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This paper outlines the process taken to create two separate gold prospectivity maps. The first
was created using a combination of several knowledge-driven (KD) techniques. The second was
created using a relatively new classification method called random forests (RF). The purpose of
this studywas to examine the results of theRF techniqueand to compare the results to that of the
KD model. The datasets used for the creation of evidence maps for the gold prospectivity
mapping include a comprehensive lake sediment geochemical dataset, interpreted geological
structures (form lines), mapped and interpreted faults, lithology, topographic features (lakes),
and known Au occurrences. The RFmethod performed well in that the gold prospectivity map
createdwas a better predictor of the knownAuoccurrences than theKDgold prospectivitymap.
This was further validated by a fivefold repetition using a subset of the input training areas.
Several advantages to the use of RF include (1) the ability to take both continuous and/or
categorical data as variable inputs, (2) an internal, unbiased estimation of the mapping error
(out-of-bag error) removing the need for a cross-validation of the final outputs to determine
accuracy, and (3) the estimation of importance of each input variable. Efficiency of prediction
curves illustrates that the RF method performs better than the KDmethod. The success rate is
significantly higher for the RF method than for the KD method.
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INTRODUCTION

Exploration for gold deposits has been a major
focus for mineral exploration companies across Ca-
nada for much of the last century. There are four
main phases involved in mineral exploration: (1)
area selection, (2) target generation, (3) resource
evaluation, and (4) reserve definition. Traditionally,
area selection in mineral exploration starts by out-

lining geological units that are suitable for specific
types of mineral deposits based on knowledge of the
near surface geological environment, where geo-
logical processes are favorable for mineral deposi-
tion. Next, target generation starts with grassroots
prospecting and/or geochemical sampling of various
media (till, soil, rock, lakes, streams, etc.) over those
favorable geological units/belts, and is designed to
discover anomalous geochemical concentrations of
various elements and preferential structures within
the rock units. If anything of interest is discovered
by prospecting, a resource evaluation may be carried
out which can include systematic drilling programs
and/or geophysical surveys in an attempt to locate
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and delineate high-grade mineral deposits as well as
to determine a rough estimate of the grade and size
of the deposits. If these deposits are large enough
and with high enough grade to be mined economi-
cally, reserve definition can begin. This involves
precise definition drilling and sampling to determine
and classify areas of the deposit as ore or waste rock
based on grade, density, and location.

For various reasons, economic mineral deposits
are becoming increasingly difficult to locate. As
incredibly large volumes of geoscience data are
being collected by industry and government, new
methods and tools for archiving, managing, manip-
ulating, integrating, and visualizing these data are
being created. Geographic Information Systems
(GIS) are an excellent tool for all stages of gold
exploration. The creation of mineral prospectivity
maps using GIS and various geoscience datasets can
be a very cost- and time-effective way of executing
the first two phases of mineral exploration.

The term mineral prospectivity is defined as
the probability or likelihood that mineral deposits
of the type sought can be found in a specific area.
The process of creating a mineral prospectivity
(mineral potential) map for a study area includes
defining an exploration model, preparing evidence
maps, outlining the modeling method, creating the
prospectivity map, and evaluating the map. A
good model for mineral prospectivity makes two
assumptions. Firstly, an area is deemed highly
prospective if it contains or is characterized by the
same attributes that are found in conjunction with
known mineral deposits or occurrences of the type
sought and secondly, the attributes used to deter-
mine the mineral prospectivity of an area are
present, independent of each other, and varying
across the study area.

There are two main approaches for creating
mineral prospectivity maps, each with several
methods: (1) data-driven models and (2) knowledge-
driven models for which reviews can be found in
Bonham-Carter (1994), Wright and Bonham-Carter
(1996), and Carranza (2009a, b). The preference of
one method over the other is generally decided by
the amount of available geoscience data and whe-
ther existing mineral occurrences are present for the
area under study. Each method has advantages and
disadvantages; therefore, the use of one particular
method is usually decided based on the specific
needs of the user. Data-driven approaches use
known locations of mineral prospects, occurrences,

or deposits as controls and use spatial statistical
methods to determine the weight of importance for
each data layer. This approach has the advantage of
needing very little geologist input, and potentially
biased human input is kept at a minimum. Methods
such as logistic regression (Chung and Agterberg
1980), weights of evidence (WofE) (Bonham-Carter
1994), decision tree analysis (Reddy and Bonham-
Carter 1991), neural networks (Brodeur et al. 1992;
Singer and Kouda 1996; Harris and Pan 1999; Brown
et al. 2000; Porwal et al. 2003), and support vector
machine (Zuo and Carranza 2011; Abedi et al. 2012)
are examples of data-driven approaches.

Knowledge Driven (KD) approaches do not
require any data on mineral deposits or occurrences
within the study area. They rely on the inputs of a
geologist with reasonable knowledge and experience
to determine the weight of importance for each
evidence map. This approach may bring up human
bias but has the advantage of using the knowledge of
the geologist on all aspects of the model, and not
needing a dataset of known mineral prospects,
occurrences, or deposits as controls. Examples of
KD approaches include Boolean logic, index over-
lays (Harris 1989), analytical hierarchy process (An
et al. 1992; Harris et al. 2001), fuzzy logic (An et al.
1991), and evidential belief (An et al. 1994a, b;
Carranza et al. 2005; Carranza 2014).

This paper outlines the process taken to create
two separate Au prospectivity maps. The first was
created using a combination of different KD tech-
niques. The second was created using a random
forests (RF) classification technique. The purpose of
this study was to examine the results of the RF
technique and to compare the results to that of the
KD model.

RF is a data-driven method for classification
created by Breiman (2001). It creates a large
ensemble of decision trees created by randomly
sampling a small portion of the input evidence maps
(variables) and creates a bootstrap random sampling
of 2/3 of the available training data for classification
and remaining 1/3 for validation. The final classifi-
cation map is created through a majority vote from
all trees on a pixel-to-pixel basis. While this is not a
new method of producing mineral potential maps
(Rodriguez-Galiano et al. 2014; Carranza and La-
borte 2015; Harris et al. 2015), the strength of RF, in
this case, comes from its ability to also create a
probability (confidence) map for the classification of
each pixel. It is this probability map, as opposed to
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the classified map, that is used as a measure of
prospectivity (Harris et al. 2015). The KD technique
we employ involves a combination of basic index
overlay and fuzzy-weighted index overlay ap-
proaches.

OBJECTIVES

This paper compares the results of a relatively
new classification algorithm, RF, to a commonly
used KD, method for the production of gold
prospectivity maps of a large territory in southern
Nunavut, Canada. Interpolated lake sediment, geo-
logic structural, and lithological data were used as
evidence maps (predictors) for both methods.
Known gold-bearing mineral occurrences were used
to train the RF algorithm to produce a prospectivity
map. Due to the relatively small number of gold
prospects in the area (i.e., 16), all of the prospects
were used to train the RF classification algorithm.
However, to study the effect of the small number of
Au occurrences used for training the RF classifier,
we use a fivefold repetition of the RF classifier using
a random selection of eight Au occurrences and
eight non-Au occurrences for each repetition. Thus,
five RF classification and probability maps were
produced each with an associated RF out-of-bag
(oob) and classification error value. The KD ap-
proach used the same evidence maps, some of which
were combined, but the known gold prospects were
not used to derive the Au prospectivity map. The RF
Au prospectivity (probability) map and the KD
prospectivity maps were evaluated to see how well
they predicted the known Au occurrences using
efficiency of prediction curves (Chung and Fabbri
2003; Agterberg and Bonham-Carter 2005; Harris
et al. 2006).

STUDY AREA

We undertake our experiments in the southern
Hearne geologic province (Fig. 1). The study area is
bounded by the latitudes 60 and 61 degrees, and
longitudes �102 and �96 degrees. The study area
has a perimeter of 907.2 km and an area of
36,723.84 km2.

The geology of the Hearne study area (Fig. 2)
derived from Paul et al. (2002) is dominated by
Archean quartz-feldspathic granitoid rocks, ranging
from granites to tonalites with septa of supracrustal
rocks which form part of the Ennadai belt (Hanmer
et al. 2004). These rocks are overlain by the rocks of
the Hurwitz Group (Aspler et al. 2001). Paleopro-
terozoic plutons comprise the Hudson granitoid
suite (ca. 1.83 Ga) and the younger Nueltin granite
intrusive suite (ca. 1.75 Ga) (Van Breeman et al.
2005; Scott et al. 2012). Hanmer et al. (2004) provide
a detailed description of the Hearne domain.

Economic mineral prospects within the Nueltin
Suite include uraninite and uranium-bearing silicate
minerals and secondary REE carbonates (Char-
bonneau and Swettenham 1986; Scott 2012). Scott
et al. 2012 have determined that the mineral occur-
rences are hosted by pegmatitic phases within
Nueltin granite. Gold occurrences often associated

Figure 1. Location of study area—Hearn Geologic Province,

Nunavut, Canada.
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with various base metals also occur within the study
area and are the focus of our study.

DATA

The data used in the creation of the evidence
maps for the Au mineral prospectivity maps included
a comprehensive lake sediment geochemical dataset,
interpreted geological structures (form lines), map-
ped and interpreted faults, lithology, topographic
features (lakes), and known Au occurrences.

The lake sediment geochemical data used for
the study were published in GSC Open File 6986
(McCurdy et al. 2012). This dataset comprises new
analytical data for 60 elements from the reanalysis of
lake sediment samples collected from 2377 sites
within the study area during the Federal Uranium
Reconnaissance Program. Inductively Coupled
Plasma Mass Spectrometry (ICP-MS) was used to
analyze 53 elements, whereas Atomic Absorption
Spectroscopy (AAS) was used to analyze Zn, Cu,
Pb, Ni, Co, Ag, Mn, Fe, and Cd. More details
regarding the survey, analysis, and quality control
measures can be found in McCurdy et al. (2012).

The lake sediment data used can give an indication
of potential gold mineralization based on spatially
distributed high concentrations and are commonly
used in mineral exploration programs.

The interpreted structures and the mapped and
interpreted faults used in the study were published
in GSC Open File 7649 (Behnia et al. 2013). This
comprehensive structural dataset includes compiled
and newly interpreted form lines, faults, dykes,
fractures, and lineaments for Canada�s North. Faults
and form lines, especially those that mark potential
contact zones between different lithologies, act as
conduits for mineralized fluids and are commonly
used in exploration projects.

The lithological data were published in the GSC
Open File 7649 in map 2159A (Behnia et al. 2013).
The lithology polygons were interpreted using data
from GSC Open File 4236 (Paul et al. 2002).
Lithology is obviously important in exploration as
Au, depending on the tectonic regime, commonly
occurs in specific rock types (e.g., sediments) that
are associated with faults and shear zones.

The topographic data were published in the
GSC Open File 7649 in map 2159A (Behnia et al.
2013). This dataset was used to create a lake mask,

Figure 2. Generalized geology of the study area (from Paul et al. 2002).
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as described below. The known Au occurrences
were collected and archived by the Canada-Nunavut
Geoscience Office and published in the GSC Open
File 7649 (Behnia et al. 2013).

DATA PROCESSING

The RF classification was completed using the
EnMap add-on for ENVI 5.0, and the rest of the
processing was done using ArcMap 10.2. The geo-
processing environments were set up in ArcMap
such that all of the evidence maps created were
clipped to the extents of the study area defined
above (Fig. 1). Additionally, each evidence raster
map was created with a cell size of 400 meters. This
cell size was chosen because it creates a sufficient
number of cells within the study area (183,599) and
it nearly matches the size of a single mining claim
unit in Nunavut (1500 ft., 457.2 m).

A fuzzy evidence map is created for each dataset
used in the analysis. Fuzzification is defined by Car-
ranza (2009a, b) as the process of converting indi-
vidual sets of spatial evidence into fuzzy sets. A fuzzy
set is defined as a collection of objects whose grades
of membership in that set range from complete (=1)
to incomplete (=0). The grade of membership of a
fuzzy set is defined using one of several mathematical
functions, the most common of which are linear,
small, large, MS small, MS large, and near (Fig. 3).
Each evidence map in this paper was fuzzified using
either a linear function (where there is a linear rela-
tionship between the input and output values, e.g.,
geochemical data, faults) or a near function (where
the maximum value of an output is at a specific value
of the input, and output values taper-off away from
that input value, e.g., form lines, geology). The lake
mask was binary in format. In this case, the evidence
maps were fuzzified (based on geologic and explo-
ration knowledge) in order to normalize each evi-
dencemap so as not to assume a higher importance of
one evidence map over another.

Table 1 presents the evidence maps and masks
used for both the RF and KD Au prospectivity

maps. The evidence maps comprised 10 lake sedi-
ment interpolated, and fuzzified maps, two structural
maps (fuzzy fault and form lines) and a fuzzy geol-
ogy map, creating 13 evidence maps for the RF and
KD prospectivity mapping. However, as described
below, we combined the geochemical, structural,
and lithological data into three evidence maps to
produce the KD prospectivity map.

Lake Sediment Geochemical Data

The density of the sediment sample points was
sufficient to warrant interpolation into continuous
surface maps (Grunsky et al. 2014). Ten elements
were used to create evidence maps for the models;
Ag, As, Au, Co, Cu, Fe, Hg, Ni, Pb, and Zn. The
unit used for the measurement of the element in the
lake sediment samples was either percentage (Fe) or
ppm (all other elements). The raw elements listed
were interpolated using an inverse distance-weigh-
ted interpolation algorithm (IDW) available in the
ArcGIS Geostatistical Analyst extension. The
�Power� setting for the IDW algorithm, which con-
trols the influence of known values on the interpo-
lated values based on their distance from the
predicted point, was optimized to minimize the RMS
error for each interpolated element. The 10 inter-
polated and fuzzy geochemical evidence maps are
presented in Figure 4.

In a previous study (Harris et al. 2015), the
same geochemical dataset was used; however, the
geochemical data were corrected for closure
(Aitchison 1986) and censored values. They found
that when RF was applied to the corrected or raw
geochemical data, there was little difference in the
output classification results. Thus, we used the raw
data in this study.

Interpreted Structures and Faults Data

The interpreted structures dataset includes lin-
ear features comprising dykes, faults, fold axis, form

Figure 3. Different look-up-tables (algorithms) for fuzzification of evidence maps.
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lines, lineaments, and shear zones interpreted from
Landsat and airborne magnetic survey data derived
from Behnia et al. (2013). The form lines and faults
were selected from this dataset to create form line
and fault datasets. Fuzzy evidence maps were cre-
ated from the form lines and faults using a �Eu-
clidean Distance� tool to measure the distance from
the lines and reclassifying the raster cells as sum-
marized in Table 2. The fuzzy evidence maps for
faults and form lines are presented in Figure 5a and
b, respectively.

Lithology Data

The lithological units (Fig. 2) are outlined in
Paul et al. (2002), which also list the Eon, Era,
setting, lithology and metamorphism information.
From the dataset, three geological units were
deemed �favorable� for gold exploration based on
the lithology and common understanding of the
genesis of gold deposits. The favorable lithology
types (Fig. 2) are as follows: (1) Hurwitz Group
and equivalents, (2) mafic volcanics and associated
sediments, and (3) supracrustal rocks (undifferen-
tiated). A fuzzy evidence map was created from the
�favorable� geology dataset using a �Euclidean Dis-
tance� tool to measure from the outline of the
geology, and reclassifying the raster cells using a

�near� fuzzy mathematical function according to
Table 3. Within favorable lithologies the value of
each cell never drops below 0.8. Outside of the
favorable geologies the cell values decreases with
increasing distance from the favorable geologic
units until a value of 0 is reached at a distance of
800 m and greater. The highest raster values were
assigned close to the boundaries of the geological
units where the rock is typically more fractured
allowing for the intrusion of epithermal gold de-
posits. The graded boundaries around the geologi-
cal units also partially account for the inherent
estimation of geological boundaries from field sur-
veys and mapping. The fuzzy evidence map for
lithology is presented in Figure 5c.

Topographic Data

A �Large Lakes� evidence map was created and
used as a mask for both the RF and KD prospec-
tivity maps. It was determined that mineral explo-
ration and mining would be too difficult logistically
under large lakes for several reasons including ac-
cess, exploration viability, and permitting issues. To
create a fuzzy lakes evidence raster, the first step was
to select large lakes (lakes greater than 1 cell size,
>160,000 m2). A raster was created from this
selection where raster cells covered more than 50%

Table 1. Summary of evidence maps

Evidence map Description

Geochemical data

Fuzzy Ag Fuzzy evidence maps where the value of each cell is based on the weighted average of lake

bed geochemical samples in the immediate area of the cellFuzzy As

Fuzzy Au

Fuzzy Co

Fuzzy Cu

Fuzzy Fe

Fuzzy Hg

Fuzzy Ni

Fuzzy Pb

Fuzzy Zn

Structure

Fuzzy faults A fuzzy evidence map, where cells close to a mapped fault, based on Table 2, are assigned a higher

value than values further from a mapped fault

Fuzzy form lines A fuzzy evidence map, where cells close to a mapped form line, based on Table 2, are assigned a

higher value than values further from a mapped form line

Fuzzy geology A fuzzy evidence map where cells within or near a potential gold deposit hosting geology are assigned

a high value, and all other cells are assigned a value of 0, based on Table 3. Cells around the edges of

geological units are assigned values of the highest values

Masks

Lakes mask A mask layer where any cell, more than 50% covered by a lake larger than 160,000 km2 is assigned

a value of 0, and all other cells are assigned a value of 1
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Figure 4. Geochemical evidence maps—data were interpolated and fuzzified—see text for description.
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by lakes were given a value of 0, and the remaining
were assigned a value of 1. A final correction was
made to the raster to ensure that raster cells cover-
ing a point representing a �known gold deposit� were
assigned a value of 1 regardless of whether the lake
mask covered more than 50% of the cell. Two of the
known gold deposits were covered by raster values
of 0 because they were discovered on, or near a
rocky shoreline. The fuzzy evidence map for large
water bodies is presented in Figure 5d.

Mineral Deposits

The mineral deposit data comprised 399 known
mineral deposits within Nunavut. Of this dataset, 31
deposits are within the study area, and 16 of these
are Au occurrences some of which also contain base
metals (Fig. 2). A list of the known mineral deposits
within the study area containing gold is presented in
Table 4, and Figure 2 shows their spatial distribu-
tion.

The RF model was designed to classify areas
into prospective and non-prospective areas so the 16
known Au occurrences (400 m grid cell) were used
as training data for the prospective areas, and 16
randomly assigned points, in lithologies not
prospective for gold, were used as non-prospective
areas. Ideally for a more accurate dataset, and to
minimize error, field work should be conducted in
order to properly classify these areas as ‘‘non-
prospective.’’ As mentioned above, a random
selection of both the occurrences and non-occur-
rences was used for the fivefold repletion of RF.

METHODOLOGY

Knowledge-Driven Method

There are many different KD methods for
producing a mineral prospectivity map referenced in
the introduction section. The method used for the
creation of the gold prospectivity map in this paper
combined the lake sediment sample data (10 evi-
dence maps—Fig. 4) into a single raster, and the
structural and geological data (3 evidence maps—-
Fig. 5) into another single raster, then the two single
rasters were combined. This method provides equal
weighting to the lake sediment sample data as a
whole, and the structural and geological data as a
whole. The KD method implemented in this paper is
summarized in Figure 6.

Each of the IDW rasters created from the 10
lake sample elements was normalized between 0 and
1. They were then combined using a weighted sum
method (multiplying the values from each raster by
a �weight� value, then adding the results together), to
create a final soil sample prospectivity raster
(‘‘Weighted Soils Evidence Map’’). The weights for
each element used in the weighted sum method, as
well as some statistics of the output weighted soils
evidence map are presented in Table 5.

The ‘‘Form Lines Evidence Map,’’ ‘‘Faults
Evidence Map,’’ and ‘‘Geology Evidence Map’’
were all combined into a single ‘‘GeoStruct Evi-
dence Map’’ using a series of fuzzy overlay methods,
which overlay the input rasters and return an output
raster (Fig. 6). The form lines and faults were first
combined using a �Fuzzy Or� overlay method which

Table 2. Fuzzification values of linear spatial datasets into raster evidence maps

Form lines evidence map Faults evidence map

Distance (m) Raster value Distance (m) Raster value

0–250 0.80 0–400 1.0

250–500 0.90 400–800 0.95

500–750 1.00 800–1200 0.90

750–1000 0.90 1200–1600 0.85

1000–1250 0.80 1600–2000 0.80

1250–1500 0.70 2000–2400 0.70

1500–1750 0.60 2400–2800 0.60

1750–2000 0.50 2800–3200 0.50

2000–2250 0.40 3200–3600 0.40

2250–2500 0.35 3600–4000 0.30

2500–2750 0.30 >4000 0.20

2750–3000 0.25

>3000 0.20
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kept only the maximum value from the two (as-
suming that the proximity to either faults, or form
lines would be deemed prospective). That output
raster was then combined with the geology using a
�Fuzzy And� overlay method, which kept only the
minimum value (assuming that proximity to faults or
form lines would only be ideal if it was also spatially

associated with ideal geology/lithology, and vice
versa).

The ‘‘GeoStruct Evidence Map’’ raster and the
‘‘Weighted Soils Evidence Map’’ raster were then
multiplied by each other using a �Fuzzy Product�
overlay method (Fig. 6). The multiplication was
done to emphasize the highly prospective areas and
to de-emphasize the poorly prospective areas. This
raster was then stretched to values between 0 and
100. Finally, a simple mask of lakes over 160,000 m2

was applied to create the final KD prospectivity
map. The mask of lakes was applied on the
assumption that gold deposits under large lakes are
either nearly impossible to explore for and/or nearly
impossible to mine (either for mine structure feasi-
bility or permitting reasons).

Random Forests Classification Algorithm

RF is an ensemble (multiple) decision tree
classifier, which does not assume normal distribution
of the input data. RF was originally developed by L.
Breiman and A. Cutler at the University of Cali-
fornia, Berkley (Breiman 2001). Training data/-
classes (in this case 16 locations of mineral
occurrences, and 16 non-prospective locations) are
required for this approach, similar to other data-
driven approaches.

For each tree (the number of trees is determined
by the operator, in this case 1000 trees were chosen), a
random selection of the input variables (i.e., geo-
chemical, structural, lithological datasets, in this case
the 13 evidence maps) is made. The number of vari-
ables selected for each tree is a fraction of the total
number of variables; the square root of the number of
variables is often used (in this case it was 4). Each tree
employs a bagging process (i.e., bootstrap sample),
where approximately 2/3 of the training areas (pixels)
are used to create a prediction (referred to as in-bag)
and 1/3 to validate the accuracy of the prediction
(referred to as out-of-bag, or oob). This random
sampling with replacement of the training dataset is
undertaken for every tree. In-bag data are used to
create multiple decision trees which are applied to
produce independent classifications. At each node of
the individual decision tree, the best split is chosen
from a random sample of variables. Each tree is
grown to the maximum extent with no pruning. Thus,
an ensemble of trees (e.g., forest) is created and a
voting procedure is employed to assign the majority
class from all trees to each pixel in the final prediction

Figure 5. Geologic evidence maps: a fuzzified faults, b fuzzified

form lines, c fuzzified lithology, d lake mask.
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map. RF is not sensitive to noise or over fitting and
there is no need for cross-validation or a separate test
training dataset to get an unbiased estimate of overall
classification accuracy as it is tested internally (Ro-
driguez-Galiano et al. 2014). Additionally, the prob-
ability of membership to each class is also generated
which can be used to access the uncertainty of the RF
classification or the predictive power of the RF clas-
sifier for a specific class. This probability map is what
we used for our gold prospectivity map as opposed to
the actual RF classification, which is a 2-class the-
matic map showing areas favorable and unfavorable
for gold exploration.

Another very useful aspect of RF is that it cal-
culates the importance (predictive power) of each
variable in the classification process. This is accom-
plished by producing Mean Decrease Accuracy and
Mean Decrease Gini index plots (Gislason et al.
2006; Waske and Braun 2009). In this study, we

employed the Gini index because it is more stable
and provides more robust results than the Mean
Decrease Accuracy index (Menze et al. 2009; Calle
and Urrea 2010). The Gini index plot shows the
mean decrease in accuracy caused by the input band,
which is determined during the oob error calcula-
tion. The higher the value of a band on the Gini
Index plot, the more useful the band is in performing
the classification.

Specifically, the Gini index is calculated by

– For each tree, the oob training samples are put
down the tree and the number of correct classifi-
cations are calculated (nC).

– Randomly permute the values of variable m in the
oob cases and put these cases down the tree (i.e.,
original data (nP)).

– Calculate nC � nP; (number of votes for the
correct class in the variable m permuted oob data)
� (number of votes for the correct class in the
untouched oob data).

The average of all trees gives the predictive
power (importance) of each variable. The score is
normalized by the standard deviation of these dif-
ferences. Features that produce large values for this
score are ranked as more important than features
which produce small values. Figure 7 provides an
overview of RF classification.

The main point of ensemble classifiers, such as
RF, is that the process learns from not just one
prediction (decision tree) but from many predictions
that are then combined (Doan and Foody 2007;

Table 3. Fuzzification values of the lithology spatial dataset into

raster format

Geology evidence map

Distance from edge of favorable unit (m) Raster value

Within unit

0–400 1.00

>400 0.80

Outside unit

0–400 1.00

400–800 0.60

>800 0.00

Table 4. Known mineral deposits within the study area

Showing name Alias Commodities Latitude Longitude

Hurwitz Lake West PP 126 Au, As 60.9583 �98.0333

Swamp Don 1; Little Huey As, Ag, Cu, Pb 60.9508 �101.502

Nigel Bob 1 Au, Pb 60.9201 �101.7792

Wish Zone Moon 6 Au, As, Cu 60.9519 �101.5598

4600 Vein Au, Cu 60.9367 �101.5232

Sample 34306 Dawn 1 Au, Cu 60.9283 �101.5331

East of Ronchon Lake Au, As 60.8214 �101.8776

Ronchon Lake Moon 5 Cu, Zn, Au 60.8211 �101.9109

ENN 8 Au, As 60.9433 �101.5960

ENN 8-9 Au, As 60.9577 �101.6015

Nueltin Project-1 PP 132 Cu, Au, Ag 60.1856 �100.5236

Gold Point Au, As 60.4128 �100.4723

Cobalt Au, Co As 60.4610 �100.3457

Airstrip Au, U, Co 60.4580 �100.3305

LES-1 Nueltin Lake Prop Au, Ag, Bi, Cu, Co, Ni, Mo, U, W 60.1133 �99.9972

Raven Au–Co Showing AI 1-2, Don 1-3 Au, Co 60.0535 �100.0181
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Harris et al. 2015). This is extremely beneficial as
this process helps to reduce the variance as the re-
sults are less dependent on peculiarities of a single

training dataset. Furthermore, a more robust esti-
mate of the overall classification accuracy is
achieved. In addition to the classification map gen-
erated by RF, a probability map can also be gener-
ated, which shows the strength of membership for
each mineral prospect class.

We undertook a number of experiments
involving the RF classification (Table 6) in part to
study the effect of a limited number of Au occur-
rences to use as training points for the RF classifi-
cation. Firstly, all the training points, comprising 16
Au occurrences and 16 non-occurrences, were used
to produce a baseline RF Au prospectivity (proba-
bility) map. Then, a fivefold repetition of the RF
classifier was undertaken using a random selection
of eight occurrences and eight non-occurrences for
each repetition of the RF classifier. The oob error
and classification and cross-classification errors were
calculated for all experiments for comparison pur-
poses and to establish an estimate of overall classi-
fication error. Furthermore, the Au prospectivity
maps were statistically compared and averaged,

Table 5. Lake sediment sample combination weights, and final

output raster statistics

Element Assigned weight

Arsenic 9

Gold 10

Cobalt 5

Copper 4

Iron 5

Mercury 2

Nickel 2

Lead 1

Zinc 1

Silver 7

Output raster statistics Raster cell value

Low value 6.55

High value 43.25

Mean value 24.68

Figure 6. Knowledge-driven modeling methodology.
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producing an average estimate of Au prospectivity.
The prospectivity maps (probability) were stretched
from values between 0 and 1 to values between 0
and 100 for display purposes, and the mask of large
lakes was applied.

RESULTS

Table 7 presents a summary of classification
results for the experiments listed in Table 6. Fig-
ure 8a, b shows the RF classification and associated
Au prospectivity (probability) map produced using
all 16 Au training and non-occurrence points (ex-
periment # 1, Table 6). The oob error for this clas-
sification map is 84.3%, whereas the average oob for
the fivefold repetition of RF (experiments 2–5, Ta-
ble 7) is 79.6%. Figure 8c shows the average
prospectivity (probability) of the fivefold repetition
of RF. The overall accuracy of these classification
maps is 100% as might be expected as the overall
accuracy is simply calculated by how many Au
occurrences used to produce the map are predicted.
The oob and cross-correlation accuracies (Table 7)
are a better representation of the actual accuracy as

they are established using Au occurrences that were
not used to produce the actual classification map. It
has been demonstrated by Breiman (2001) that the
oob error is a good estimator of the prediction error
when the number of trees is large enough. In this
case, we used 1000 trees and the oob accuracy sta-
bilized after approximately 100 trees. The oob
accuracy is sufficiently high to trust the results. Ta-
ble 7 indicates that there is natural variability with
respect to accuracy in the RF classification process
as the number of evidence maps and training areas
are randomly chosen for each decision tree.

The Pearson correlation between all six RF
prospectivity (probability) maps produced by RF
(Table 6) ranges from a low of 0.77 (T1 vs T4) to a
high of 0.96 (T1 vs T3), indicating spatial variability
based on the RF random selection process. How-
ever, and importantly, the high potential areas are
spatially consistent between the RF prospectivity
maps produced by the fivefold repetition of the
classification process.

Figure 9 shows the KD Au prospectivity map.
The area defined as ‘‘Prospective’’ and ‘‘Highly
Prospective’’ is significantly smaller in the KD map
than in the RF map. The Pearson correlation be-

Figure 7. Random Forest classification methodology.
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tween the RF and KD map is 0.73, moderate cor-
relation at best, indicating the difference between
the two methods. Figure 10 shows an agreement
map between the KD and RF prospectivity models,
which only displays the top 5% of the most
prospective areas. Areas A, C, and D are areas of
high spatial overlap, whereas Area B is labeled as
high prospectivity only on the RF map. The KD map
shows a number of areas of high prospectivity in the
eastern portion of the study area that are not present
on the RF map.

Figure 11 shows the success rate in the estima-
tion of the known Au occurrences according to the
percentage of prospective area at or below the raster
prospectivity value at the location of the Au occur-
rence (e.g., efficiency of prediction curves). In the
KD map, 10 of 16 (62.5%) gold prospects are within
the top 11% of the most prospective study area
(value of 56 or higher). For the RF map, 15 of 16
(93.75%) gold prospects are within the top 11% of

the most prospective study area (value of 81 or
higher). The single outlier (seen with an Au
prospectivity value at 58; Fig. 11) is located 36 m
from the boundary of a preferable lithology. Since
RF can use nominal datasets as inputs, a simple
geology dataset was used, with crisp edges (as op-
posed to the gradational edges to the preferential
geology units described in the ‘‘Lithology’’ section in
Data Processing). This allows the RF classifier to
determine preferential geology type, instead of using
the fuzzy geology evidence map created for the KD
model. This resulted in 29.2% of the area being
classified as ‘‘prospective’’ by the RF classifier.
Using that value, the RF model correctly classifies
16 of 16 (100%) of the gold prospects, and the KD
model correctly classifies 15 of 16 (93.75%) of the
gold prospects.

Table 8 summarizes the predictive power of
each evidence map used in the RF classification. The
best predictor, as might be expected is the lithology,

Table 6. Summary of RF experiments

Experiment # of evidence maps (see Table 1) Training data

T1 13 16 Au occurrences and 16 non-Au occurrences randomly selected from

non-prospective lithologies

T2 13 8 Au and 8 non-Au occurrences randomly selected

T3 13 8 Au and 8 non-Au occurrences randomly selected

T4 13 8 Au and 8 non-Au occurrences randomly selected

T5 13 8 Au and 8 non-Au occurrences randomly selected

T6 3 8 Au and non-Au occurrences randomly selected

Table 7. Summary of RF classification results

Experiment Oob (%) Overall accuracy (%) Cross-correlation accuracy

All training data (16 Au occurrences, 16 non-occurrences) 84.3 100 T1 = 93.7%

T2 = 100%

T3 = 93.7%

T4 = 93.7%

T5 = 100%

Average = 96.2%

T1—8 random selected Au occurrences and 8 non-occurrences 68.2 100 T2 = 87.5%

T2—8 random selected Au occurrences and 8 non-occurrences 95.1 100 T1 = 87.5%

T3—8 random selected Au occurrences and 8 non-occurrences 66 100 T2 = 100%

T1 = 87.5%

T4—8 random selected Au occurrences and 8 non-occurrences 77 100 T1 = 87.5%

T2 = 93.7%

T3 = 87.5%

T5—8 random selected Au occurrences and 8 non-occurrences 91.6 100 T1 = 87.5%

T2 = 100%

T3 = 87.5%

T4 = 93.7%
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Figure 8. a RF classification map showing prospective and non-prospective areas

as well as the 16 Au prospects. b RF Au prospectivity (probability) maps showing

Au and non-Au prospects used for training. c Average Au prospectivity (prob-

ability) map derived from the fivefold repetition of RF (see text for description).
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followed by As, Co, Ni, and distance to faults using
the normalized Gini index score as a measure of
importance. It is interesting to note that Au in this
case study was only predictive in one of the fivefold
repetition of the RF but was in the top 5 predictors
when all training areas were used.

It is visually apparent that the most prospective
areas for both maps are mostly controlled by the
lithology (Figs. 8, 9, 10; Table 8). It is important to
note that a decision based on Au exploration in
Canada�s North was made to select only favorable
lithologies before producing the Au prospectivity
maps. Additionally, all the known Au occurrences
fall within these selected lithologies, or the fuzzy
boundaries of the lithologies, comprising Hurwitz
sediments, mafic volcanics, and associated sediments
and supracrustal rocks.

With respect to the most prospective areas
(Fig. 10), Area A, predicted as highly prospective by
both the RF and KD methods, is situated along an
E-W trending contact between supracrustals and
mafic volcanics. A large E-W trending fault, or
possible shear zone, also occurs within this Area A
and may have acted as a conduit for mineralized Au-
bearing fluids. Seven of the 16 known Au occur-

rences occur in this area. Area B within the Hurwitz
sediments, in the vicinity of the Nueltin intrusive
suite, is designated as a high potential area only on
the RF prospectivity map. Fault density is high
within Area B and is bracketed to the north by a
major NE trending fault (shear) that has a strong
linear magnetic expression on the airborne magnetic
data of the area. Three known Au occurrences are
found within Area B. Area C is situated within su-
pracrustals and Hurwitz group sediments and is
delineated as highly prospective on both the RF and
KD maps. This area contains 1 known Au occur-
rence at the contact of the supracrustal rocks and a
small body of mafic volcanics. Area D, prospective
on both RF and KD maps, is situated within supra-
crustals and Hurwitz sediments and is transected by
E-W trending faults. This area is surrounded by
Hudson granites, a possible heat engine, and does
not contain any known Au occurrences. Recall that
the Hudson granites are older than the Nueltin
intrusive suite (1.83 vs. 1.75 Ga), so its role as a heat
engine may be reduced when compared to the
Nueltin suite. The KD prospectivity map indicates a
large number of smaller prospective zones in the
eastern portion of the study area, all of which occur

Figure 9. Knowledge-driven (KD) Au prospectivity map with Au and non-Au prospects.
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in either Hurwitz sediments or supracrustal rocks.
Many of these areas co-occur with linear magnetic
anomalies potentially representing fault zones.

The late Paleoproterozoic Nueltin suite out-
crops across a large portion of the western Churchill
Province and marks the last period of extensive ig-
neous activity in the Kivalliq Region of Nunavut.
Occurrences of uranium, rare earth elements
(REE), and precious metals (Au–Ag), found in
association with Nueltin suite rocks implicate the

suite as prospective for exploration and economic
potential (Scott 2012).

SUMMARY AND CONCLUSIONS

This study evaluated the performance of the RF
method in the creation of prospectivity maps and
compared the results of the RF method to those of a
simple KD method. The RF method performed well

Figure 10. Agreement map between the RF and KD maps showing only �5% of the top prospective areas—a to d—dis-

cussed in text.

Figure 11. Efficiency of prediction curves for the RF and KD Au prospectivity maps.
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in that the Au prospectivity map created was a
better predictor of the known Au occurrences than
the KD Au prospectivity map. There are several
advantages to the use of RF including (1) the ability
to take both continuous and/or categorical data as
variable inputs, (2) an internal, unbiased estimation
of the mapping error (oob error) removing the need
for a cross-validation of the final outputs to deter-
mine accuracy, and (3) the estimation of importance
of each input. One major difference between the KD
and RF models in this study comes from the use of
two different geological evidence maps. A classified
�preferential geology� evidence map with gradational
boundaries was used for the KD model and a crisp
nominal geology evidence map was used for the KD
method.

One of the concerns in this study is the limited
training dataset (16 Au occurrences and 16 non-Au
occurrences) used for the RF classification. A recent
paper by Carranza and Laborte (2015) achieved
satisfactory RF classification results using a limited
training dataset (<20). Oshiro et al. (2012) also
achieved good results using RF applied to 10 evi-
dence maps and 12 prospects and 12 non-prospects.
In this paper, we increased the number of trees to
1000, as recommended by Carranza and Laborte
(2015) to add stability to the results as well as
employing a fivefold repletion of the RF classifier,
again to add stability and bracket classification er-
rors. As mentioned above, the oob error stabilized
after only 60 trees. Rodriguez-Galiano et al. (2014)
recommended 1000 trees with the use of nine evi-
dence maps (predictor variables), 46 deposits and 57
non-deposits. The average oob error for the fivefold
repletion of RF in this study was 80% and average
accuracy using independent check occurrences in the
fivefold repletion of RF was 92% (Table 7), both
acceptable accuracies.

Efficiency of prediction curves (Fig. 11) illus-
trates that the RF method performs better than the

KD method even with limited training areas. The
success rate (rate at which the areas containing gold
prospects were classified as highly prospective) is
significantly higher for the RF method than the KD
method. Although the RF method classified a sig-
nificantly larger area as prospective and very
prospective than the KD method, Figure 11 illus-
trates that more gold prospects are located within a
smaller classification area in the RF results than the
KD results.
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