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In this study, two sampling protocols using a model-based and a design-based framework
were juxtaposed to evaluate their precision in the estimation of C stock in the Ludikhola
watershed, Nepal. The model-based approach exploits the spatial dependencies in the
sampled variable and may therefore be attractive over the design-based approach as it
reduces the substantial costs of survey and effort required in the latter. Scales of spatial
variability for C stock which resulted in a grid resolution of 10,000 m2 were determined
using a reconnaissance variogram. Akaike information criterion was used for the selection
of the best linear model of feature space for use in kriging with external drift (KED).
Among the five tested covariates, distance, elevation, and aspect were statistically signifi-
cant, with the best model of feature space accounting for 87.7% variability of C stock. An
ANOVA established significance differences in mean C stocks (P = 0.00017). KED using
the best model of feature space was found to be more precise, (9.89 ± 0.17) sqrt mg C/ha,
than a pure-based approach of ordinary kriging and the design-based approach,
(9.91 ± 0.8) sqrt mg C/ha. The confidence bounds of the two estimators showed that their
confidence intervals will overlap 99.7% of the time, with both confidence intervals falling
within the 95% confidence bounds of each other. There is less uncertainty around the mean
C stock estimated using the model-based approach than the mean C stock estimated using
the design-based approach. The model-based approach is a prospective option for the
REDD framework.
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INTRODUCTION

Tropical forest ecosystems embody an important
potential for C storage over other terrestrial ecosys-

tems, though proportionally smaller in extent com-
pared to soil and ocean ecosystems (Baker et al. 2010).
Hence, understanding the amount of C content stored
in tropical forests contributes a critical step toward
quantification of their contribution in climate change
mitigation. This study juxtaposes two sampling
designs, one using a geostatistical framework and the
other a design-based framework, derived from dif-
ferent theoretical and philosophical bases for their
precision for estimating C stock. Consequently, the
application of either of these methods for C stock
estimation may not always give the same results.

There is compelling evidence that the average
temperature of the earth is increasing and it is this
potentially adverse phenomenon that has stimulated
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research into the dynamics of C sequestration by
forest ecosystems (Wysowski 2010). Carbon dioxide
(CO2) is believed to play a major role in global
warming (Aydin Coskun and Gençay 2011). There-
fore, solutions to problems of climate change are
aimed at reducing the levels of CO2 in the atmosphere
(UNFCCC 1998). Informed decisions about curbing
the devastating effects of climate change require
elimination of uncertainty in estimates of the rate of
deforestation (Friedlingstein et al. 2006). Hence,
quantification of C stocks is important in the deter-
mination of the extent of C sequestration by forests.

To date, significant advances have been made
toward the estimation and quantification of C in
tropical forests using techniques ranging from forest
inventories to remote sensing (Gibbs et al. 2007). The
most direct way to quantify the C stored in living
forest biomass is through harvesting of all the trees in
a known forest, weighing the biomass, and then
applying a conversion factor to C stock (Leemans
et al. 1996). This method could be accurate for a
particular forest, but it is not environmentally sus-
tainable and, moreover, it is time consuming and
expensive. A greater part of tropical forests typically
contains over 300 species and research has shown that
species-specific allometric relationships are not nec-
essary for the generation of reliable estimates of for-
est C stocks (Bhat and Ravindranath 2011). Instead,
Brown (2002) demonstrated that generalized allo-
metric equations, stratified by broad forest types, are
highly effective for the tropics. This is because the
diameter of trees at breast height alone explains more
than 95% of the variation in above-ground tropical
forests� C stock.

Researchers and forest practitioners including
Houghton (2005) have estimated the amount of C
sequestered in forests using allometric equations, all
with a goal of providing unbiased and accurate
estimates of C stock in forest ecosystems. Sales et al.
(2007) compared the performance of a geostatistical
method with a simple biomass estimation using the
sample mean for mapping forest biomass as a step
toward the estimation of CO2 emissions due to land
use and land cover changes in the Brazilian Amazon.
The research demonstrated the superiority of geo-
statistics in improving estimates of CO2 emissions in
the Amazon forests, one of the world�s biggest CO2

reservoirs and sinks.
Sampling methods are largely based on design-

based (classical) statistical techniques, central to
which is randomized sampling founded on the

probability theory (Keller et al. 2001). An alternative
and promising technique is that of a model-based
(geostatistical) analysis, which is independent of
randomization. For example, Sales et al. (2007)
demonstrated a significant reduction in the root mean
squared error (RMSE) of biomass estimates in Ron-
donia (Brazil) by using kriging with external drift
(KED) compared to the use of a simple biomass
estimation using the sample mean. However, given
the spatial variability of biomass due to changing soil
catena and topography in tropical forests, a model-
based approach might be more appropriate than
other techniques in improving C stock estimates in
such landscapes (Bryan et al. 2010; Montes et al.
2005). This is because the derivation of site-specific
estimates and predictions of C stock in inaccessible
areas using the model-based framework are possible,
which is useful for planning and management.

Moreover, given the extensive and complex
nature of tropical forests and landscapes, these
techniques are usually faced with inevitable limita-
tions of error propagation within the data processing
chain (Goodchild 1994; Wang et al. 2005). It is
physically impossible to sample everywhere due to
the prohibitive costs of survey sampling and inac-
cessibility of some locations. In light of this back-
ground, the inevitable limitation regarding the
aforementioned biomass estimation methods opens
avenues for the geostatistical approach. Therefore,
the aim of this study was to investigate the precision
of the model-based approach and the design-based
approach in estimating C stock in the Ludikhola
watershed of Nepal.

METHODOLOGY

Study Area

The Ludikhola watershed (Fig. 1) is situated in
the Gorkha district of the western development
region of Nepal. The area lies between
27�55¢02.85¢¢N latitude and 27�59¢43.58¢¢E longitude
with an average annual precipitation of 1,972–
2,000 mm/year and an average temperature of
23.1�C with an area coverage of 5,750 ha. The wa-
tershed has a characteristic hilly physiography with
altitudes ranging from 318 to 1,714 m (ANSAB
2010). The watershed falls under the sub-tropical
ecological zone with Schima wallichi, Shorea robusta,
and Castanopsis indica as predominant species.
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Measurement of Tree Biomass

Measurements of diameter at breast height
(DBH) (ca. 1.3 m) of trees with heights greater than
or equal to 10 cm DBH were made in each of the
circular 500 m2 supports using diameter tape, cli-
nometers, and linear tapes. Trees with DBH less
than 10 cm generally have insignificant C stocks
(Gibbs et al. 2007). On average, slopes of at least
30% characterize most of the plots in the study area
and a slope correction was therefore necessary to
correct for the DBH of the measured trees in dif-
ferent slopes (Bhat and Ravindranath 2011).

Biomass Calculation and C Stock Derivation

Due to the lack of local allometric equations, the
general equation proposed by the Intergovernmental
Panel on Climate Change (IPCC 2007) was used for
estimating forest biomass, while an equation devel-
oped by Basuki et al. (2009) for tropical forest was
used for the S. robusta species. The basis for the
application of this allometric equation for this species
in particular is the fact that the mean annual rainfall

(2,000 mm) and temperature range (21–34�C) are
similar to the climatic conditions prevailing in the
study area. Similarly, the equation used for the other
species was also formulated using DBH ranging from
5 to 148 cm and the rainfall (2,000 mm) and temper-
ature were similar to the study area. The biomass for
each individual tree species was subsequently con-
verted to C stocks per species using a conversion
factor of IPCC (2007). Per plot (support) values of C
stocks were then expanded to unit area, in this case, a
hectare (mg C ha�1).

Model-Based Approach

Sampling Design

In this study, 186 observations with a support of
500 m2 as the unit of replication were sampled from
the September 19th to the October 13th 2011. Seven
community forests (CF) with area coverage of 687.9 ha
were sampled on a 1009100 m2 regular grid, with grid
nodes being the location of the sampling points.
Assuming that the UTM grid intersection is random
with respect to the study area, de Gruijter et al. (2006)
assert that the optimal location of a sampling point is

Figure 1. Location of the study area, Ludhikola watershed, Nepal.
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the grid node or intersection. The 1009100 m2 regular
grid was derived from the reconnaissance variogram
modeling carried out during the pre-field work exer-
cise (Webster and Oliver 1992).

An initial location was randomly chosen within
the study area using the ArcGIS sampling facility.
The establishment of this point paved the way for
the rest of the sampling locations, which were
defined so that all the locations were at regular
1009100 m2 intervals over the entire study area.
Sampling was therefore undertaken and done on
every node of the regular grid over the seven CFs.

Reconnaissance Variogram

Sixty observations collected in 2010 on a sup-
port of 500 m2 were used in the modeling of a
reconnaissance variogram for the determination of
scales of spatial variability (Rachina 2011). The data
collected using a stratified random scheme were
used for the derivation of the sampling interval of C
stock for the present study (Oliver and Webster
2008). Thus, the range of influence and the grid
distance for estimating C stock using geostatistics
were derived from the parameters of the recon-
naissance variogram of the data.

Spatial Exploratory Analysis

A spatial exploratory analysis of the response
variable was made in order to shape the road map
for the subsequent analysis. This is important as it
allows for the assessment of the adequacy of mod-
eling assumptions before making a decision to
transform. A spatial plot of C stock observations
with respect to their locations was done using the
geoR geostatistical library (Diggle and Ribeiro
2007). A test of directional dependence of the target
variable was made through directional variogram
modeling (Diggle and Ribeiro 2007).

Kriging

We used ordinary kriging as a reference for
assessing the actual gain for accounting for covari-
ates. As noted by Yan et al. (2007), the precision
with which a variable is estimated may be improved
by auxiliary variables. For instance, Hudson and
Wackernagel (1994) used elevation data to improve

a kriged map of temperature and Odeh et al. (1994)
showed regression kriging to produce better esti-
mates than ordinary kriging.

KED was used to model the spatial structure of
C stock because of its ability to incorporate many
covariates. Sales et al. (2007) demonstrated KED
interpolation to perform better than classical statis-
tical approaches in estimating forest biomass. The
KED algorithm limits stationarity within each
search neighborhood, thereby offering more local
detail than when ordinary kriging is used (Deutsch
and Journel 1998). In order to match the sampling
density of the variable in question and the scales of
spatial variability, a grid cell resolution of 10,000 m2

was subsequently used in the kriging methods
(Hengl 2007). For KED, the assumption of nor-
mality was tested with the residuals of the best linear
model.

Selection of the Best Linear Model of Feature Space

A criterion-based approach using the Akaike
Information Criterion (AIC) was followed to select
the best candidate model for use in KED (Akaike
1978). Criterion-based methods employ a wider
search for the best model and compare models in a
preferable manner (Faraway 2002). A statistic
related to the AIC is the Bayesian information cri-
terion (BIC), which works by imposing heavy pen-
alties to larger models and results in the selection of
smaller models in comparison to AIC and its algo-
rithm. Forward, backward, and stepwise approaches
for the inclusion or exclusion of predictors are
inconsistent, resulting in different final models, even
from the same dataset (MacNally 2000; James and
McCulloch 1990). Hence, the selection of the AIC
approach for linear model selection is justified due
to the inability of stepwise procedures in considering
the increased probability of Type I error due to
multiple testing.

A principal component analysis was carried out
in order to make the explanatory variables inde-
pendent. A principal component analysis therefore
provides a selection criterion of candidate variables
to retain (or eliminate), which consequently results
in data reduction (Mansfield and Helms 1982). The
number of potential predictors from the principal
components� regression was 3 and by the criterion-
based rule, 23 (equal 8) candidate models were fitted
and the model with the lowest AIC was chosen for
subsequent modeling using KED.
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Cross-Validation

In order to assess the predictions, cross-valida-
tion statistics as outlined in Webster and Oliver (2001)
were calculated for each prediction method. The
validation statistics used included the mean error
(ME), the mean squared error (MSE), the RMSE,
and the predicted residual sum of squares (PRESS).
Variogram models for the kriging variants were cross-
validated to assess the validity of the fitted models and
to compare estimates from the variogram models with
actual values (Utset et al. 2000).

Design-Based Approach

Sampling Design

Under this plan, the population of interest was
divided into mutually exclusive and exhaustive
strata and a simple random sample was taken within
each stratum (Cochran 1977). The resulting sample
size for this design was therefore made up of one
hundred and fifteen C stock observations, with the
proportions as illustrated in Table 1.

Non-Spatial-Exploratory Analysis

The normality assumption regarding the mea-
sured target and predictor variables was assessed
through a tabular display of summary statistics. It is
from the summary displays that the decision to
transform non-normally distributed variables was
made. The normalizing transformations can result in
the data meeting the assumptions of the distribution
(Longford 2008).

Analysis of Variance (ANOVA)

A single-factor ANOVA model was fitted to
the data and analyzed for significant differences of
mean C stock among the sampled CFs. Furthermore,
the analysis facilitated the calculation of C stock
estimates in each of the sampled stratum.

Jackknifing

Jackknifing provides a parametric statistical
inference of the dataset by applying re-sampling

without replacement to the original dataset (Wells
1994). A jackknifing procedure was applied in order
to calculate the standard error and bias estimates of
the fitted ANOVA model.

Assessment of Confidence Interval Overlap

A test of significance to establish the extent of
overlap between the two estimators was carried out
using a method applied by Goldstein and Healy
(1995). Assuming the mean of two estimators to be
denoted by �X1 and �X2, independently and normally
distributed with standard errors r1 and r2 , respec-
tively, the confidence intervals do not overlap if the
following inequality (1) is satisfied:

�X1 � �X2

�
�

�
�[Zb r1 þ r2ð Þ ð1Þ

where Zb is the (positive) normal quartile with two-
tailed probability b.

The probability that the inequality in Eq. (1) is
satisfied under the null hypothesis of equal means of
C stocks of the aforementioned estimators is given
by Eq. (2) as follows:

c12 ¼ 2 1� u
Za

2
r1 þ r2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 þ r2ð Þ
p

 !" #

ð2Þ

where c12 denotes the comparison of estimator 1
(model-based) to estimator 2 (design-based) and u is
the normal integral.

RESULTS

Model-Based Approach

Reconnaissance Variogram

The results of this analysis showed a high nug-
get/total sill ratio (0.62), indicating a weak spatial
structure and high short-range variability, even after
averaging over the 500 m2 support. However, an
analysis of spatial structure of C stock from the 186
samples collected for the present study showed
ranges of 750–1,514 m (Fig. 2), which are consider-
ably longer than those in the preliminary analysis.
Thus, the grid distance could have been wider than
the lag distance subsequently used for the modeling
of the spatial structure of C stock.
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Spatial Exploratory Data Analysis

There was no discordance of C stock observa-
tion with respect to their spatial neighbors, particu-
larly with respect to geography (Fig. 3). The
concentration of sampled C stock was high in the
southern region, suggesting the existence of a spa-
tially varying mean due to a trend surface (Ribeiro
and Diggle 2001). It is therefore evident from this
plot that the behavior of C stock density is not the
same across the different geographical regions of the
sampled field. A quartile plot (Fig. 3b) of the
empirical distribution of C stock revealed a pre-
dominance of the third quartile (>75%) C stock

values in the southeast and southwestern regions of
the sampled CF.

The variograms indicate a clear lack of inde-
pendence of the primary variable with respect to
direction (Fig. 4). This fact is vindicated by the
behavior of the response variable plotted in the
northern, northeastern, eastern, and southeastern
directions. The directional variograms exhibit dif-
ferent nugget effects and total sills, a hint for
anisotropy. The existence of anisotropy was evident
and this suggests a non-stationary mean in the pri-
mary variable, and the stationarity assumption was
therefore not valid (Oliver and Webster 2008). This
outcome justifies the modeling of C stock variability
and distribution with a trend. Subsequent modeling
of C stock consequently relied on the information
regarding the displayed trend.

Feature Space Model Selection Criterion

Incorporation of the different predictor vari-
ables from the results of a principal component�s
analysis resulted in an additive model with elevation
and distance providing the best linear model of
feature space. As illustrated in Table 2, this model
accounted for most of the variability and subse-
quently took away the greater part of the spatial
correlation structure of C stock (87.3%). Further-

Table 1. Proportions and Required Sample Sizes for the Sampled

CF

CF Area

(ha)

Proportion Required

Sample Size (ni)

Berinchok 83.5 0.12 14

Chisapani 50.1 0.073 8

Kkarkopakho 51.1 0.074 9

Kuwadi 92.3 0.13 16

Ludi damgade 270.7 0.43 47

Shikhar 50.8 0.074 8

Taksartari 89.3 0.13 13

Total 687.9 1.00 115

Figure 2. Stagewise comparison of the effects of covariates on the spatial correlation structure of C stock.
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more, the model had the best qualities for explaining
the variability of C stock which ranged from linear
model diagnostics (meeting regression assumptions)
to the amount of variability explained for C stock
by the predictors. However, models including
interaction terms had lower AIC (i.e., excessive
complexity) values than the most parsimonious
model eventually applied for KED as indicated in
Table 2. Thus, an additive relationship among C
stock, elevation, and distance gave the following
relation:

Carbon stockð Þ
1
2¼ 20� 0:02 Elevation

þ 0:55 log Distanceð Þ:
ð3Þ

The range shows that the spatial dependence of
C stock is increased from the estimated range of
450 m from the reconnaissance variogram analysis
to 1,541 m for the present study (Table 3). Cam-
bardella et al. (1994) described different classes of
spatial dependence using the ratio between the

Figure 3. (a) The behavior of C stock density and distribution with respect to geography. (b) Quartiles of

the empirical distribution of measured C stock values.

Figure 4. Directional variograms for C stock.
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nugget and total sill variance. Values less than 25%
are categorized as strongly spatially dependent,
25–75% as moderately spatially dependent, and
values more than 75% as weakly spatially depen-
dent. Hence, a nugget to sill ratio for C stock of 0.30
(Fig. 2) corresponds to a moderately spatially
dependent variable and implies that 30% of the C
stock variability consisted of unexplained, short-
distance random variation.

Ordinary Kriging

Ordinary kriging, which relies on the spatial
dependence in the primary variable (sampled C
stock values), was used as a reference to assess the
actual gain of accounting for covariates. A spherical
model was fitted to the variogram. The predicted C
stock density varied from 2.37 to 10.99 sqrt
(mg C ha�1) (1st and 99th percentiles) with standard
error varying from 2.17 to 3.23 mg C ha�1,
Figure 5a. The kriging prediction variances (Fig. 5b)
give a statistical measure of uncertainty across the
spatial field and show that most of the locations near
sampling locations had smaller uncertainty com-
pared to locations remote from the known C stock
observations. Thus, the quality of the ordinary
kriging prediction map is not better than 10.44 sqrt
(mg C ha�1).

Kriging with External Drift (KED)

The inclusion of elevation and distance as pre-
dictor variables resulted in a decrease of the total sill
of the variogram and a shortening of the range of
influence (Fig. 2). The best feature space model pre-
dicted C stock density with a range of 3.82–13.32 sqrt
(mg C ha�1) (1st and 99th percentiles) with a stan-
dard error varying from 0.27 to 0.29 mg C ha�1

(Fig. 5c). The shortening of the range of influence and
the decrease in the total sill demonstrate the predic-
tive power which a linear additive model of elevation
and distance has on the spatial correlation structure of
C stock compared to a pure-based approach using the
ordinary variogram. Hence, in Figure 5d, the quality
of predictions was greatly improved as a result of
using covariates in the prediction of C stock, with the
highest predictions occurring in the southwest part of
the sampled CF (Fig. 5c). Consistent with theory, the
KED estimated error variance seemed to be depen-
dent on the observed data configuration, where the
uncertainty of estimation decreased toward the sam-
pling locations (Fig. 5d).

Cross-Validation Statistics and Model Diagnostics

The summary statistics of the cross-validation
procedure, as proposed by Isaaks and Srivastava

Table 2. Summary of the Selection Criterion for the Best Candidate Linear Model of C Stock Prediction Using KED

Predictors Model AIC BIC Adj. R2

1 Elevation 621.4 631.8 67.7

1 Aspect 895.8 905.4 30.8

1 Log (distance) 845.9 855.5 47.7

2 Elevation9aspect 683.1 697.7 71.6

2 Elevation + aspect 659.8 689.7 77.8

2 Elevation + log (distance) 616.2 629.0 87.3

3 Elevation9aspect9log (distance) 614.9 627.8 88.6

3 Elevation + aspect + log (distance) 639.2 688.1 82.6

Bold entries indicate selected model

Table 3. Parameters for the Ordinary Variogram and Residuals for the Distance and Elevation Covariates

Prediction Method Model Nugget (C0) Partial Sill (C1) Range

Ordinary variogram Spherical 3.77 8.45 1,541

Log (distance) Spherical 2.02 3.95 1,035

Elevation + log (distance) Spherical 1.04 0.59 762
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(1989), shows that the mean prediction errors
approach zero, with KED giving a far superior error
distribution than ordinary kriging, an indication of
non-biasedness (Table 4; Fig. 6).

Design-Based Approach

Non-Spatial Exploratory Data Analysis

Serious deviations from normality in the
response, distance, slope, and NDVI covariables
were noted. A maximum likelihood estimate of k
was 0.5 with estimated 95% confidence interval of
0:4 � k � 0:6ð Þ. Hence, a Box–Cox transformation

of the target variable resulted in a square root
transformation.

Analysis of Variance (ANOVA)

A square root transformation of C stock
resulted in failure of rejection of the null hypothesis
of a Bartlett�s test (P ( a ¼ 0:05) = 0.069). A
graphical box and whisker plot showing the vari-
ability of mean C stock in the different CFs (Fig. 7)
shows that the Taksatari CF had the most density of
C stock, 14.91 sqrt (mg C ha�1), and the Chisapani
CF had the least C stock density, 8.57 sqrt (mg
C ha�1). An ANOVA demonstrated significant dif-
ferences in the mean C stock density of the sampled
CF under the management of different CF user
groups (CFUGs) (F6,103 = 5.21, P = 0.00017). The
Tukey–Kramer (Kramer 1956) multiple comparison
method was used to establish significant differences
among the CFs.

Figure 5. Kriging results illustrating (a) ordinary kriging predictions� sqrt (mg C ha�1), (b) ordinary kriging variances (mg C ha�1), (c)

KED predictions� sqrt (mg C ha�1), and (d) KED kriging variances (mg C ha�1) for C stock.
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Jackknifing

The ANOVA model was validated using the
jackknifing technique. Two measures of accuracy of
the estimator, ĥ, calculated from the data with the
ith observation removed, namely the standard error
and the bias of the estimator, were calculated
and gave values of 0.16 mg C ha�1 and 0 sqrt
(mg C ha�1), respectively, with a 95% confidence
interval of 9.74 £ ĥ £ 9.77 sqrt (mg C ha�1).

Assessment of Confidence Interval Overlap

The best linear model of feature space using
KED gave predictions with a narrower margin of
error of 9.89 ± 0.17 sqrt (mg C ha�1) compared to
the C stock confidence interval obtained using the
design-based approach as 9.91 ± 0.8 sqrt (mg C ha�1).

However, the design-based approach gave slightly
higher total C stock estimates in comparison to the
model-based approach (Table 5).

The 95% confidence intervals for the two esti-
mators were 9:72 � �X1 � 10:06 sqrt (mg C ha�1)
and 9:11 � �X2 � 10:71 sqrt (mg C ha�1) for the
model-based approach and the design-based
approach, respectively. There is insufficient evidence
for the rejection of the null hypothesis that there is
no significant difference between the mean C stock
estimated by the model-based approach and the
mean C stock estimated using the design-based
approach.

DISCUSSION AND CONCLUSIONS

The results of KED appear justified in terms of
the known physical and presumed anthropogenic

Figure 6. (a) Diagnostic plots of the residuals of the kriging prediction variants. (b) Model diagnostics of the best linear model

(elevation + log (distance) of feature space.

Table 4. Summary of Cross-Validation Statistics

Kriging Variant ME MSE RMSE PRESS

Ordinary kriging 0.00086 0.00015 2.02 903.65

KED: elevation + log (distance) 20.00057 5.4 3 1026 1.05 202.96

Bold entries indicate selected model
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relationships imposed on the local mean by eleva-
tion and, to a lesser extent, by distance to the nearest
human settlements. It is therefore the partitioning of
the data into a deterministic trend component and a
residual ‘‘noise’’ component that vindicates non-
stationary geostatistics (Hengl 2007). The precision
of C stock estimation using ordinary kriging could
not match that using KED. This emanates from the
assumptions that govern the ordinary kriging algo-
rithm compared to KED. A test of directional
dependence for C stock showed the variable to be
highly anisotropic, with different nuggets and total
sills in various directions. However, KED modeled
this trend using explanatory variables in the form of
elevation and log (distance), thereby smoothening
the variance in the predictions (Berterretche et al.
2005).

It is not only the incorporation of secondary
information that can make KED better than other
kriging variants but it also depends on the quality of
the secondary information used (Ahmed and De
Marsily 1987). With the increasing availability of
topographic information at finer resolutions than

before, it is easy to access information like elevation,
slope, and aspect from the Shuttle Radar Topogra-
phy Mission (SRTM) 30-m elevation online dat-
abases. In that case, the application of KED is more
attractive and outweighs the pure-based approach of
using ordinary kriging.

The model-based approach using KED gave a
narrower margin of error for the mean C stock
estimates than the margin of error obtained from the
design-based approach. This is partly because of the
lower variances and a relatively larger sample size
used for the KED algorithm. However, the design-
based approach predicts slightly higher total C stock
estimates than any of the kriging variants. The
design-based technique is known to overestimate
since it assigns the same weighting to all the pre-
dictions and to all the residuals (Montes et al. 2005).
On the other hand, KED has the ability of incor-
porating auxiliary information to further improve
estimates of a primary variable (e.g., C stock) (Isa-
aks and Srivastava 1989). The kriging variants,
especially the KED, greatly reduce the uncertainty
associated with predicting the variable in question

Figure 7. Mean C stock density within the seven sampled commu-

nity forests.

Table 5. Summary of Total C Stock Estimates for the Design-Based Approach and the Model-Based Approach Using KED

Prediction Method Mean Sqrt (mg C ha�1) Total C Stock Sqrt (mg C)

Design-based approach 9.91 ± 0.8 6,817

KED-(Elevation + log (dist.)) 9.89 ± 0.17 6,803

307Precision of C Stock Estimation in the Ludhikola Watershed



by using predictors as its aides, an important piece of
information for C investment and forest manage-
ment. The findings of the present study are in con-
formity with the results of a comparative study by
Guibal (1973) and Montes et al. (2005).

From the assessment of the extent of overlap
between the C stock mean estimators of the two
sampling protocols, it is clear that the mean C stock
estimates for both methods fall within the 95%
confidence bounds of each other. The estimators will
overlap 99.7% of the time, implying insufficient
evidence to suggest that the mean C stock estimates
are significantly different from each other. The
reason for this substantial extent in overlap ema-
nates from the fact that the larger mean C stock
estimate from the design-based approach is lower
than the upper confidence limit of the smaller mean
from the model-based approach (Moore and
McCabe 2002). Hence, the model-based approach is
not significantly better than its design-based coun-
terpart as we had postulated at the onset of this
study. However, the model-based approach looks
relatively superior to the design-based approach as
we demonstrate that the estimated C stock of the
former has a narrower confidence interval and
margin of error. This is an important leap toward the
judgment and evaluation of an estimator as it clearly
shows the amount of uncertainty that we have in
estimating the population parameter of interest. In
other words, there is a very small distance between
the sample statistic and the population parameter
for the model-based approach rather than for the
design-based approach, a position that favors the
model-based approach as an option for C stock
estimation.

In light of evidence presented in this study, we
conclude that for forest management and C stock
estimation, we are closer to the estimated popula-
tion parameter with a model-based approach than
with a design-based approach. Due to the limitation
in the sample size used for the determination of
scales of spatial variability of C stock in the recon-
naissance variogram analysis, a mismatch in the
sampling intervals used and the actual scales of
spatial variability of C stock could have been made.
We therefore suggest that future studies focus on the
improvement of the determination of scales of spa-
tial variability and explore the possibility of testing
more covariates in the geostatistical modeling of C
stock. For the purposes of C stock monitoring and
accounting, the balance of probabilities favors the
model-based approach since the design-based

approach generalizes uncertainty of C stock esti-
mates for the area of interest.
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study for Rondônia, Brazil. Ecological Modelling, 205(1–2),
221–230.

UNFCCC. (1998). Kyoto Protocol to the United Nations frame-
work convention on climate change. Bonn: UNFCCC.

Utset, A., Lopez, T., & Diaz, M. (2000). A comparison of soil
maps, kriging and a combined method for spatially prediction
bulk density and field capacity of Ferralsols in the Havana-
Matanaz Plain. Geoderma, 96(1), 199–213.

Wang, G., Gertner, G. Z., Fang, S., Anderson, A. B., Qi, F., &
Xenophorare, T. (2005). A methodology for spatial uncer-
tainty analysis of remote sensing and GIS products. Photo-
grammetric Engineering & Remote Sensing, 71(12), 1423–
1432.

Webster, R., & Oliver, M. A. (1992). Sample adequately to esti-
mate variograms of soil properties. Journal of Soil Science,
43(1), 177–192.

Webster, R., & Oliver, M. A. (2001). Geostatistics for environ-
mental scientists. Chichester: Wiley.

Wells, N. A. (1994). Statistical analysis of circular data: N.I.
Fisher, 1993. Cambridge University Press, Cambridge, U.K.,
(pp. 277). Earth-Science Reviews, 36(4), 249–250.

Wysowski, B. (2010). Mapping and estimation of carbon stock of
roadside woody vegetation along roadways in eastern Overi-
jssel, the Netherlands (p. 140). Enschede: University of
Twente Faculty of Geo-Information and Earth Observation
ITC.

Yan, L., Zhou, S., Ci-fang, W., Hong-yi, L., & Feng, L. (2007).
Improved prediction and reduction of sampling density for
soil salinity by different geostatistical methods. Agricultural
Sciences in China, 6(7), 832–841.

309Precision of C Stock Estimation in the Ludhikola Watershed


	The Precision of C Stock Estimation in the Ludhikola Watershed Using Model-Based and Design-Based Approaches
	Abstract
	Introduction
	Methodology
	Measurement of Tree Biomass
	Biomass Calculation and C Stock Derivation

	Model-Based Approach
	Sampling Design
	Reconnaissance Variogram
	Spatial Exploratory Analysis
	Kriging
	Selection of the Best Linear Model of Feature Space
	Cross-Validation

	Design-Based Approach
	Sampling Design
	Non-Spatial-Exploratory Analysis
	Analysis of Variance (ANOVA)
	Jackknifing

	Assessment of Confidence Interval Overlap

	Results
	Model-Based Approach
	Reconnaissance Variogram
	Spatial Exploratory Data Analysis
	Feature Space Model Selection Criterion
	Ordinary Kriging
	Kriging with External Drift (KED)
	Cross-Validation Statistics and Model Diagnostics

	Design-Based Approach
	Non-Spatial Exploratory Data Analysis
	Analysis of Variance (ANOVA)
	Jackknifing

	Assessment of Confidence Interval Overlap

	Discussion and Conclusions
	Acknowledgments
	References


