in the
final interpretation. Also, from the noisy data, the
resulting misfit is less than 1–10%, which is also
acceptable along with the field examples.

When using regional gravity data to predict large
structures, such as depth and configuration of sedi-
mentary basins, amisfit of<10%would be an excellent
result. This is becausemodeling results are sensitive to
small lateral changes in density, and the distribution of
density in the subsurface is largely unknown at the
scale of structural basins. Depending on the applica-
tion, amisfit of<10%isacceptable and it is appropriate
to model the shape factor as well as the other param-
eters. This is especially true in places where all infor-
mation of geologic evidence does not provide enough
clue as to what the shape factor is. Hence, it is prudent
to first estimate the shape factor and, depending on the
interpretation of the type of structure, to fix the shape
factor to its actual value. This provides the advantage
of finding the least error solution. TheGPSO solutions
obtained in this study are very optimal and compare
very well with solution obtained by other interpreta-
tion methods. The convergence rate of the GPSO is
even faster than the other methods as applied for the
interpretation of gravity data. In comparison, the re-
sults of the GPSO in this study with results from pre-

vious studies using other interpretation methods, the
equation for the objective function or themisfit error is
different than in other interpretation methods and
hence the errors measured from the previous studies
are different and not shown in Tables 5, 6, 7, 8, and 9.

CONCLUSIONS

The results obtained using GPSO from field
gravity data showed good agreement with the results
obtained using other inversion methods in previous
studies. The results of the implementation of the
GPSO algorithm developed in the present study for
the interpretation of residual gravity anomaly data
are comparable to results using other inversion
algorithms in terms of computation time and misfit
error. However, the GPSO provides impressive
convergence rate curves with the ability to find low-
misfit geophysical models much faster than other
interpretation methods when using the same initial
population and search space.
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