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Supplying worldwide demand of metallic raw materials throughout the rest of this century may
require 5–10 times the amount of metals contained in known ore deposits. This demand can be
met only if mineral deposits containing the required masses of metals, in excess of present day
ore reserves, exist in the Earth�s crust. It is, by definition, not known whether or not such
mineral deposits exist. On the basis of the statistical distribution of metal tonnages contained
in known ore deposits, however, it is possible to place constraints on the size distribution of the
deposits that must be discovered in order to meet the expected demand. A nondimensional
analysis of the distribution of metal tonnages in deposits of 20 metals shows that most of them
follow distributions that, although not strictly lognormal, share important characteristics with a
lognormal distribution. Chief among these is the observation that frequency falls off sym-
metrically and geometrically with deposit size, relative to a median deposit size that is
approximately equal to the geometric mean deposit size. An immediate consequence of this
behavior is that most of the metal endowment is concentrated in deposits that are several
orders of magnitude larger than the median deposit size, and that are much rarer than the most
common deposits that cluster around the median deposit size. The analysis reveals remarkable
similarities among the statistical distributions of most of the metals included in this study, in
particular, the fact that distribution of most metals can be fully described with essentially the
same value (about 2–3) of the scale parameter, r, which is the only parameter needed to
describe the behavior of a normalized lognormal variable. This observation makes it possible
to derive the following general conclusions, which are applicable to most metals—both scarce
and abundant. First, it is unlikely that undiscovered mineral deposits of sizes comparable to
those that contain most of the known metal endowment exist in sufficient quantities to supply
the expected worldwide demand throughout the rest of this century. Second, if the expected
demand is to be met, one must hope that very large deposits, perhaps up to one order of
magnitude larger than the largest known deposits, exist in accessible portions of the Earth�s
crust, and that these deposits are discovered.
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INTRODUCTION

Future demand of metallic raw materials is
certain to increase relative to historical levels, in re-

sponse to factors that include increase in world
population, industrial and technological develop-
ment of the world�s less developed regions, and
perhaps a generalized increase in affluence. There
may be limits to how far each of these processes can
go, imposed by the finiteness of nonrenewable nat-
ural resources. If for the sake of argument we ignore
these limits, and if we assume that past trends in
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demand of metallic raw material can be extrapolated
throughout the twenty-first century, then we can
conclude that (Patiño Douce 2015) (i) the known
reserves of most metals will be exhausted well
before the year 2100, and in some cases as soon as the
late 2020s, and (ii) satisfying demand over the rest of
this century will require approximately 5–10 times
the metal tonnage known to exist in proven ore re-
serves. Of course, these metal tonnages, and much
more, exist in the Earth�s crust, as virtually all rocks
contain minute amounts of almost every element in
the periodic table. These are ‘‘background’’ con-
centrations that, when averaged over the entire crust,
we call the geochemical abundances of the elements.
Extraction of metals from rocks in which the metals
have not been significantly enriched relative to their
geochemical abundances will forever be in the realm
of science-fiction, however, for technological, eco-
nomic, environmental, and energetic reasons, among
others (see, e.g., Nickless et al. 2014). The question
before us is whether the vast amounts of metal that
society is likely to demand exist in mineral deposits,
in which the metals of interest have been enriched by
natural processes above their geochemical average
abundances, to the extent that extraction may be-
come technologically and economically feasible at
some future time. This we do not know.

One can attempt to answer this question at
several levels. At the most immediate and applied
level, economic geologists will search for mineral
deposits of specific types in specific regions of the
planet where the geological setting is known to be
favorable to their formation. This is a purely geo-
logical undertaking, which relies on knowledge of
the physicochemical processes responsible for con-
centrating metals in mineral deposits. This type of
work is a crucial part of the answer that we seek, but
it is driven by the immediate pursuit of economic
profit, rather than by the less immediately tangible
concern of whether or when significant economic
and social disruptions may be triggered by exhaus-
tion of mineral resources. At a more general level,
we can consider work that combines geological
understanding of metallogenic processes with sta-
tistical analysis of the distribution of known deposits
in order to define favorable tracts for mineral
exploration, estimate the likelihood of finding
undiscovered mineral deposits in such tracts, and
perhaps also determine what are the most promising
sectors in which to focus exploration within favor-
able tracts (e.g., Agterberg 1995; Bliss and Menzie
1993; Gerst 2008; Gonçalves 2001; Guj et al. 2011;

Harris 1984; Laznicka 1999; Singer 1993, 2006, 2008,
2010, 2013; Wei and Pengda 2002; Singer et al. 2005;
Singer and Menzie 2010; Singer and Kouda 2011;
Wang et al. 2010, 2011). This work is also of crucial
importance in maintaining the supply of metallic raw
materials, and in many cases, actual on-the-ground
exploration could not proceed without it, or would
at least be far less successful. However, estimating
the likely absolute limits of the availability of
metallic raw materials is not generally a primary
concern of this type of studies. Coming up with such
estimates (e.g., Skinner 1976) allows one to address
the questions of whether, or when, economic growth,
and with it population growth, are likely to meet
ceilings imposed by lack of natural raw materials.

In this paper, I combine estimates of likely
demand for metallic raw materials to the year 2100
(Patiño Douce 2015) with a statistical analysis of size
distribution of known mineral deposits in order to
describe and quantify the challenges facing metal
supply throughout the twenty-first century. Because
we do not know how much metal exists in undis-
covered mineral resources, it is, by definition,
impossible to give precise dates for the exhaustion of
particular metals, or even to state that exhaustion
will take place this century or within any specific
time range in the future. But it is possible to deter-
mine the size distribution of the mineral deposits
that one must hope exist if one is to have reasonable
expectations of meeting the demand to the year
2100. In addition to providing a quantitative
description of the challenges of supplying metallic
raw materials throughout this century, this contri-
bution may be a useful complement to resource
assessment studies (such as Johnson et al. 2014),
because it may serve to focus exploration efforts on
the types of deposits that can make a real difference
to the world�s supply of metals.

This paper is organized as follows. I first derive
the rigorous mathematical background that relates
the distribution of metal endowment to the distri-
bution of individual deposit sizes. The equations are
written as functions of nondimensional tonnage,
which simplifies comparisons among multiple met-
als, as all of the variability among metals can be
discussed in terms of a single parameter, which is the
scale parameter of a lognormal distribution. In a
subsequent section, the distribution of the endow-
ment of 20 metals is analyzed within this mathema-
tical framework. Finally, theory and observations
are combined to generate estimates of the size
distribution of the deposits that will need to be
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discovered and developed in order to satisfy ex-
pected demand.

THEORETICAL BACKGROUND

General Considerations

In order to construct statistical arguments about
data, one must begin by determining the probability
density function (PDF) that best describes the
dataset of interest. Any function P(x) with the fol-
lowing two properties: (i) P(x)‡ 0 and (ii) �P(x)dx = 1
(for �¥<x<¥), is a PDF that describes the
probabilistic distribution of the values of a random
variable x. It has been argued that the lognormal PDF:

P xð Þ ¼ 1

xr
ffiffiffiffiffiffi

2p
p e

�

� ln x�lð Þ2

2r2

�

ð1Þ

is widely applicable to describing the distribution of
chemical elements in the Earth�s crust, ranging from
background concentrations of chemical elements in
nonmineralized rocks (e.g., Ahrens 1954a, b) to the
distribution of tonnages of mineral deposits (see
discussion by Singer 2013). In the lognormal PDF,
Eq. (1), l is known as the location parameter and r
as the scale parameter. The parameters l and r are,
respectively, the (arithmetic) mean and the standard
deviation of the values of ln x, which is, by defini-
tion, a normally distributed random variable (see
Aitchison and Brown 1957 for the definitive treat-
ment). The lognormal distribution arises when the
value of the variable x is the result of a stochastic
process in which successive values of a random
variable are multiplied with one another to yield the
value of x. This is a simple corollary of the central
limit theorem (e.g., Sokolnikoff and Redheffer
1966), as the value of ln x is in such a case the result
of an additive process of random variables.

The lognormal PDF has been found to offer a
reasonably accurate description for the distribution
of the values of variables in many biological and
physical processes (see review and discussion by
Limpert et al. 2001), as well as in economics and
sociology (e.g., Aitchison and Brown 1957; Black
and Scholes 1973; Allanson 1992). The connection
with an underlying multiplicative stochastic process
can in many instances be made (e.g., Mitzenmacher
2003; Grönholm and Annila 2007; Loewenstein et al.
2011). In the case of the distribution of chemical
elements in nature, the answer may be less clear cut,

as whether or not the lognormal distribution applies
may depend on how one defines and analyzes the
problem. As noted above, Ahrens (1954a, b) argued
that background geochemical abundances follow a
lognormal distribution. Singer (2013) found that, if
mineral deposits are discriminated by metallogenic
deposit type, then metal contents in most cases (over
90% of the examples that he studied) follow log-
normal distributions. In contrast, if all deposits of a
given metal are grouped together, ignoring deposit
type, then agreement with a lognormal distribution
was found to exist for only one metal (Mo) out of the
seventeen metals considered (Singer 2013). In a
classic mathematical treatment, Allègre and Lewin
(1995) showed that redistribution of chemical
elements by natural processes can lead to either
lognormal or power-law (also called ‘‘fractal’’ or
‘‘Pareto’’) distributions of concentrations, depending
on the complexity and recurrence of the processes
involved. A power-law distribution of grades and
tonnages of mineral deposits was proposed by Cargill
et al. (1981) and justified on theoretical grounds by
Turcotte (1986, 2002) and Agterberg (1995, 2007).

There is a complication, however, when
attempting to determine whether grade and tonnage
data follow a lognormal or a power-law distribution.
This is the fact that, under some circumstances, the
two distributions may appear similar to one another
on the log–log plots that are customarily used to test
for power-law behavior. Taking logarithms on
Eq. (1) we find:

lnP xð Þ ¼ � 1

2r2
ln xð Þ2� 1 � l

r2

� �

ln x

� ln r
ffiffiffiffiffiffi

2p
p� �

þ l
2r2

h i

: ð2Þ

If the scale parameter r is large enough, then the
coefficient of the quadratic term may be small
enough that a log–log plot of a lognormal distribu-
tion will appear as a curve with very gentle negative
curvature, which diverges from a power-law line as
1/r2 (see ‘‘Appendix’’). If r is large enough then a
power-law fit to the high-end tail of lognormally
distributed data (i.e., a straight line in a log–log plot)
may yield fit parameters that are statistically sig-
nificant but that have no physical basis. The argu-
ment about whether geochemical concentrations,
and grades and tonnages of mineral deposits, follow
power-law or lognormal distributions, may arise, to a
not insignificant extent, from ignoring this simple
mathematical result. Further details, and some of
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the consequences for estimating future availability
of metallic mineral resources, are outlined in the
‘‘Appendix’’.

It is not my purpose here to justify formally any
particular PDF in order to explain the distribution of
economically exploitable metal resources. Rather, my
goal is to assess the possible limitations on future
supply of metallic raw materials. For reasons that I
explain in detail below, I will assume that the lognor-
mal PDF is a reasonably good approximation to the
distribution of metal contents in mineral deposits even
if one ignores metallogenic deposit types (cf. Singer
2013), and I will justify this assumption a posteriori.

The lognormal PDF will be re-cast in terms of
nondimensional variables, in order to make general
statements about how the metal endowment—i.e., the
total amount of metal contained in potentially
exploitable mineral deposits—is distributed among
deposits of different sizes. One of the advantages of
the nondimensional approach is that it greatly
facilitates comparing the behavior of metals with
hugely different endowments and geochemical
abundances. I then evaluate how appropriate the
lognormal model is for describing the actual distri-
bution of the known metal endowment of 20 different
metals. I find, as Singer (2013) did, that the agreement
is not perfect, but I also show that the lognormal PDF
captures essential aspects of the distribution of metal
endowments. It is this fact that makes it a useful tool
for assessing the constraints on the likely supply of
metallic raw materials in the future.

Normalized Lognormal Probability Density
Function

The arguments in this paper are based exclusively
on metal tonnage, which is the mass of metal contained
in a mineral deposit. The mass of mineralized rock, also
known as ore tonnage, and the grades of the mineral
deposits, play no role in these discussions. Metal ton-
nages in individual mineral deposits vary widely among
metals, with characteristic values, for example, of
about 10–102 tons for Au, 105–107 tons for Cu, or
108–1010 tons for Fe. In the accompanying paper
(Patiño Douce 2015), I show that converting historical
metal extraction figures to nondimensional variables
leads to very general conclusions about the likely
future demand of metallic raw materials. An equiva-
lent nondimensional formulation of the lognormal
PDF will make it possible to discuss the availability of
metallic raw materials in general.

Let x be a lognormally distributed random
variable, with location parameter l and scale
parameter r, as described by Eq. (1). Because ln x is
normally distributed, the median of ln x has the
same value as its (arithmetic) mean, l. It is easily
shown that, if l* is the geometric mean of x, then:

l ¼ ln l� ð3Þ

and, given that the logarithm function is monotonic,
the median of ln x, l, represents the same value as
the median of x, which we shall label xm. Thus,:

ln xm ¼ l ð4Þ
Comparing Eqs. (3) and (4), we see that

l� ¼ xm: ð5Þ
That is, the geometric mean of a lognormally dis-
tributed variable is also its median. The geometric
mean is therefore a natural estimator of the central
value of a lognormally distributed variable, which
suggests the following argument. If we normalize the
lognormally distributed random variable x to its
geometric mean, we obtain a new lognormally dis-
tributed random variable z:

z ¼ x

l�
¼ x

el
ð6Þ

with geometric mean lz
* = 1, and location, and scale

parameters lz = ln lz
* = 0 and rz = r, respectively.

The fact that the scale parameter remains
unchanged follows from the fact that normalization
corresponds to a simple change of origin of the
logarithmic variable:

ln z ¼ ln x� l ð7Þ
The standard deviation of ln z therefore equals the
standard deviation of ln x.

The PDF of the original variable, P(x), and that
of the normalized, or rescaled, variable, P(z), are
related as follows:

P xð Þ¼ 1

xr
ffiffiffiffiffiffi

2p
p e

j

� lnx�lð Þ2

2r2

k

¼ 1

zelr
ffiffiffiffiffiffi

2p
p e

j

� lnzð Þ2

2r2

k

¼e�lP zð Þ

ð8Þ

with

P zð Þ ¼ 1

zr
ffiffiffiffiffiffi

2p
p e

j

� ln zð Þ2

2r2

k

: ð9Þ

Suppose now that x represents the metal content
of individual mineral deposits taken from a set
of deposits of the same metal. One might be
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interested in the probability of occurrence, or fre-
quency, of deposits with metal contents within a
certain interval (x1, x2). If the total number of
deposits is a large number, then this probability,
which we shall denote as p[x|(x1, x2)], will
approximate the fraction of the total number of
deposits that have metal contents in the interval
(x1, x2). The probability is given by

p xj x1; x2ð Þ½ � ¼
Z x2

x1

P xð Þdx ð10Þ

and must be equal to the probability that the
rescaled metal content, z, is in the interval (z1, z2),
where z1 = x1/e

l and z2 = x2/e
l:

p xj x1; x2ð Þ½ � ¼ p zj z1; z2ð Þ½ �

¼
Z z2

z1

P zð Þdz ¼ 1

r
ffiffiffiffiffiffi

2p
p

Z z2

z1

1

z
e

j

� ln zð Þ2

2r2

k

dz: ð11Þ

We are also interested in the fraction of the total
metal endowment (i.e., of the total amount of metal
contained in all deposits) that is contained in
deposits with metal contents in the interval (x1, x2).
In order to calculate this fraction, we define the
following function:

M xð Þ ¼ xP xð Þ
R1

0 xP xð Þdx
¼ xP xð Þ

xa
; ð12Þ

where xa is the arithmetic mean of the variable x.
We note that M(x) is another PDF (albeit not log-
normal), because M(x) ‡ 0 and

Z 1

0

M xð Þdx ¼ 1 ð13Þ

(since it must be x ‡ 0, the integral can be taken from
0 rather than from �¥). The fraction of the total
metal endowment contained in deposits with metal
contents in the interval (x1, x2), which we shall de-
note by m[x|(x1, x2)], is given by

m xj x1; x2ð Þ½ � ¼
Z x2

x1

M xð Þdx ¼ 1

xa

Z x2

x1

xP xð Þdx: ð14Þ

Using Eqs. (6) and (9) to change the variable of
integration, we find

Z x2

x1

xP xð Þdx ¼ el
Z z2

z1

zP zð Þdz ð15Þ

so that

xa ¼ el
Z 1

0

zP zð Þdz ¼ elza; ð16Þ

where za is the arithmetic mean of the rescaled
variable z. Substituting Eqs. (15) and (16) in (14):

m xj x1; x2ð Þ½ � ¼ 1

za

Z z2

z1

zP zð Þdz ¼ m zj z1; z2ð Þ½ �: ð17Þ

As we should have expected, this shows that the
fraction of the metal endowment contained in
deposits with metal contents in the interval (x1, x2)
equals the fraction contained within the corre-
sponding interval of the rescaled variable (z1, z2).
Substituting explicit expressions for the arithmetic
mean of the variable, za

za ¼
Z 1

0

zP zð Þdz ¼ e
r2

2 ð18Þ

and for P(z), Eq. (9), in (17), we find

m zj z1; z2ð Þ½ � ¼ e�
r2

2

r
ffiffiffiffiffiffi

2p
p

Z z2

z1

e

j

� ln zð Þ2

2r2

k

dz ð19Þ

and the PDF M(z) is

M zð Þ ¼ zP zð Þ
za

¼ e�
r2

2

r
ffiffiffiffiffiffi

2p
p e

j

� ln zð Þ2

2r2

k

: ð20Þ

From Eqs. (11) and (19), we see that, by normalizing
to the geometric means, distribution of metal ton-
nages in deposits of different metals can be com-
pared to one another on the basis of only the scale
parameter, r, for each metal. Under the assumption
of lognormal distribution this is simply the standard
deviation of the logarithms of the metal contents
(but see below). The location parameter, l, which is
a measure of absolute metal contents, does not ap-
pear in these equations. Equation (11) describes the
frequency of occurrence of deposits within a given
size interval, rescaled to the median deposit size
(which is the geometric mean deposit size). Equa-
tion (19) describes the fraction of the metal en-
dowment that is contained in deposits within a given
rescaled size interval. These equations will now be
used to study how metal endowment is distributed as
a function of deposit size.

Distribution of Metal Endowment

We begin by writing the explicit forms of the
antiderivatives of the two PDFs, P(z), Eq. (9), and
M(z), Eq. (20):
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p zð Þ ¼
Z

P zð Þdz ¼ 1

2
erf

ln z

r
ffiffiffi

2
p

� �

ð21Þ

m zð Þ ¼
Z

M zð Þdz ¼ 1

2
erf

1
ffiffiffi

2
p ln z

r
� r

� �	 


ð22Þ

(these and other explicit algebraic calculations,
which are not always easy to do manually, were done
with the computer algebra system Maple; the
worksheets are available from the author upon
request). When evaluated from z = 0 to any arbi-
trary value z = zi, the antiderivatives Eqs. (21) and
(22) yield the cumulative distribution functions
(CDF) corresponding to each of the PDFs. The
medians of the distributions, zm

P and zm
M, are given by

the solutions to the equations:

p zPm
� �

¼ p 1ð Þ � 1

2
ð23Þ

m zMm
� �

¼ m 1ð Þ � 1

2
ð24Þ

Taking the limit z fi ¥, we find that
p(¥) = m(¥) = ½, so the equations become

1

2
erf

ln zPm

r
ffiffiffi

2
p

� �

¼ 0 ð25Þ

and

1

2
erf

1
ffiffiffi

2
p ln zMm

r
� r

� �	 


¼ 0 ð26Þ

The solution to Eq. (25) is

zPm ¼ 1 ð27Þ

which is of course true by construction: the median
of the rescaled deposit size is constant and equal to
1, and thus independent of r. The solution to
Eq. (26), which describes the central value of the
distribution of metal endowment among deposits of
different sizes, is, however, a strong function of the
scale parameter r:

zMm ¼ er
2 ð28Þ

The significance of the value er
2

will be discussed
further below, but at this point, we note that this
result has profound implications for the distribution
of the endowment of metallic raw materials, for it
means that, if deposit sizes are indeed lognormally
distributed, then much of the metal endowment is
likely to be concentrated in a relatively small num-
ber of large deposits, and that most of the smaller

mineral deposits, including those that can be con-
sidered to be ‘‘typical’’ because their size is of the
order of the median deposit size, contain a rather
small proportion of the metal endowment.

In order to quantify this statement, we find the
value of the function p½zjðer2

;1Þ�, which yields the
frequency of the largest deposits that contain half of
the total metal endowment

p zj er
2

;1
� �h i

¼
Z 1

er
2
P zð Þdz ¼ p 1ð Þ � p er

2
� �

¼ 1

2
1 � erf

r
ffiffiffi

2
p
� �	 


: ð29Þ

As can be seen in Figure 1, p½zjðer2
;1Þ� is a strong

inverse function of the scale parameter. For example,
for values of r about 2–3, which may be appropriate
for many metals (see below), 50% of the metal
endowment is likely to be contained in the largest 1
to 0.1% of all mineral deposits. In some cases, this
may be equivalent to only one or two ‘‘giant’’ or
‘‘supergiant’’ ore deposits. These results are consis-
tent with the findings of Singer (1995) on the distri-
bution of the endowment of copper, lead, zinc, silver
and gold. We can expand upon this result by solving
for the value of zq

M that satisfies the equation:

m zMq

� �

¼ m 1ð Þ � q ð30Þ
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Fig. 1. Frequency of the largest deposits (in terms of contained

metal tonnage) that contain 50% of the metal endowment, for a

range of scale parameters, r, that span likely values for most

metals in this study (see text and Table 2).
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for any desired value of the fraction q of the metal
endowment. Expressing q as a percentage of the
endowment, we have, for instance, z50

M = zm
M, i.e., the

median of the distribution (compare Eqs. 24 and
30). We also calculate the integral:

p zj zMq ;1
� �h i

¼
Z 1

zMq

P zð Þdz ð31Þ

which yields the frequency of the largest deposits
that contain the fraction q of the metal endowment.
Results plotted at constant r are shown in Figure 2.
For values of r about 2–3, we can expect that 95% of
the metal endowment (i.e., virtually all of the metal)
may be contained in the largest �10% of all mineral
deposits. This is an important result when consid-
ering future availability of metallic raw materials.

Another measure of interest is the location of
what we may call the ‘‘most productive’’ deposit size
interval, defined as follows. Given an interval in
rescaled deposit sizes (zt, xzt), with x>1 (an arbitrary
constant), we seek the value of zt that maximizes the
total metal tonnage contained in the interval. In par-
ticular, given our hypothesis that deposit sizes follow a
lognormal distribution, we are interested in the
geometric midpoint of the interval, zmax, which is

zmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xztð Þzt
p

¼ zt
ffiffiffiffi

x
p

: ð32Þ

We define the function:

mmax ¼
Z xzt

zt

M zð Þdz ¼ 1

2
erf

1
ffiffiffi

2
p lnxzt

r
� r

� �	 


� 1

2
erf

1
ffiffiffi

2
p ln zt

r
� r

� �	 


ð33Þ

and find the value of zt that maximizes this function.
This is

zt ¼
1
ffiffiffiffi

x
p er

2 ð34Þ

which, substituting in Eq. (32), yields

zmax ¼ er
2 ¼ zMm ¼ zM50 ð35Þ

Thus, the median of M(z), see Eq. (28), which is a
strong function of the scale parameter r, is also the
center of the most productive interval, in the sense
that, whatever the width x of this interval is, its
contribution to the metal endowment is maximized
when the interval is centered at er

2

.
We can now ask that the most productive

interval contain a certain fraction, w, of the metal
endowment, and solve for the value of xw that
determines the width of this interval. We make

Z

ffiffiffiffiffi

xw
p

er
2

1
ffiffiffiffi

xw
p er

2
M zð Þdz ¼ w: ð36Þ

The integral simplifies considerably, and the equa-
tion becomes

erf

ffiffiffi

2
p

4

lnxw

r

 !

¼ w ð37Þ

or

xw ¼ e
4r
ffiffi

2
p erf�1 wð Þ
h i

: ð38Þ
For constant w, xw varies exponentially with the
scale parameter r. It is also of interest to find the
frequency with which deposits in this size interval
occur, i.e.:

p z
1
ffiffiffiffiffiffiffi

xw
p er

2

;
ffiffiffiffiffiffiffi

xw
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The behavior of the most productive interval is
exemplified in Figure 3 for w = 0.5 and 0.95 (i.e., 50
and 95% of the metal endowment, respectively). As
the scale parameter r increases, the probability of
occurrence of mineral deposits within the most
productive tonnage interval decreases but the
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Fig. 2. Frequency of the largest deposits (in terms of contained

metal tonnage) that contain a given fraction of the metal en-

dowment, q, for several constant values of the scale parameter, r
spanning likely values for most metals in this study (see text and

Table 2). Figure 1 is a section of this graph at constant q = 0.5.
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interval becomes wider (see Fig. 3). As we saw above,
the most productive interval is always centered at er

2
,

which, for values of r about 2–3 (justified below),
corresponds to deposits with metal tonnages that are
50–8000 times larger than the median deposit size.
Half of the metal endowment is likely to exist in
deposits that are within approximately 1 order of
magnitude of this size (Fig. 3, right panel), and that
make up between 1 and 10% of all mineral deposits
(Fig. 3, left panel). Taking 95% of the metal endow-
ment to represent essentially all of the available
metal, we see that this amount of metal is likely to be
contained in a most productive interval with a width of
about 3–4 orders of magnitude (right panel), i.e.,
covering a large range of deposit sizes on both sides of
er

2

, but making up less than half of all deposits, and
perhaps as little as 15%, depending on the value of r
(Fig. 3, left panel).

The conclusions reached in this section can be
summarized with the help of Figure 4. The panels
show the PDFs, P(ln z) on the left, and M(ln z) on
the right. Two curves are shown for each function,
for values of r = 2 and 3. These choices are justified
in the next section. The PDF P(ln z) is, by definition,
a normal (Gaussian) distribution, which is centered
on the origin because, by construction, the mean of
the distribution is l = 0. Using absolute tonnages

would simply shift the curve along the horizontal
axis, but would change neither its shape nor the
following argument. An important point that the
graph demonstrates is that the most common
deposits (the mode of the distribution) cluster within
an interval, some 2 to 3 orders of magnitude wide,
centered at the geometric mean size, l* = el (Eq. 3).
The actual width of this interval is determined by the
value of r, a point that I return to below. Deposits
that are more than about 2 orders of magnitude
larger than the geometric mean are much less com-
mon than the ‘‘characteristic’’ deposits of size �l*,
but have a strong influence on the metal endow-
ment. The graph of M(ln z) in Figure 4 makes this
clear. The PDF that describes the distribution of
metal endowment peaks at er

2

, which is the center
of the most productive interval: a large proportion of
the endowment is contained in deposits with sizes
within a narrow range of er

2
. The most common

deposits of size �l* are too small to make a sig-
nificant contribution to the metal endowment.
Deposits that are much larger than er

2

could, on the
other hand, make a big difference, but they are
vanishingly rare. I will return to this point in a later
section.

Converting to logarithmic variables as in
Figure 4 has the virtue of helping one realize that,
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Fig. 3. Geometric width of the most productive interval (right panel), and frequency of deposits with metal tonnages within this interval
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(w = 0.95) of the metal endowment. The most productive deposit size interval (i.e., the size interval that contains the largest proportion of

the metal endowment) is always centered at a normalized metal tonnage equal to er
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.
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although we may be intuitively or educationally
predisposed toward arithmetic thinking, many nat-
ural variables follow geometric distributions. What
this means, if metal tonnages follow a lognormal
distribution, is that a difference of a factor of 2
between the sizes of two deposits makes relatively
little difference in the metal endowment, whereas a
difference of 2 orders of magnitude can make an
enormous difference. Or, said in a different way, if
we have two deposits with metal tonnages a and b,
such that a = 100b, the metal endowment remains
virtually unchanged if the size of the smaller deposit
is 2b rather than b, but would be strongly affected if
the larger deposit did not exist.

The mathematical arguments developed here
are rigorously applicable only to random variables
that are lognormally distributed. But consider a
random variable that, although not lognormal, fol-
lows a distribution that resembles the lognormal
distribution in some key respects: it is unimodal and
symmetric in the logarithms of the variable, and the
values of the variable cluster close to its geometric

mean. Such a variable will qualitatively behave like
a lognormal variable. In particular, the distribution
of the cumulative variable that can be derived from
it (e.g., cumulative tonnage derived from individual
deposit tonnages) will have a peak that is displaced
toward larger values of the variable (Fig. 4). We
next examine the extent to which this argument is
applicable to the distribution of metal tonnages of
metallic mineral deposits.

AN APPRAISAL OF THE LOGNORMAL
HYPOTHESIS FOR DISTRIBUTION OF
METAL TONNAGES

Metal tonnage data were compiled for mineral
deposits of 20 elements (listed in Table 1) from a
large number of publicly available data sources (also
listed in Table 1; complete data are given in Sup-
plementary Table 1). I only included deposits in
which chemical processes were responsible for metal
enrichment. Detrital mineral deposits may contain a
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Fig. 4. Comparison of the normalized PDFs for deposit size, P(z), and distribution of metal endowment, M(z),

converted to logarithmic values. For a lognormal distribution, metal endowment is concentrated in deposits that are

larger than the median (or geometric mean) deposit size. The displacement of the peak of M(z) relative to the peak

of P(z) increases with the scale parameter, r. The same behavior is qualitatively true for any other distribution in

which frequency falls off symmetrically and geometrically with distance from the median value.
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large fraction of the endowment of some metals, but
there can be no expectation that their size distribu-
tion follows the same laws as that of deposits of
chemical origin. I did, however, include the poorly
understood Witwatersrand Au and U deposits, even
if it is not entirely clear what their origin is.

The data vary widely in quality and complete-
ness. Some of the problems that may affect this
dataset are:

(i) Data were collected from both government
and industry sources, and the two types of
organizations may not be equally forth-
coming in providing information. They may
also use different criteria to infer metal
tonnages from sampling data.

(ii) The inherent quality of the data is likely to
vary significantly, depending on factors
such as the quality and density of the sam-
pling used to estimate metal tonnages, as
well as on when the data were collected and
the tonnage estimates prepared. Dates for
the data sources that I used vary from the
1970s to the 2010s, but are likely to include
some estimates prepared decades earlier.

(iii) Although I attempted to only use data that
represent total deposit tonnage, it is
possible that in a significant number of
cases reported tonnages actually refer to
remaining metal after significant extraction
has taken place. In many cases, it is simply
not possible to figure this out from the
available sources.

(iv) Estimates for the amount of metal con-
tained in a mineral deposit vary with the
cutoff grade, below which metal recovery is
deemed impractical and/or uneconomic.
Criteria used to determine cutoff grades
vary, and have changed with time.

(v) The number of available data points varies
widely, from several thousand deposits (for
Cu, Au, Ag, Zn, and Pb) to less than a
hundred for several metals (see Table 1). I
thoroughly checked for ‘‘double counting.’’
Whenever two different tonnage estimates
were available for the same deposit I used
the newer data.

(vi) Although, for many of the metals included
in this study, most or all of the known
chemical metallogenic deposit types are
included in the compilation, this is not so in
some cases. Notably, Li deposits do not

include evaporites, which almost certainly
contain the largest reserves of this metal,
but for which tonnage estimates do not
appear to be publicly available.

For each of the elements included in this com-
pilation, I first prepared a sorted list in order of
increasing absolute deposit tonnages (Supplemen-
tary Table 2), and calculated the geometric mean
and the median of the absolute metal tonnages.
These results are shown in Table 2. For a lognormal
distribution, the geometric mean and the median
have the same value. As can be seen in Table 2 and
Figure 5, for the 20 metals included in this study, the
median and geometric mean of the distribution of
individual deposit tonnages have very similar values.
With the exception of PGE, the two values are
within half an order of magnitude of each other, and
in many cases much closer. Equality of the median
to the geometric mean is a necessary condition for
lognormality, but it is not sufficient. The results
summarized in Figure 5 do suggest, however, that
the distribution of metal tonnages should be at least
qualitatively similar to a lognormal distribution, in
the sense described at the end of the previous sec-
tion, even if data for each metal are grouped without
discriminating by metallogenic type (but see Singer
2013, for a formal test).

In order to examine this hypothesis further, I
began by dividing each deposit tonnage by the value
of the geometric mean for the corresponding metal,
in order to obtain a sorted list of normalized ton-
nages, t, for each metal (Supplementary Table 3).
Note that the variable t represents observed nor-
malized tonnages. It corresponds to the variable z in
the PDFs P(z) and M(z), but whereas z refers to the
independent variable in the statistical distribution
functions, t represents discrete observations. The
difference is important, and I will return to it in
subsequent discussions. Histograms were prepared,
representing the relative frequencies of the decimal
logarithms of the normalized tonnages (Figs. 6–9).
Note that all previous and subsequent equations are
written in terms of natural logarithms, but the his-
tograms show decimal logarithms. This is because, in
my view, it is simpler to understand the range in
deposit sizes on the basis of decimal logarithms (i.e.,
orders of magnitude) than natural logarithms.
Moving between both bases is simply a matter of
rescaling by a factor of log10 e. For all metals, the bin
size for the histograms is 0.2 (corresponding to a
width of one fifth of an order of magnitude in metal
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Table 1. Metal Tonnage Data Sources

Metal Data Sources

Au

n = 2106

Porphyry Cu: Singer et al. (2008); Ewers and Ryburn (1993). Archaean Porphyry Cu: Rogers (1996); Eilu et al.

(2007). Volcanogenic massive sulfides: Mosier et al. (2009). Archaean massive sulfides: Rogers (1996); Ewers

and Ryburn (1993); Eilu et al. (2007). Sediment-hosted Zn–Pb: Singer et al. (2009); Ewers and Ryburn (1993);

Eilu et al. (2007). Archaean low sulfide Au and Homestake Au: Klein and Day (1994); Rogers (1996); Singer

et al. (1993); Ewers and Ryburn (1993). Ni–Cu–PGE in ultramafic intrusions: Rogers (1996); Jaques et al.

(2005); Eilu et al. (2007); Norilsk Internet Source (ND). Komatiites: Rogers (1996). Precambrian porphyry

Au: Rogers (1996). Skarns: Singer et al. (1993); Orris et al. (1987); Ewers and Ryburn (1993); Eilu et al.

(2007). Detachment fault base metal deposits: Singer et al. (1993). Distal disseminated Ag-Au deposits: Cox and

Singer (1990). Blue Mountain type polymetallic veins: Bliss (1994). Crede-type epithermal veins: Menzie et al.

(1992); Ewers and Ryburn (1993). Comstock-type epithermal veins: Singer et al. (1993). Dunitic Ni: Singer

et al. (1993). Epithermal quartz-alunite gold: Singer et al. (1993). Hot spring gold: Singer et al. (1993); Ewers

and Ryburn (1993). Unconformity U deposits: Singer et al. (1993); Ewers and Ryburn (1993). Synorogenic

synvolcanic Ni deposits: Singer et al. (1993). Polymetalic replacement deposits: Singer et al. (1993). Epithermal

gold deposits: Singer et al. (1993); Ewers and Ryburn (1993); Eilu et al. (2007). Carlin-type sediment hosted Au

deposits: Singer et al. (1993); Eilu et al. (2007). Sedimentary exhalative deposits: Singer et al. (1993); Eilu et al.

(2007). Gold-antimony deposits: Berger (1993). Contact-type Cu–Ni–PGE deposits in mafic intrusions:

Zientek (2012). Reef-type PGE deposits in mafic intrusions: Zientek (2012). Unclassified hydrothermal veins:

Ewers and Ryburn (1993); Eilu et al. (2007). Stratabound uranium deposits: Ewers and Ryburn (1993); Eilu

et al. (2007). Banded iron formations: Ewers and Ryburn (1993). Witwatersrand gold deposits: Witwatersrand

Internet Souce (ND)

PGE

n = 273

Ni–Cu–PGE in ultramafic intrusions: Rogers (1996); Jaques et al. (2005); Eilu et al. (2007); Eckstrand and

Hulbert (2007); Norilsk Internet Souce (ND). 12-Komatiites: Rogers (1996). Stratiform chromite: Rogers

(1996); Eilu et al. (2007); Ewers and Ryburn (1993). Podiform chromite: Mosier et al. (2012). Dunitic Ni:

Singer et al. (1993). Synorogenic synvolcanic Ni deposits: Singer et al. (1993). Contact-type Cu–Ni–PGE

deposits in mafic intrusions: Zientek (2012). Reef-type PGE deposits in mafic intrusions: Zientek (2012)

Ag

n = 1644

Porphyry Cu: Singer et al. (2008); Ewers and Ryburn (1993). Archaean Porphyry Cu: Rogers (1996); Eilu et al.

(2007). Sediment hosted Cu deposits: Cox et al. (2007); Eilu et al. (2007). Volcanogenic massive sulfides:

Mosier et al. (2009). Archaean massive sulfides: Rogers (1996); Ewers and Ryburn (1993); Eilu et al. (2007).

Sediment-hosted Zn–Pb: Singer et al. (2009); Ewers and Ryburn (1993); Eilu et al. (2007). Archaean low

sulfide Au and Homestake Au: Klein and Day (1994); Rogers (1996); Singer et al. (1993); Ewers and Ryburn

(1993). Ni–Cu–PGE in ultramafic intrusions: Rogers (1996); Jaques et al. (2005); Eilu et al. (2007); Norilsk

Internet Souce (ND). Co-Ag arsenides: Rogers (1996). Coeur d�Alene-type polymetallic veins: Long (1998).

Skarns: Singer et al. (1993); Orris et al. (1987); Ewers and Ryburn (1993); Eilu et al. (2007). Vein-type Sn

deposits: Singer et al. (1993). Detachment fault base metal deposits: Singer et al. (1993). Distal disseminated

Ag–Au deposits: Cox and Singer (1990). Blue Mountain type polymetallic veins: Bliss (1994). Crede-type

epithermal veins: Menzie et al. (1992); Ewers and Ryburn (1993). Comstock-type epithermal veins: Singer et al.

(1993). Epithermal quartz-alunite gold: Singer et al. (1993). Hot spring gold: Singer et al. (1993); Ewers and

Ryburn (1993). Polymetalic replacement deposits: Singer et al. (1993). Epithermal gold deposits: Singer et al.

(1993); Ewers and Ryburn (1993). Carlin-type sediment hosted Au deposits: Singer et al. (1993); Eilu et al.

(2007). Sedimentary exhalative deposits: Singer et al. (1993); Eilu et al. (2007). Unclassified hydrothermal

veins: Ewers and Ryburn (1993); Eilu et al. (2007). Stratabound uranium deposits: Ewers and Ryburn (1993);

Eilu et al. (2007). Pegmatites: Eilu et al. (2007)

Sb

n = 54

Coeur d�Alene-type polymetallic veins: Long (1998). Gold-antimony deposits: Berger (1993). Unclassified hy-

drothermal veins: Eilu et al. (2007)

W

n = 164

Mo-W greisens: Kotlyar et al. (1995). Skarns: Singer et al. (1993); Orris et al. (1987); Ewers and Ryburn (1993);

Eilu et al. (2007); John and Bliss (1993). Vein-type Sn deposits: Singer et al. (1993). Replacement-type Sn

deposits: Singer et al. (1993). Carlin-type sediment hosted Au deposits: Eilu et al. (2007). Unclassified hy-

drothermal veins: Ewers and Ryburn (1993); Eilu et al. (2007)

Mo

n = 343

Porphyry Cu: Singer et al. (2008); Ewers and Ryburn (1993). Archaean massive sulfides: Eilu et al. (2007).

Pegmatites: Rogers (1996). Mo-W greisens: Kotlyar et al. (1995). Skarns: Ewers and Ryburn (1993); Eilu et al.

(2007). Replacement-type Sn deposits: Singer et al. (1993). Climax-type Mo deposits: Menzie et al. (1992). Low

F porphyry Mo: Singer et al. (1993). Carlin-type sediment hosted Au deposits: Eilu et al. (2007). Black shale U

deposits: Eilu et al. (2007). Unclassified hydrothermal veins: Ewers and Ryburn (1993); Eilu et al. (2007).

Stratabound uranium deposits: Eilu et al. (2007). Pegmatites: Eilu et al. (2007)
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Table 1. continued

Metal Data Sources

U

n = 172

Archaean massive sulfides: Eilu et al. (2007). Carbonatites: Eilu et al. (2007). Pegmatites: Rogers (1996). Skarns:

Eilu et al. (2007). Unconformity-type U deposits: Singer et al. (1993). Volcanogenic U deposits: Ewers and

Ryburn (1993); Nash (2010); Eilu et al. (2007). Black shale U deposits: Eilu et al. (2007). Unclassified hy-

drothermal veins: Ewers and Ryburn (1993); Eilu et al. (2007). Stratabound uranium deposits: Ewers and

Ryburn (1993); Eilu et al. (2007). Witwatersrand gold deposits: Witwatersrand Internet Souce (ND)

Sn

n = 269

Pegmatites: Ewers and Ryburn (1993); Eilu et al. (2007). Polymetallic veins: Ewers and Ryburn (1993). Skarns:

Ewers and Ryburn (1993); Eilu et al. (2007); Zuo et al. (2009). Greisen-type Sn deposits: Singer et al. (1993);

Ewers and Ryburn (1993). Vein-type Sn deposits: Singer et al. (1993); Ewers and Ryburn (1993). Rhyolite-

hosted Sn deposits: Singer et al. (1993). Replacement Sn deposits: Singer et al. (1993); Ewers and Ryburn

(1993). Unclassified hydrothermal veins: Ewers and Ryburn (1993)

Pb

n = 1102

Archaean Porphyry Cu: Eilu et al. (2007). Volcanogenic massive sulfides: Mosier et al. (2009). Archaean massive

sulfides: Rogers (1996); Ewers and Ryburn (1993); Eilu et al. (2007). Sediment-hosted Zn–Pb: Singer et al.

(2009); Eilu et al. (2007). Coeur d�Alene-type polymetallic veins: Long (1998). Skarns: Singer et al. (1993);

Orris et al. (1987); Ewers and Ryburn (1993); Eilu et al. (2007). Blue Mountain type polymetallic veins: Bliss

(1994). Crede-type epithermal veins: Menzie et al. (1992); Ewers and Ryburn (1993). Comstock-type ep-

ithermal veins: Singer et al. (1993). Polymetalic replacement deposits: Singer et al. (1993); Ewers and Ryburn

(1993). Epithermal gold deposits: Singer et al. (1993). Carlin-type sediment hosted deposits: Eilu et al. (2007).

Sedimentary exhalative deposits: Singer et al. (1993); Eilu et al. (2007). Unclassified hydrothermal veins: Ewers

and Ryburn (1993); Eilu et al. (2007)

Li

n = 52

Pegmatites: Rogers (1996); Eilu et al. (2007)

Nb

n = 50

Carbonatites: Berger et al. (2009). Pegmatites: Eilu et al. (2007). Unclassified hydrothermal veins: Eilu et al.

(2007)

Co

n = 240

Archaean Porphyry Cu: Eilu et al. (2007). Sediment hosted Cu deposits: Cox et al. (2007). Archaean massive

sulfides: Ewers and Ryburn (1993); Eilu et al. (2007). Sediment-hosted Zn–Pb: Ewers and Ryburn (1993).

Laterites: Berger et al. (2011). Ni–Cu–PGE in ultramafic intrusions: Ewers and Ryburn (1993); Eilu et al.

(2007). Komatiites: Ewers and Ryburn (1993); Singer et al. (1993). Fe–Ti oxides in mafic intrusions: Eilu et al.

(2007). Co-Ag arsenides: Rogers (1996). Skarns: Ewers and Ryburn (1993); Eilu et al. (2007). Dunitic Ni:

Singer et al. (1993). Synorogenic synvolcanic Ni deposits: Singer et al. (1993). Unclassified hydrothermal veins:

Ewers and Ryburn (1993); Eilu et al. (2007). Banded iron formations: Ewers and Ryburn (1993)

Cu

n = 2541

Porphyry Cu: Singer et al. (2008). Sediment hosted Cu deposits: Cox et al. (2007); Eilu et al. (2007). Vol-

canogenic massive sulfides: Mosier et al. (2009). Archaean massive sulfides: Rogers (1996); Ewers and Ryburn

(1993); Eilu et al. (2007). Sediment-hosted Zn–Pb: Singer et al. (2009); Ewers and Ryburn (1993); Eilu et al.

(2007). Archaean low sulfide Au and Homestake Au: Ewers and Ryburn (1993). Volcanic hosted Cu: Rogers

(1996). Ni–Cu–PGE in ultramafic intrusions: Rogers (1996); Jaques et al. (2005); Eilu et al. (2007); Eckstrand

and Hulbert (2007); Ewers and Ryburn (1993); Norilsk Internet Souce (ND). Komatiites: Rogers (1996);

Singer et al. (1993); Ewers and Ryburn (1993). Fe–Ti oxides in mafic intrusions: Eilu et al. (2007). Co-Ag

arsenides: Rogers (1996). Coeur d�Alene-type polymetallic veins: Long (1998). Skarns: Singer et al. (1993);

Orris et al. (1987); Ewers and Ryburn (1993); Eilu et al. (2007). Vein-type Sn deposits: Singer et al. (1993).

Replacement Sn deposits: Singer et al. (1993). Detachment fault base metal deposits: Singer et al. (1993). Blue

Mountain type polymetallic veins: Bliss (1994). Crede-type epithermal veins: Menzie et al. (1992). Comstock-

type epithermal veins: Singer et al. (1993). Dunitic Ni: Singer et al. (1993). Epithermal quartz-alunite gold:

Singer et al. (1993). Unconformity-type U deposits: Singer et al. (1993). Synorogenic synvolcanic Ni deposits:

Singer et al. (1993). Polymetalic replacement deposits: Singer et al. (1993). Epithermal gold deposits: Singer

et al. (1993). Sediment hosted Au deposits: Eilu et al. (2007). Sedimentary exhalative deposits: Singer et al.

(1993); Eilu et al. (2007). Contact-type Cu–Ni–PGE deposits in mafic intrusions: Zientek (2012). Reef-type

PGE deposits in mafic intrusions: Zientek (2012). Kiruna-type apatite-magnetite Fe ore: Eilu et al. (2007).

Unclassified hydrothermal veins: Ewers and Ryburn (1993); Eilu et al. (2007). Stratabound uranium deposits:

Ewers and Ryburn (1993); Eilu et al. (2007). Banded iron formations: Ewers and Ryburn (1993). Replacement

Mn deposits: Singer et al. (1993)

Ni

n = 464

Archaean massive sulfides: Eilu et al. (2007). Sediment-hosted Zn–Pb: Ewers and Ryburn (1993). Laterites:

Berger et al. (2011). Ni–Cu–PGE in ultramafic intrusions: Rogers (1996); Jaques et al. (2005); Eilu et al.

(2007); Eckstrand and Hulbert (2007); Ewers and Ryburn (1993); Norilsk Internet Souce (ND). Komatiites:

Rogers (1996); Singer et al. (1993); Ewers and Ryburn (1993). Stratiform chromite: Ewers and Ryburn (1993).

Co-Ag arsenides: Rogers (1996). Dunitic Ni: Singer et al. (1993). Synorogenic synvolcanic Ni deposits: Singer

et al. (1993); Ewers and Ryburn (1993). Contact-type Cu–Ni–PGE deposits in mafic intrusions: Zientek (2012).

Reef-type PGE deposits in mafic intrusions: Zientek (2012). Black shale U deposits: Eilu et al. (2007). Un-

classified hydrothermal veins: Eilu et al. (2007). Stratabound uranium deposits: Ewers and Ryburn (1993)
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content), and the frequencies were rescaled to a
total of 1. The result of these transformations is that
the histograms for the 20 elements are directly
comparable to one another, as they all represent
scale-free data in both coordinates.

The PDF for the logarithms of a lognormally
distributed random variable rescaled to a geometric
mean l* = 1 is a normal (Gaussian) distribution
curve with mean = median = mode = l = ln l* = 0,
i.e., centered at the origin. Also, if a set of random
values, t, follows a perfect lognormal distribution,
then the standard deviation of the values of ln t,
which I will label st, equals the standard deviation of
the normal PDF that describes the values of ln t,
which is also the scale parameter r of the lognormal
PDF that describes the distribution of the values of t.
I therefore calculated the standard deviation of the
(natural) logarithms of the rescaled tonnages for
each metal, which are shown Table 2. The values of
st were then used to construct normal distribution
curves, shown with the solid curves in Figures 6–9,
with mean = 0 and standard deviation = stÆlog10e
(this conversion is necessary because the histograms
were constructed with values of log10 t.) Note from
Table 2 that, with the exceptions of PGE, Sn, and
W, the values of st cluster in a relatively narrow

interval, approximately 2.5–3.5, which suggests that
the distribution of the endowment of many different
metals follows similar patterns.

Inspection of the histograms suggests that the
metals included in this study can be subdivided into
three groups, as follows.

The first group, shown in Figures 6 and 7, con-
sists of Cu, Au, Ag, Zn, Pb, Ni, Mo, Co, Mn, and Al.
Although the quality of the agreement varies among
these metals, probably at least in part because there
are significant differences in the number of data
points (also shown in the histograms), it appears
reasonable to state that in all of these cases the
histograms are unimodal, centered on the origin and
not significantly skewed. The agreement with the
expected normal PDF is mediocre, but there is a
consistent observation: with the possible exception
of Al, actual deposit size distributions are more
strongly peaked than the theoretical PDF (solid
curves in the figures). This may suggest that the
standard deviation values st overestimate the scale
parameter r of the lognormal distribution.

The second group, shown in Figure 8, consists
of Sb, Li, Nb, and REE. The histograms for these
four metals display the same general characteristics
as those of the previous group and, with the excep-

Table 1. continued

Metal Data Sources

Zn

n = 1476

Archaean Porphyry Cu: Eilu et al. (2007); Ewers and Ryburn (1993). Volcanogenic massive sulfides: Mosier

et al. (2009). Archaean massive sulfides: Rogers (1996); Ewers and Ryburn (1993); Eilu et al. (2007). Sediment-

hosted Zn–Pb: Singer et al. (2009); Eilu et al. (2007). Ni–Cu–PGE in ultramafic intrusions: Eilu et al. (2007).

Coeur d�Alene-type polymetallic veins: Long (1998). Skarns: Singer et al. (1993); Ewers and Ryburn (1993);

Eilu et al. (2007). Crede-type epithermal veins: Menzie et al. (1992). Comstock-type epithermal veins: Singer

et al. (1993). Polymetalic replacement deposits: Singer et al. (1993). Epithermal gold deposits: Singer et al.

(1993). Sediment hosted Au deposits: Eilu et al. (2007). Sedimentary exhalative deposits: Singer et al. (1993);

Eilu et al. (2007). Black shale U deposits: Eilu et al. (2007). Unclassified hydrothermal veins: Eilu et al. (2007);

Ewers and Ryburn (1993). Stratabound uranium deposits: Ewers and Ryburn (1993)

Cr

n = 936

Stratiform chromite: Ewers and Ryburn (1993); Eilu et al. (2007); Rogers (1996). Podiform chromite: Mosier

et al. (2012); Ewers and Ryburn (1993)

Mn

n = 224

Archaean massive sulfides: Eilu et al. (2007). Skarns: Eilu et al. (2007). Kiruna-type apatite-magnetite Fe ore:

Eilu et al. (2007). Unclassified hydrothermal veins: Eilu et al. (2007). Banded iron formations: Eilu et al.

(2007). Sedimentary Mn deposits: Singer et al. (1993); Ewers and Ryburn (1993). Replacement Mn deposits:

Singer et al. (1993). Epithermal Mn deposits: Singer et al. (1993)

Fe

n = 849

Archaean massive sulfides: Eilu et al. (2007). Carbonatites: Eilu et al. (2007). Laterites: Ewers and Ryburn

(1993). Ni–Cu–PGE in ultramafic intrusions: Eilu et al. (2007). Fe–Ti oxides in mafic intrusions: Eilu et al.

(2007); Rogers (1996). Stratiform chromite: Ewers and Ryburn (1993). Skarns: Singer et al. (1993); Eilu et al.

(2007). Sediment hosted Au deposits: Eilu et al. (2007). Sedimentary exhalative deposits: Eilu et al. (2007).

Kiruna-type apatite-magnetite Fe ore: Eilu et al. (2007); Singer et al. (1993). Unclassified hydrothermal veins:

Eilu et al. (2007). Banded iron formations: Eilu et al. (2007); Ewers and Ryburn (1993); Singer et al. (1993).

Sedimentary Mn deposits: Ewers and Ryburn (1993). Replacement Mn deposits: Singer et al. (1993)

Al

n = 163

Karst bauxite: Singer et al. (1993). Laterite bauxite: Singer et al. (1993)

REE

n = 38

Carbonatites: Berger et al. (2009); Eilu et al. (2007). Stratabound uranium deposits: Eilu et al. (2007)
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tion of Li, the same relationship to the normal PDF.
The number of data points for these four metals is,
however, much smaller than those for the first group,
which is the reason why they are shown separately.
Also, at least for Li it is known that the data do not
include the largest deposits (evaporites).

The third group, shown in Figure 9, consists of
metals for which it is not possible to make a case for
an approximately lognormal distribution of deposit
sizes. Three of them, PGE, Sn, and W, display
clearly bimodal distributions, which are also
reflected in their significantly higher standard
deviations (Table 2). Another two, Cr and Fe, are
noticeably skewed, toward smaller deposits in the
case of Cr and larger deposits in the case of Fe.
Correspondingly, the standard deviations for these
two metals are on the high end of the range of values
for all metals other than PGE, Sn, and W (Table 2).
Finally, U displays a relatively symmetric histogram
centered at the origin, but one that is in very poor
agreement with the normal PDF expected from the
value of st.

The histograms suggest that, with the excep-
tions noted above, the distributions of deposit sizes
for many metals share important characteristics with
the lognormal distribution. In particular, the number
of deposits falls off geometrically and symmetrically
with size relative to a central ‘‘characteristic’’ size,
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Fig. 6. Deposit size distribution (in terms of contained metal tonnage) for six metals with sizable

data bases (indicated by the number of deposits included, n) and reasonably symmetric distri-

butions. Deposit sizes are normalized to the geometric mean deposit size (Supplementary Ta-

ble 3) and transformed to decimal logarithms, and frequencies are normalized to a total of 1, so

that the histograms are directly comparable to one another. Curves show theoretical lognormal

PDFs for two different choices of scale parameters, either the standard deviation of the loga-

rithms of the metal tonnages (solid curves) or the square root of the (observed) rescaled tonnage

of the deposit located as close as possible to 50% point of the cumulative tonnage distribution

(broken curves, see Eq. 35).

112 Patiño Douce



such that deposits that are more than �3 orders of
magnitude larger or smaller than this central size are
vanishingly rare. One can then ask whether the log-
normal model is a reasonable enough approximation
for it to be used to make valid predictions about
future availability of metallic mineral resources.

We can expand upon this question by noting
that the histograms in Figures 6–9 only convey
information about the distribution of deposit sizes.
A different question, as I discussed in previous sec-
tions, is that of the distribution of metal endowment
among deposits of different sizes. In order to address
this question, I began by calculating cumulative
tonnages going down the sorted rescaled tonnage
lists (Supplementary Table 4). Assuming that
deposit size distributions are lognormal, the distri-
bution of these cumulative tonnages, once rescaled
to a maximum total value of 1, should follow the
CDF m(z). I therefore located in the cumulative
tonnage lists the deposit size tq, that is the observed
value that corresponds as closely as possible to the

point zq
M in the function m(z), such that the fraction

q of the metal endowment is contained in deposits
larger than tq (corresponding to Eq. 30). Once this
point was located I calculated the (observed) fre-
quency of the largest deposits, fq, that contain the
fraction q of the metal endowment. This observed
variable corresponds to the calculated frequency
p[z|(zq

M,¥)], i.e. Eq. (31). Results for q = 0.5 and
0.95 are summarized in Table 2. Recall that, if metal
tonnage distributions are indeed lognormal, then the
standard deviation of the log transformed values, st
(Table 2) corresponds to the scale parameter r. The
values of fq from Table 2 were thus plotted in
Figure 10 against the standard deviations of the
logarithms of the metal contents, st. Also shown
in the figure are the corresponding curves of
p[z|(zq

M,¥)] versus r calculated with Eqs. (30) and
(31) (compare Fig. 1). Although scattered, the data
follow trends that are similar to those of the calcu-
lated curves, but that plot consistently above
the curves. This observation restates the previous
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Fig. 7. Same as Figure 6, for four metals that, although with reasonably symmetric distributions,

have significantly smaller data bases than those in the previous figure (n<400).
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conclusion that the standard deviation of the log
transformed tonnages may overestimate the scale
parameter (Figs. 6–9 and associated discussion).

Because using only the standard deviation of
individual deposit tonnages to estimate the scale
parameter ignores the distribution of cumulative
tonnages, one can ask whether agreement between
calculated and observed distributions improves
when this additional information is considered. It is
possible to estimate an alternate value of r from
Eq. (35). The value of t50 (Table 2 and Supplemen-
tary Table 4) is the rescaled size of the observed
deposit that corresponds to the 50% point of the
cumulative tonnage distribution, i.e., it approximates
the point z50

M = zm
M, the median of the CDF m(z). I

therefore estimated alternate values of r, which I
label r*, from Eq. (35), i.e., r* =

ffiffiffiffiffiffiffiffiffiffi

ln t50

p
. The values

of r*, also listed in Table 2, are in every case smaller
than the values of r = st obtained from the standard
deviation of individual deposit sizes. The values of
r* were used in Figure 11 to repeat the comparison

with the expected distribution of the metal endow-
ment (compare Fig. 10). The agreement with the
calculated curves improves significantly, and is par-
ticularly good with the 95% cumulative tonnage curve
(with the possible exception of PGE, which as we saw
above shows a strongly bimodal tonnage distribu-
tion). It is important to recapitulate what lies behind
the good agreement illustrated in Figure 11: (i) con-
struction of the theoretical probability curves is based
on both PDFs, P(z) and M(z); (ii) estimation of r* =
ffiffiffiffiffiffiffiffiffiffi

ln t50

p
relies on the location of the 50% point of the

observed cumulative metal endowment distribution;
(iii) the values of fq, which correspond to p[z|(zq

M,¥)],
are the frequencies of the largest deposits that contain
either 50 or 95% of the observed metal endowment.
Because each of these data and calculations are
independent of one another, it is unlikely that the
agreement shown in Figure 11 is an artifact.

The values of r* =
ffiffiffiffiffiffiffiffiffiffi

ln t50

p
were also used to

plot a second set of normal distribution curves su-
perimposed on the histograms that summarize the
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Fig. 8. Same as Figure 6, for four metals with small data bases (n<100).
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distribution of deposit tonnages. These are the
dashed curves in Figures 6–9. The agreement of
the histograms with the expected curves generally
improves. The improvement is especially noticeable
for metals for which at least 1000 deposits are

included in the dataset (Cu, Au, Ag, Zn, and Pb,
Figure 6), but is also seen for metals with much
smaller datasets, particularly Al, Sb and REE
(Figs. 7 and 8). Note that for most metals r* is in the
range 2–3, suggesting that it may be possible to draw
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Fig. 9. Same as Figure 6, for metals which display poor agreement with a lognormal distribu-
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fairly general inferences about metal distribution by
focusing on the behavior of lognormal distributions
within this restricted range of scale parameters, as
summarized in Figure 4.

We can also compare how the distribution of
the observed metal endowment compares to the
theoretical frequency of deposits in the most pro-
ductive interval, centered on zm

M = er
2

, and with the
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Fig. 10. Observed frequencies of the largest deposits that contain

either 50% (circles, top panel) or 95% (triangles, bottom panel)

of the endowment of the 20 metals included in Figures. 6–9 (see

also Table 2), plotted against the standard deviation of the nat-

ural logarithms of the rescaled metal tonnages (also given in

Table 2). For comparison, the figure also show curves for the

calculated frequency of the largest deposits that contain 50 and

95% of the endowment for a population of deposits that rigor-

ously follows a lognormal distribution, plotted against the scale

parameter of the distribution (same as Figure 1).
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quencies, which are of the same values as in Figure 10, are

plotted against an alternative estimate of the scale parameter, r*

(given in Table 2), derived from the observed rescaled tonnage

of the deposit located as close as possible to the 50% point of

the observed cumulative tonnage distribution (Eq. 35). Agree-

ment with the curves calculated for a theoretical lognormal

distribution (same as in Figure 10) improves significantly

(compare Fig. 10), and is particularly good for the frequency of

largest deposits that contain 95% of the endowment.
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expected width of the interval. This is seen in
Figure 12, which shows the same curves as Figure 3,
together with the corresponding estimated values for
the observed metal tonnages, which were obtained
as follows. The normalized size of the deposit at the
50% point of the cumulative metal endowment
curves, t50 was taken from Supplementary Table 4,
as before. This point corresponds to the center of the
most productive interval, zm

M = er
2

(Eq. 35). Then
another two deposits were identified in the ordered
cumulative tonnage table (Supplementary Table 4),
corresponding to the lower and upper bounds of the
most productive interval. These were defined as the
deposits such that either 25 or 47.5% of the cumu-
lative endowment (for the 50 and 95% metal
endowment curves, respectively) is contained in
deposits smaller and larger than t50, with ordered
sizes ranging between t50 and the corresponding
limiting deposit. These limiting deposit sizes are
labeled t50

L , t50
U , t95

L and t95
U , and are shown in Table 2

and Supplementary Table 4. The frequency of
deposits in these intervals (f50

x or f95
x in Table 2 and

Supplementary Table 4) corresponds to the prob-
ability of occurrence in the most productive interval
(Eq. 39 and left panel in Figure 12), and the ratio
between the sizes of the two limiting deposit sizes

(t50
U /t50

L , or t95
U /t95

L ) corresponds to x (right panel in
Figure 12). The agreement between observed and
expected deposit frequencies in the most productive
interval is excellent, especially for the wider interval
that encompasses 95% of the metal endowment.
There is, however, no good agreement with respect
to the interval width. In all cases, mineral deposit
sizes cluster into narrower tonnage intervals around
the value of t50 than what a lognormal tonnage dis-
tribution would predict. A possible interpretation of
this observation is that the actual distribution of
deposit sizes is even more narrowly peaked than a
lognormal PDF with the scale parameter given by
r* =

ffiffiffiffiffiffiffiffiffiffi

ln t50

p
, shown with the dashed curves in

Figures 6–9. But there is an additional important
observation, which is that the width of the most
productive interval shows relatively little variability
among the different metals considered here, and
appears to be largely independent of the value of r.
In most cases, the width of the most productive
interval that contains 50% of the metal endowment
is approximately 1 order of magnitude, and some
2–3 orders of magnitude for 95% of the endowment
(Fig. 12).

Concentration of a large proportion of the
metal endowment in deposits of a relatively
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scale parameter given by r* =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p

—see Eq. (35) and Figure 11. For comparison, the figure also shows the corresponding curves

calculated for a lognormal distribution, which are of the same curves shown in Figure 3.
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restricted and approximately constant size range
may be the most important departure that the dis-
tribution of metals in nature shows relative to a
lognormal model. The lack of agreement almost
certainly arises from the fact that the simple multi-
plicative model that underlies the lognormal prob-
ability distribution is an oversimplified picture of the
processes that are responsible for the concentration
of metals in mineral deposits. This is hardly sur-
prising, given the complexity and variability of the
chemical and physical pathways responsible for
formation of mineral deposits. It also means that, as
pointed out by Singer (2013), making predictions
about the likelihood of existence of undiscovered
mineral deposits in specific mineralized tracts is only
possible if one imposes stringent restrictions on
metallogenic deposit types, which restrict the vari-
ability of mineralization processes. The goal of this
paper, however, is distinctly different from making
specific predictions aimed at discovering new ore
deposits in favorable mineralized tracts.

Distribution of metallic deposit tonnages is not
strictly lognormal. However, with a few exceptions,
deposit tonnages follow unimodal distributions with
approximately geometric scaling centered on the
geometric mean size. It is therefore possible to
identify a ‘‘most common’’ or ‘‘characteristic’’ deposit
size, which corresponds to the median deposit size,
which is approximately the same as the geometric
mean size. Deposits that are more than a few orders
of magnitude larger or smaller than this most com-
mon size are vanishingly rare. This behavior is shared
with the lognormal distribution, and explains why
metal endowment is concentrated in deposits that are
considerably larger, and therefore rarer, than the
most common deposits (Fig. 4). Singer (1995) found
this to be true for deposits of several base and pre-
cious metals. The behavior is likely to be quite gen-
eral, however, as it is observed among deposits of
both scarce and abundant metals formed by a wide
diversity of metallogenic processes.

CHALLENGES FACING FUTURE SUPPLY
OF METALLIC RAW MATERIALS

In the accompanying paper (Patiño Douce
2015), I show that past demand for metallic raw
materials has followed consistent and predictable
trends that can be shown to arise from changes in
per-capita demand for resources as well as from
growth of world population. I also discuss what the

implications of extrapolating these trends are, with
respect to likely demand of metallic raw material
throughout this century. For most metals, the world
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panel), and frequency with which these hypothetical deposits

should be expected to occur (bottom panel), plotted as a func-

tion of the fraction, G, of the known, proven reserves relative to

the hoped-for resources. For example, if the demand will be

5–10 times the amount of metal contained in known ore

deposits, then G will be about 0.1–0.2, and the hypothetical

‘‘supergiant’’ deposits needed to supply this demand will have to

be approximately 10 times larger than the largest known

deposits (top panel). If such deposits exist, then they should

make up about 1% of all ore deposits (bottom panel).
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is likely to need between 5 and 10 times the amount
of metal contained in known ore reserves in order to
maintain historical patterns of metal consumption
until the year 2100. It is possible to place constraints
on what types of deposits one must hope exist if one
is to have reasonable expectations of meeting the
likely demand

Let us begin by examining the ‘‘most produc-
tive’’ deposit size interval, that is centered on a
normalized deposit size �er

2

. For values of r about
2–3, that may be characteristic of many metals, this
corresponds to deposits that are 102–104 times larger
than the median deposit size (Fig. 4), and that make
up only a small fraction of all mineral deposits
(Fig. 3, left panel). For many of the metals examined
here, 95% of the known endowment is contained in
a ‘‘most productive interval’’ with a width of 2–3
orders of magnitude (Fig. 12), that is in fact nar-
rower than that predicted by a lognormal distribu-
tion (Figs. 3, 4). This discrepancy does not affect the
following argument, that arises only from the dis-
placement of the peak of the endowment distribu-
tion, M(z), toward deposit sizes that are orders of
magnitude larger than the median deposit size.

Suppose that future needs will be approximately
5 times the amount of metal contained in known ore
reserves (Patiño Douce 2015), and that we expect to
rely on deposits with sizes within a ‘‘most produc-
tive’’ tonnage interval that contains 95% of the
endowment (i.e., virtually all the metal) to supply
these needs. Then it would be necessary to find
approximately 5 new deposits in this size range for
every known deposit of comparable size. If the
sampling provided by the known mineral deposits is
an accurate representation of the distribution of the
entire metal endowment, then this would imply that
approximately 5 times the known number of ‘‘most
common’’ deposits (Fig. 4) should also exist. It is
unlikely that only one out of every five ‘‘ordinary’’
ore deposits is known, especially after more than a
century of systematic exploration.

Another possibility is to assume that we have
only discovered the smallest deposits, and that truly
‘‘supergiant’’ deposits lurk undiscovered. We can
model this possibility as follows. Suppose that we
have determined that we will need g times the
amount of known reserves in order to supply future
needs. The amount of metal known to exist then
constitutes a fraction G = 1/(1 + g)<1 of the total
hoped-for resources (which may or may not exist). If
all of the known metal is contained in the smallest
deposits of this hypothetical endowment, then the

normalized size of the largest known deposit, which
we can call zlarge, is given by the solution to the
equation:

Z zlarge

0

M zð Þdz ¼ G: ð40Þ

We can then determine the size of the (hypothetical)
deposit at the center of the (hoped-for) most
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be minuscule deposits, less than one tenth the size of the smaller

known ore bodies, and thousands of times more abundant than

known ore deposits.
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productive interval, relative to the largest known
deposit:

rlarge ¼ er
2

zlarge
ð41Þ

and the probability that deposits larger than the
largest known deposit exist is

p zj zlarge;1
� �� �

¼
Z 1

zlarge

P zð Þdz: ð42Þ

Some illustrative results are shown in Figure 13, for
values of r in the range 2–3. Suppose that G is
�0.16, i.e., we will need approximately five times the
amount of metal contained in known ore reserves
(Patiño Douce 2015). If we expect to rely on
‘‘supergiant’’ deposits to supply future demand of
metallic raw materials, then we must hope that the
most productive interval is centered on undiscov-
ered deposits containing more than 10 times the
amount of metal contained in the largest known
deposits (the exact value varies with G and r, as seen
in the top panel of Figure 13). This is the center of
the interval, so some of the deposits could be
smaller, and some larger. We must also expect that
all of these undiscovered deposits make up roughly
1% of all deposits (although there is considerable
variability, see bottom panel of Figure 13). One
must be careful when attaching a physical meaning
to a numerical result such as this one. This number
represents not the probability that these very large
deposits exist, but rather the frequency with which
they must exist if they are to supply future needs. If
interpreted as a probability, the number is surpris-
ing, as the value is not negligible. A conservative
interpretation of this probability would be that,
because we have not yet found any of these not-
so-rare yet very large deposits, they are unlikely to
exist. There is anecdotal evidence that the larger
deposits tend to be among the first to be discovered
in a previously unexplored favorable geological
setting. Although I am not aware of rigorous studies
that quantify this statement, if true it would support
the conclusion that not-so-rare very large deposits
should have already been discovered if they existed.
A better theoretical understanding of the physico-
chemical pathways and processes conducive to the
formation of metallic mineral deposits might help to
answer the question of whether deposits that large
can exist, and thus decide whether their potentially
crucial role in supplying future metal needs justifies
exploring for them.

We can also contemplate the inverse situation, in
which we have discovered all of the largest deposits of
the hypothetical endowment, and future demand will
have to be met with metal contained in deposits that
are smaller than the smallest known deposit. These
small deposits may be undiscovered, or may be known
but have been ignored because they are perceived to
be uneconomic. In this case, we seek the normalized
size of the smallest known deposit, zsmall, which is
given by the solution to the equation:

Z 1

zsmall

M zð Þdz ¼ G: ð43Þ

The size of the (hypothetical) deposit at the center
of the (hoped-for) most productive interval, relative
to the smallest known deposit is

rsmall ¼
er

2

zsmall
ð44Þ

and the probability that deposits smaller than the
smallest known deposit exist is

p zj 0; zsmallð Þ½ � ¼
Z zsmall

0

P zð Þdz: ð45Þ

Results are shown in Figure 14, for the same values of
r as before. ForG�0.16, the most productive interval
is in this case centered on undiscovered deposits
containing one tenth, or less, of the amount of metal
contained in the smallest known deposits. These de-
posits should be hundreds to thousands of times more
common than the known deposits (Fig. 14, bottom).
We can safely conclude that most of these deposits do
not exist, because we otherwise would have already
known about them. Relying on small mineral deposits
is therefore not a viable strategy to supply future de-
mand for metallic raw materials.

CONCLUSIONS

If past trends in usage of metallic mineral
resources continue, then humanity is likely to need
several times the known amount of metal contained
in proven reserves in order to meet the expected
demand to the year 2100. The actual figures vary
somewhat among the metals discussed in these
papers, but a range of 5–10 times is a conservative
estimate for most metals, including abundant and
scarce metals (Patiño Douce 2015). These raw
materials will have to be extracted from mineral
deposits in which the metals of interest have been
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enriched above their geochemical average concen-
trations to concentrations that are sufficient to make
extraction feasible both technologically and eco-
nomically. By definition, we do not know whether
mineral deposits containing the required amount of
metal exist. In this paper, I have used the statistical
distribution of metal in known mineral deposits to
estimate the sizes of the deposits that will be
required to meet expected demand.

The known endowment of all of the metals
included in this study is strongly concentrated in a few
mineral deposits that are orders of magnitude larger
than the ‘‘median,’’ most common, deposits. The rea-
son for this is that deposit sizes follow a roughly sym-
metric distribution, in which deposit frequency falls off
geometrically with size, away from the median size.
The distribution is not strictly lognormal, but it is
similar enough to it to make the lognormal model a
useful predictive tool. Following this line of reasoning,
we arrive at the conclusion that, if the metal required to
meet future demand exists, it is not to be chiefly found
in mineral deposits of comparable size to those already
known, nor in deposits that are significantly smaller
than those that supply most of the world�s present day
demand. Our best hope of meeting future demand
is that ‘‘supergiant’’ deposits, perhaps one order of
magnitude larger than the largest known deposits,
exist. There is no indication that such deposits exist, nor
any statistical arguments to expect that they do, nor
that they do not. It is not the purpose of this contri-
bution to decide this issue, nor to come up with tonnage
estimates of undiscovered mineral resources. The goal
is to constrain the sizes of the deposits on which
exploration should be focused. This goal is comple-
mentary to the estimation of undiscovered resource
tonnages. Deposits one order of magnitude larger than
the largest known deposits might exist and still lie
undiscovered, in which case supply over the rest of this
century would not be a problem, albeit at unpre-
dictable environmental and financial costs. But if they
do not exist, then we can expect major, perhaps
catastrophic, disruptions to the world�s economy
sometime before the end of the century, arising from
exhaustion of metallic raw material.
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APPENDIX: LOGNORMAL VERSUS
POWER-LAW DISTRIBUTIONS

Consider a rescaled (l = 0) lognormal PDF,
log-transformed as (see Eq. 2):

lnP zð Þ ¼ � 1

2r2
ln zð Þ2� ln z� ln r

ffiffiffiffiffiffi

2p
p� �

ð46Þ

and a power-law:

lnQ zð Þ ¼ �b ln z� c: ð47Þ
In a log–log plot, the first function is a curve with
negative curvature, and the second function is a
straight line. For z> e�r2

; it is d ln P(z)/d ln z<0.
Therefore, the high-end tail of a lognormal distri-
bution and a power law with negative exponent may
be related as shown in Figure 15. Assume that the
two functions are tangent in a log–log plot at a point
zT, as shown in the figure. We wish to know the
distance, d, between the values of the two functions,
as a function of the distance from zT, and the scale
parameter r (see Fig. 15).

If the curves are tangent at zT, then

lnP zTð Þ ¼ lnQ zTð Þ ð48Þ

18 10 2
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ln z
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(z
)
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ln Q (z)

ln P (z)

power law distribution

lognormal distribution

Fig. 15. Schematic relationship between the high-end tail of a

lognormal PDF, P(z), and a power-law distribution, Q(z). On a

log–log plot the power law is a straight line, and the lognormal

PDF is a curve with negative curvature. It is always possible to

construct a power law that is tangent to P(z) at any arbitrary

point, zT, see text. One can then ask how the distance between

the two curves, d, varies as a function of the scale parameter of

P(z) and the distance from zT.
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and

d lnP zð Þ
d ln z









z¼zT

¼ d lnQ zð Þ
d ln z









z¼zT

ð49Þ

From the second equation, we get

b ¼ 1 þ ln zT
r2

ð50Þ

Solving the first equation for c, we find

c ¼ 1

2r2
ln zTð Þ2þ 1 � bð Þ ln zT þ ln r

ffiffiffiffiffiffi

2p
p� �

ð51Þ

and substituting (50), we find

c ¼ ln r
ffiffiffiffiffiffi

2p
p� �

� ln zTð Þ2

2r2
: ð52Þ

Thus, a power law, Eq. (47), with parameters b and c
given by Eqs. (50) and (52), is tangent at zT to a
normalized lognormal PDF with scale parameter r.
We now wish to know how the distance between the
functions varies as the value of the variable z moves
away from the point, zT, where the curves are tan-
gent. Call this distance d (see Fig. 15):

d ¼ lnQ zð Þ � lnP zð Þ ¼ ln
Q zð Þ
P zð Þ ð53Þ

or, explicitly:

d ¼ 1

2r2
ln zð Þ2þ 1 � bð Þ ln zþ ln r

ffiffiffiffiffiffi

2p
p� �

� c: ð54Þ

Substituting Eqs. (50) and (52), we find

d ¼ 1

2r2
ln zð Þ2� ln zT

r2
ln zþ ln zTð Þ2

2r2
ð55Þ

or:

d ¼ 1

2r2
ln z� ln zTð Þ2¼ 1

2r2
ln

z

zT

� �2

ð56Þ

That is,

ln
Q zð Þ
P zð Þ ¼

1

2r2
ln

z

zT

� �2

ð57Þ

The last equation shows an important relationship
between the lognormal and power-law distributions:
the two functions converge as the scale parameter
increases, and they do so quickly, as the convergence
goes with the square of the scale parameter. At the
limit r fi ¥, the two distributions become indis-
tinguishable. For our purposes, however, it is more
relevant to study how the two distributions deviate

as a function of the distance from the point of tan-
gency, zT, for constant values of r about 2–3 (see
text). This is shown in Figure 16.

In this paper, I have modeled the distribution of
metal contents in mineral deposits using the log-
normal PDF. But suppose that, given the relatively
few known mineral deposits in the high-end tail of
the distribution, the uncertainty is large enough that
power-law behavior cannot be discarded for the
largest deposits, i.e., the high-end tail of the distri-
bution can be fitted reasonably well with a straight
line in a log–log plot. We saw in the main body of
the paper that supplying the world�s metal demand
throughout the twenty-first century is likely to
require the discovery of deposits 10–100 times larger
than the largest known deposits (e.g., assuming that
G is �0.16 in the top panel of Figure 13, see also
associated discussion). If deposit size distribution
follows a power law, then deposits of this magnitude
might be 2–10 times more common than what a

1 2 10 20 100
1

2

3

10

z / zT

Q
(z
)
/P

(z
)

= 2

= 3

Distance between power law and lognormal distribution

Fig. 16. The distance between a power law and a lognormal

PDF tangent at zT, given as ed = Q(z)/P(z), as a function of the

distance from zT given as z/zT. Over a displacement of �1 order

of magnitude from zT, and for values of r found here to be

characteristic of metallic ore deposits, frequencies predicted by

the power law would be less than twice those predicted by a

lognormal distribution. The ratio climbs to about 3 to 10 times

for a displacement of �2 orders of magnitude. A power law

decays more slowly than an exponential function (such as a

lognormal PDF), so it predicts higher frequencies for large de-

posits. One can interpret this result either as meaning that there

are greater chances of finding those large deposits, or as

meaning that they do not exist, because, otherwise, we would

have already known about them—see text.

122 Patiño Douce



lognormal distribution would predict (Fig. 16).
Assuming a lognormal distribution, such deposits
would make up �1% of all mineral deposits (bottom
panel of Figure 13 with G of �0.16, and also asso-
ciated discussion). If, on the other hand, these very
large deposits followed a power-law distribution,
then we might expect them to be as common as
2–10% of all deposits (Fig. 16). One could use this
greater frequency as a source of optimism that the
required deposits exist and will be found. Or, fol-
lowing the interpretation that, ‘‘if they existed and
they were that common we would already have
found at least some of them,’’ one can conclude that
assuming a power-law distribution for large deposits
should not be a source of greater optimism about
meeting future supply of metallic raw materials. The
fact remains that statistics cannot answer this ques-
tion, and that unless and until such giant deposits
are discovered we will have no certainty about
future supply of metallic raw materials, beyond
knowing that smaller deposits will not by themselves
be sufficient.
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