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Assuming a study region in which each cell has associated with it an N-dimensional vector of
values corresponding to N predictor variables, one means of predicting the potential of some
cell to host mineralization is to estimate, on the basis of historical data, a probability density
function that describes the distribution of vectors for cells known to contain deposits. This
density estimate can then be employed to predict the mineralization likelihood of other cells
in the study region. However, owing to the curse of dimensionality, estimating densities
in high-dimensional input spaces is exceedingly difficult, and conventional statistical
approaches often break down. This article describes an alternative approach to estimating
densities. Inspired by recent work in the area of similarity-based learning, in which input
takes the form of a matrix of pairwise similarities between training points, we show how the
density of a set of mineralized training examples can be estimated from a graphical repre-
sentation of those examples using the notion of eigenvector graph centrality. We also show
how the likelihood for a test example can be estimated from these data without having to
construct a new graph. Application of the technique to the prediction of gold deposits based
on 16 predictor variables shows that its predictive performance far exceeds that of con-
ventional density estimation methods, and is slightly better than the performance of a dis-
criminative approach based on multilayer perceptron neural networks.

KEY WORDS: Mineral deposit prediction, density estimation, eigenvector graph centrality, similarity-
based learning.

INTRODUCTION

Mineral prospectivity mapping can be viewed as
a process of combining a set of input maps, each
representing a distinct geo-scientific variable, into a
single map depicting potential to host mineral
deposits of a particular type (Bonham-Carter 1994).
Assuming that we are provided with N such input
maps overlaid such that each grid element (or cell)
can be described by a vector xi = (xi1, xi2, …, xiN),

where xij is the value of the jth input variable for the
ith cell, the problem is to discover a mapping func-
tion f(x), output of which represents a measure of
the mineralization potential for that cell. In this
article, we take a data-driven approach, and there-
fore assume that a subset of cells is known from
historical records or otherwise to contain one or
more occurrences of the sought-after mineral. We
also assume that mineral potential is interpreted as a
probability, in which case the mapping function is
onto [0, 1].

There are two general approaches to discover-
ing such a mapping function: (i) generative
approaches, and (ii) discriminative approaches.
Generative approaches are based on explicitly
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estimating the class-conditional probability density
function p(x|D) (i.e., the pdf for cells known to
contain a deposit). This itself can be used as an
indication of the mineralization likelihood at some
test point; alternatively, p(x|D) can be combined
under Bayes� theorem with an estimate of the
unconditional pdf p(x) (i.e., the pdf for all cells) to
produce an estimate of the probability (Duda et al.
2001). In contrast to generative approaches, dis-
criminative approaches, which include techniques
such as logistic regression (Hosmer and Lemeshow
2000) and Multilayer Perceptron (MLP) neural
networks (Bishop 1995) attempt to estimate the
probabilities directly, without explicitly estimating
densities. In this article we focus primarily on gen-
erative approaches.

A number of standard techniques can be
applied to estimating densities. The simplest is the
parametric approach, by which the form of the dis-
tribution (e.g., Gaussian) is assumed, and the prob-
lem is to estimate the values of the parameters for
that distribution (e.g., mean and covariance). How-
ever, the problem with parametric approaches is that
many datasets do not follow a standard distribution,
and attempting to model them in this way will lead
to poor estimates of the density. A more flexible
alternative is to use a semi-parametric—or mixture
model—approach, by which the density is modeled
as a mixture of K Gaussians (Titterington et al.
1985). The problem is then to estimate the model
parameters (i.e., means, covariances, and mixing
coefficients for each of the K components), and this
can be done using Expectation Maximization (EM)
(Dempster et al. 1977). However, this added flexi-
bility comes at a high cost, since the escalation in the
number of parameters often leads to severe prob-
lems with overfitting, as well as high sensitivity to
initialization. A third approach—the kernel, or
Parzen, method—is a non-parametric approach that
involves modeling the distribution using a series of
probability windows (usually Gaussian) centered at
each sample (Parzen 1962). In this case, the overall
density is the average of all of the individual distri-
butions centered at each point, and the main prob-
lem is to select an appropriate value for the
smoothing parameter r that defines the width of the
windowing function. This value can often be deter-
mined using cross-validation. The kernel method has
been used widely in the mineralization prediction
domain (Harris and Pan 1999; Singer and Kouda
1999; Harris et al. 2003; Emilson and Carlos 2009;
Wang et al. 2010), where it is often referred to as

a probabilistic neural network (PNN) model. How-
ever, probabilistic neural networks (Specht 1990)
are essentially just a parallelization of the general
kernel-based approach, phrased in the language of
neural networks, and, in this article, we prefer to use
the original statistical terminology.

While the above density estimation techniques
can often be applied successfully in low-dimensional
input spaces, estimating densities in high-dimen-
sional spaces is notoriously difficult (Bishop 1995),
and is a direct result of the curse of dimensionality
(Bellman 1961). One of the manifestations of this
curse is that the number of points required to esti-
mate a density increases exponentially with the size
of the input space. This poses a particular concern in
the mineralization domain, since mineralization is a
rare event, and the input space will indeed be very
sparsely populated. Another manifestation of the
curse of dimensionality is that as the number of
dimensions increases, data points are progressively
concentrated more toward the boundaries of the
input space; i.e., the majority of the probability mass
is concentrated at the edges, not at the center
(Bishop 1995; Hastie et al. 2001). This means that
parametric and mixture model approaches will
almost certainly break down on account of the fact
that these models are parameterized by the means of
the mixture components, and these means will be
located far from the majority of the probability
mass. Kernel methods are also likely to suffer as a
result of this boundary concentration.

In this article, we describe an alternative
approach to estimating densities, inspired by a
recent study in the area of similarity-based learning
(Bicego et al. 2006). The basic idea behind similar-
ity-based learning is that, rather than operating on
attribute data (where input takes the form of a
rectangular table in which rows correspond to data
points and columns to attributes), similarity-based
learners operate directly on pairwise similarities
between data points, usually presented in the form
of a square matrix A = {aij}, where aij is the simi-
larity between the ith and jth data point. There are
various reasons why one might take a similarity-
based approach. On some domains, there may
simply be no alternative; for example, data may
naturally be expressed in terms of pairwise similar-
ities, and it may not even be possible to represent
the data in any continuous metric space. On other
domains, similarity-based learning may lead to bet-
ter performance than methods based directly on
attribute data. Indeed, we demonstrate in this article
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that when applied to high-dimensional geoscientific
data, similarity-based density estimation leads to far
better estimates of mineralization potential than the
methods described above.

The article is structured as follows. We first
describe how the density of a set of training points
can be estimated from a graphical representation in
which nodes represent training points and edge
weights represent pairwise similarities between
connected nodes. Importantly, we show how the
density of test points can be estimated directly from
such a graph (i.e., without having to construct a new
graph containing test points). We then apply the
method to predicting gold mineralization potential
over the Ballarat region of Victoria, Australia, on
the basis of 16 geoscientific predictor variables. For
illustrative purposes, we first apply the technique to
a two-dimensional (2D) principal component sub-
space of the original 16D input space and show that
while parametric and mixture model approaches are
inadequate even in this reduced space, and that the
similarity-based method yields similar density esti-
mates to that of a kernel-based approach. We then
apply the technique to the full 16D input space and
show that, in regard to its ability to predict holdout
deposits, its performance far exceeds that of the
kernel approach, and is slightly better than a dis-
criminative approach based on MLPs.

SIMILARITY-BASED DENSITY
ESTIMATION

In this section, we describe the concept of
eigenvector graph centrality, and how this can be
used as a measure of the likelihood of an example
belonging to the distribution of training data points
represented by a graph. We then describe how
likelihoods can be estimated for test examples,
without the need of generating a new graph and
re-computing eigenvectors. Finally, we show how
pairwise similarities can be calculated from attri-
bute-based data, and discuss some of the issues
associated with this.

Eigenvector Graph Centrality

Consider a graph G = (V, E), where V = {vi,
i = 1, 2, …, n} is a set of vertices, each corresponding
to some object in the domain, and E = {eij} is a set of
edges connecting vertices (vi, vj). We assume that

the edges are weighted with a continuous value wij

on the interval [0, 1], and that wij represents a
measure of the similarity between the objects cor-
responding to nodes vi and vj. Eigenvector centrality
is based on the following recursive definition: a
vertex is central to a graph if it is similar to other
vertices which are central. While this idea is sur-
prisingly simple, Eigenvector centrality provides a
very powerful measure of the importance of a node
within a graph: it forms the basis of the well-known
PageRank algorithm used for ranking web pages
(Brin and Page 1998), and also forms the basis for
Spectral Clustering (Luxburg 2007), a family of
clustering algorithms which have become very pop-
ular over the last decade.

We can capture the above definition mathe-
matically by expressing C(vi), the eigenvector cen-
trality score for vertex vi, as the weighted sum of the
centrality scores for all nodes to which it is con-
nected; i.e.,

CðviÞ ¼ ð1=kÞ
Xn

j¼1

wjiCðviÞ; ð1Þ

where k is a proportionality constant. Assuming that
similarities are supplied in the form of a square
matrix W = {wij}, this can more conveniently be
written as the eigenvector equation

WC ¼ kC ð2Þ

where C = (C(v1), C(v2), …, C(vn)) is the vector of
centrality scores for vertices 1 to n.

In general, Equation (2) will have a number of
eigenvectors, and some of these will have negative
entries. However, from the Perron–Frobenius theo-
rem (Grimmett and Stirzaker 2001) the dominant
eigenvector of W (i.e., the eigenvector correspond-
ing to the largest eigenvalue) will have all non-
negative components, thus satisfying the require-
ment that centrality scores be non-negative. Note
also that the dominant eigenvector will not be unique,
since any linear scaling of the eigenvector will also
satisfy the eigenvector equation. This means that it is
relative—not absolute—centrality scores which are
important. Without any loss of generality we will
assume that the dominant eigenvector has been nor-
malized such that its components sum to unity.

In principle, any eigenvalue algorithm can be
used to find the dominant eigenvector. A general
and robust approach is power iteration, which begins
with a random vector C0, and simply iterates the step
Ckþ1 ¼WCk until convergence, when C will be the
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dominant eigenvector. Algorithms based on matrix
decomposition techniques can also be applied, and
avoid the need for iteration; however, these may fail
because of bad scaling unless the similarity matrix is
appropriately normalized. A normalization tech-
nique commonly applied in the spectral clustering
literature (Luxburg 2007) is to construct a symmetric
similarity matrix, S, known as the graph Laplacian,
and defined as S ¼ D�1=2WD�1=2 where Dii ¼PN

j¼1 wij; i ¼ 1; . . . ; n. All the results presented in
this article are based on graph Laplacians.

Estimating Likelihoods on Test Data

Each entry of the dominant eigenvector of S
represents a relative measure of the centrality of the
corresponding training example, and we assume that
these entries are proportional to likelihoods. One
method of determining the centrality of a test
example is to insert it into the graph and re-compute
the eigenvector. However, apart from the additional
computational expense incurred, this will perturb
the centrality values of the training examples, and is
especially a problem if the number of training
examples is small.

A better approach is to estimate the centrality
of a test example directly from the dominant
eigenvector of the original graph. It follows from
Equation (2) that the ith value of the eigenvector is
equal to its dot product with the ith row of S; i.e.,
CðviÞ ¼

PN
j¼1 sijCðviÞ, where sij are the components

of S. Thus, if we can estimate a vector st = (st1,
st2, …, stn), where stn is the similarity between the
test example and the nth training example, then the
dot product of st and the principal eigenvector will
provide an estimate of the centrality (i.e., likelihood)
of the test example.

In order that the centrality score assigned to the
test example is consistent with those for labeled
examples, we must ensure that similarity values for
the test example are normalized in a manner con-
sistent with the use of the graph Laplacian. Defining
the graph Laplacian as above means that entries
of S and W are related according to sij ¼
wij

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 wij

PN
j¼1 wij

q
. It follows that the compo-

nents of the normalized similarity vector for the
test example vector st are given by sti ¼
wti

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 wti

PN
j¼1 wij

q
, where wti is the similarity

between the test example and the ith training

example. Finally, the eigenvector centrality of
the test example can be expressed as CðtÞ ¼PN

i¼1 stiCðviÞ.

Converting Distances to Similarities

The above discussion has assumed an input
matrix W containing pairwise similarities. In many
cases, pairwise similarities may not be directly
available, and may need to be computed from the
given data. We assume here that attribute data are
supplied; that these data represent points in a
Euclidean space, and that similarities are calcu-
lated by passing Euclidean pairwise distances
through the monotonically decreasing function
f ðxÞ ¼ expð�x2=2r2Þ, where x is the Euclidean dis-
tance, and r controls the rate at which similarity falls
off with distance. Clearly, the final distribution of
centrality values for the nodes on the resulting graph
will depend on r: if similarities fall off quickly with
distance (i.e., small r), then the density may be more
sharply peaked around either individual data points
or closely clustered collections of points, resulting in
overfitting to the training data; conversely, if simi-
larities fall of slowly with distance (high r), then the
overall density will be smoother, and may result in
underfitting of the training data. How might an
appropriate value for r be determined?

A common means of optimizing parameters
when estimating densities using Gaussians is to
perform cross-validation on the training data, and to
select the parameter values that maximize the like-
lihood (or equivalently, that minimize the negative
log likelihood) on holdout examples. This is possible
in the Gaussian case, since Gaussians are normalized
to unit area, and hence so too can a sum of Gaus-
sians be normalized. However, in the case of simi-
larity-based density estimation, the components of
the dominant eigenvector represent only a relative
measure of centrality. This means that determining
parameter values through cross-validation is no
longer generally possible, and that we must there-
fore resort to using some other heuristics to deter-
mine these parameters. For the case of predicting
mineralization likelihood, we provide some heuris-
tics in the next section. We note also that that even
for kernel density estimation, determining the opti-
mal kernel width through cross-validation on high-
dimensional spaces can be very unreliable, as will
also be demonstrated later.
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EMPIRICAL RESULTS

This section reports on the application of the
technique described above to predicting gold min-
eralization in the vicinity of Castlemaine, located in
the Southeastern region of Victoria, Australia.

Southeastern Victoria was the site of extensive
gold mining in the nineteenth Century. Almost half
of the gold found occurred in primary deposits,
particularly quartz veins or reefs, in which it was
deposited in cracks that opened up during the
faulting and folding of Palaeozoic sandstone and
mudstone beds between 440 and 360 million years
ago. The remainder has been found in secondary
(alluvial) deposits in soil and creek beds. The gen-
eral region is well explored, and any remaining
deposits are expected to be hidden under basalt
cover (Lisitsin et al. 2007). Information on Victorian
geology can be found in Cochrane et al. (1995) and
Clark and Cook (1988). The Castlemaine Goldfield
is described in Willman (1995).

The specific area selected for this study extends
from a Northwest corner with coordinates
251,250 mE, 5,895,250 mN, to a Southeast corner
with coordinates 258,250 mE, 5,885,000 mN, where
all specified coordinates are Northings/Eastings ref-
erenced according to AMG Zone 55 AGD 66. This
selection was based the range of data types available
(geophysical, geochemical and geological), and the
coverage of that data. Magnetic and radiometric
data have full coverage over the region, and the
density of geochemistry sampling points is sufficient
to provide an acceptable interpolated coverage over
most of the area. There are also a number of known
fault zones in the region. The number of docu-
mented reef gold deposits is 148. Additional gold
deposit locations have also been recorded, but the
historical information on these does not indicate
either the type of occurrence (i.e. reef or alluvial) or
their significance. In this study we use only the 148
documented reef deposits.

Input data consists of 16 input layers: three
based on magnetics (magnetic field intensity, first
derivative of magnetic field intensity, and automatic
gain control filtered magnetics); five layers based on
radiometrics (Th, U, K, TotalCount, K/Th); seven
based on geochemistry (Au, As, Cu, Mo, Pb, W,
Zn), and distance to closest fault. Each input vari-
able was normalized by subtracting the mean and
dividing by the standard deviation. The study region
was represented by a rectangular grid of 1419206
cells with resolution 50 m950 m.

We note that there may be some overlap
between some of the input variables described
above. For example, because magnetic first deriva-
tive maps out the structures, it is expected to be
correlated with the distance to the closest fault layer.
The layers will not, however, be identical, since the
magnetics may indicate structure additional to the
known faults, and the general philosophy we adopt
is that any data that are considered both relevant
and non-redundant should be incorporated. In any
case, while the presence of duplicate or highly cor-
related layers may overemphasize the importance of
that layer, particularly when the number of input
dimensions is small, the degree of overemphasis
decreases as the dimensionality of the input space is
increased. The question of the relative importance
of inputs is a matter that relates to virtually all
pattern recognition tasks, and in the context of
kernel density estimation, it can be controlled
through the use of different sigmas; i.e., using a large
sigma value for a particular input will de-emphasize
the importance of that variable relative to inputs
with smaller sigmas. In the context of the similarity
based method, it can be controlled through replacing
Euclidean distance with Mahalanobis distance. This
is discussed further in the final section of the article.

We also note that an important consideration in
choosing the study region described above is that it
does not contain basalt cover. There are two reasons
for this. First, the presence of basalt leads to signif-
icantly different characteristics in geophysical input
signals compared to those obtained in the absence of
basalt, and attempting to simultaneously discover
predictive patterns for both covered and uncovered
regions would yield poor results because of the
confounding of these characteristically different
signals. Second, historical deposit information is
only generally available for regions not under cover.
Owing to the extensive exploration activities con-
ducted over the region it is highly unlikely that
undiscovered deposits exist in areas not under basalt
cover. However the wealth of data available for the
region (i.e., high-dimensional multi-source input
data and sufficient historical deposit information)
makes it a very suitable domain for comparing the
proposed method with other predictive methods.

A Two-Dimensional Illustrative Example

For demonstrative purposes, so that we can
visualize the estimated densities, we first consider a
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2D input space consisting of the first two principal
components of the full 16D dataset. Principal Com-
ponent analysis (Pearson 1901; Jolliffe 2002) is a
dimensionality reduction method that operates by
transforming the original data into a new orthogonal
coordinate system in such a way that the first prin-
cipal component accounts for as much of the vari-
ability in the data as possible, with succeeding
components accounting for as much of the remaining
variability as possible. We first apply parametric and
semi-parametric approaches and show that these can
be problematic even in two dimensions. We then
compare the similarity-based and kernel approaches.

Gaussian Mixture Models

As stated in the Introduction, mixture models
are a semi-parametric approach in which the density
is modeled as a linear combination of C Gaussian
component densities pðxjmÞ in the form

P
pmpðxjmÞ,

where the pm are called mixing coefficients, and
represent the prior probability of data point x having
been generated from component m of the mixture.
The problem is to determine these means, covari-
ances, and mixing coefficients, and this can be done
using the Expectation–Maximization (EM) algo-
rithm (Dempster et al. 1977), in which an Expecta-
tion step (E-step), and followed by a Maximization
step (M-step), are iterated until convergence. The
E-step computes the cluster membership probabilities:

PðmjxiÞ ¼
pmpðxijl̂m; R̂mÞPC
k¼1 pkpðxijl̂k; R̂kÞ

; m¼ 1;2; . . . ;C; ð3Þ

where l̂m and R̂k are the current estimates of the
mean and covariance of component m. In the
M-step, these probabilities are then used to re-esti-
mate the parameters:

l̂m ¼
PN

i¼1 PðmjxiÞxiPN
i¼1 PðmjxiÞ

; m ¼ 1; 2; . . . ;C; ð4Þ

R̂m ¼
PN

i¼1 PðmjxiÞðxi � l̂mÞðxi � l̂mÞ
T

PN
i¼1 PðmjxiÞ

;

m ¼ 1; 2; . . . ;C;

ð5Þ

pm ¼
1

N

XN

i¼1
PðmjxiÞ; m ¼ 1; 2; . . . ;C: ð6Þ

Figure 1 shows the density contours resulting from
density estimation based on mixtures of one or more

Gaussians. Horizontal and vertical axes represent
first and second principal components, respectively.
Points represent 25 randomly selected mineralized
cells from which the densities are estimated (i.e.,
training points), and crosses represent the remaining
123 mineralized cells, which are treated as holdout
examples, and can be employed to assess the quality
of the density estimate (i.e., its ability to generalize
to the prediction of holdout points).

Figure 1a models the density using a single
Gaussian. As stated above, using a single Gaussian
often fails to adequately capture the structure in the
data, and this is clearly apparent in this case, in
which visually the data can be seen to contain a
cluster of points centered at approximately (0, 1),
and another cluster centered in the vicinity of
(3, �1). While the use of two Gaussians, as shown in
Figure 1b, better captures the structure in the
training data, it does not generalize well to predict-
ing the hold-out data, as evidenced by the dense
concentration of holdout points in the bottom-left
and top-right regions, where predicted likelihood is
low. Figure 1c and d, each of which models the
training data using three Gaussians, but with a dif-
ferent EM initialization in each case, likewise per-
forms poorly in generalizing to the prediction of
holdout data, and also demonstrates the high sensi-
tivity of mixture model approaches to initialization.
Clearly, there are difficulties in applying mixture
model approaches to even 2D data, and the curse of
dimensionality means that these difficulties will only
be exacerbated in higher dimensional spaces.

Similarity-Based and Kernel Approaches

The kernel approach estimates densities as the
weighted sum of Gaussian kernels centered at each
training point. The density p(x) can be expressed as,

pðxÞ ¼ 1

N

1

2pð ÞD=2 Rj j1=2

�
XN

i¼1

exp � 1

2
ðx� xiÞTR�1 x� xið Þ

� �
; ð7Þ

where R is the covariance of the Gaussian kernel,
and N is the number of training points. The covari-
ance matrix R can be selected by taking into account
the fact that the variance in the data may differ
across variables; however, since we are using (nor-
malized) Principal Components, we use a spherical
covariance matrix, in which case, the covariance can
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be replaced by the single variance parameter rk
2,

where the subscript k (for kernel) is used for
avoiding confusion with the sigma used in the dis-
tance-to-similarity conversion discussed earlier. The
optimal value for rk can be determined through
leave-one-out cross validation on the training data;
i.e., by estimating the likelihood at each point on the
basis of the other training points, and selecting the
value of rk that minimizes the overall negative log
likelihood. Negative log likelihoods for a range of rk

values are shown in Figure 2a, from which it can be
seen that optimal value is approximately 0.75.

Figure 2b shows contours of the corresponding
density estimate.

Figure 2c shows the density estimated using
the similarity-based approach. The only parameter
involved in this case is rsb, which is the parameter
controlling the rate at which similarity falls off with
distance in the distance-to-similarity conversion.
Because densities estimated by the similarity-based
approach cannot be normalized to unit area we
cannot use cross-validation to determine rsb, and in
this case we have used the same value as for the
kernel approach (i.e., rsb = rk = 0.75). (In the next
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Figure 1. Estimation of densities based on first (horz.) and second (vert.) principal components. Points represent 25 mineralized training

cells; crosses represent 123 hold-out mineralized cells: (a) single Gaussian; (b) two Gaussians; (c) three Gaussians; (d) three Gaussians with

different initialization.
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section, we show that the kernel approach is actually
equivalent to a graph-centrality density estimation
based on a simpler measure of similarity, and that, at
least in the case of low-dimensionality input spaces,
optimal r values for the similarity-based and kernel
approaches are likely to be similar).

The general shape of the contours in Figure 2b
and c are similar, although the contours in Figure 2c
are spread further over the input space than are
those in Figure 2b, which tends to be more sharply
peaked. Visually, they appear to both perform far
better than any of the methods of Figure 1 both in

modeling the training data, and also in generalizing
to hold-out examples. In the next sub-section, we
compare the similarity-based and kernel methods
over the full 16D input space.

Full 16-Dimensional Input Space

The only parameter involved in the similarity-
based method is rsb, and as described above, it is
not possible to use cross-validation to determine
this parameter. However, some indication of the
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Figure 2. Estimation of densities using kernel and similarity-based approaches: (a) hold-out negative log likelihood versus rk for kernel

method; (b) kernel density estimation (rk = 0.75); (c) similarity-based density estimation (rsb = 0.75).
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appropriateness of various rsb values can be gained
by considering the histogram of likelihoods resulting
from estimating the density over all cells in the study
region. For small values of rsb, the distribution will
be peaked around the training points, and means
that we should expect to see high likelihoods
assigned to very few points, and low values assigned
to the majority. Conversely, when rsb is large, the
distribution will be relatively flat over the input
space, and means that all cells would be assigned
likelihoods distributed within a narrow range about
the mean likelihood.

Figure 3 shows the histograms of likelihoods
corresponding to several rsb values, and calculated
based on all 148 training points. In order that his-
tograms can be meaningfully compared, the likeli-
hoods in each case have been scaled to sum to 148
over all cells in the study region. Scaling in this way
is useful, because it means that when interpreted as
probabilities, the values can directly be compared
with the prior probability of mineralization value of
0.0051 (i.e., 148/29046, based on the number of
known mineralized cells as a fraction of the total
number of cells). As can be seen from the histo-
grams, as rsb is increased, the distributions do indeed
progressively become centered more narrowly
around the mean.

Examination of the histograms reveals a con-
venient heuristic which we can use to help select an
appropriate rsb value. Mineralization is a rare event,
and on the basis of expert knowledge, we would
probably rule out the possibility that a cell has, say, a
probability of 20% of containing a deposit, such a
value being considered too high to be realistic.
Similar arguments apply to small probabilities, and
we may be unlikely to accept, for example, that 90%
of cells have a mineralization probability of less than
0.005%. Based on these types of arguments and our
knowledge of the study area, we believe that the
distributions in the histograms of Figure 3b and c
provide realistic estimates of the range and distri-
bution of values that we would expect in this
domain. We note, however, that these histograms
display only the overall distribution of likelihoods,
and provide absolutely no indication of how accu-
rately these likelihoods reflect the holdout deposits.
Before examining their predictive performance, we
look at the histograms for the kernel approach.

Figure 4a shows how the negative log likelihood
obtained using leave-one-out cross-validation on all
148 training examples varies with rk, and Figure 4b
shows the histogram corresponding to rk = 0.45, for

which the negative log likelihood is a minimum. As
seen from the histogram, some cells are assigned
mineralization probabilities of 44%, which is clearly
unrealistic, suggesting that there has been a break-
down in cross-validation procedure. Training points
close to some test point contribute more to the
density estimate at that test point than training
points further away, and the low rk value of 0.45
suggests that the overall likelihood is being domi-
nated by a few closely neighboring points—another
manifestation of the curse of dimensionality. Higher
values for rk yield much more realistic results, and
as can be seen from Figure 5, a value of 1.6 results in
a distribution very close to those in Figure 3b and c,
obtained using similarity-based methods.

A useful means of comparing the predictive
performance of the methods is to plot cumulative
deposits versus cumulative area curves. These curves
can be constructed by ranking cells according to
their assigned mineralization probability value, and
plotting the cumulative deposits against cumulative
area as the posterior probability is decreased from
its maximum to its minimum value. The area under
such a curve provides a measure of the predictive
performance of the technique.

Figure 6a and b shows the cumulative deposits
versus cumulative area curves corresponding
respectively to the similarity-based and kernel
approaches. (Note that the cumulative deposits and
cumulative area are expressed as a percentage of the
total.) Solid lines represent the actual predictive
performance; dashed lines show the cumulative sum
of probabilities. The proximity of the solid and
dashed curves provides an indication of how well-
calibrated the probabilities are. The results in each
case are based on leave-one-out testing; i.e., 148
models were estimated, each using a different subset
of 147 mineralized examples to develop a model.
These models were then used to estimate the prob-
ability of the corresponding hold-out example.
Probabilities for the non-mineralized cells were
averaged over the 148 models. The curves therefore
represent a true test of the ability of a technique to
predict mineralization on unseen data.

While the area under a curve represents a
measure of the overall predictive performance, we
are typically more interested in how well the tech-
nique works in predicting mineralization in the areas
predicted as most favorable; e.g., the percentage of
deposits appearing in the top 5% of cells. Table 1
shows summary data for the similarity-based and
kernel method. For comparative purposes, we also
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show results from applying discriminative density
estimation using MLPs. Details on applying MLPs
can be found in Skabar (2005, 2007).

As can be seen from the table, the similarity-
based and MLP approaches yield similar results to
each other, and markedly outperform the kernel
approach in their ability to correctly predict the
presence of deposits in regions predicted most likely
to contain mineralization, with the proportion of
deposits predicted in both the upper 5% and upper
10% regions being approximately double the pro-
portion predicted by the kernel approach. It is not

surprising that the MLP approach achieves such
results, since discriminative approaches are gener-
ally regarded as preferable to density estimation
based approaches in high dimensional input spaces
(Bishop 1995). The difficulty with MLPs, however, is
that there are many factors that affect their perfor-
mance, including network architecture (e.g., number
of hidden layer units), weight optimization algo-
rithm, early stopping point for training, and regu-
larization coefficient values. Selecting appropriate
combinations of values for these parameters can be
very difficult, and usually requires a complex cross-
validation procedure. In contrast, the similarity-
based method requires only a single parameter to be
determined; i.e., the value of rsb used in the dis-
tance-to-similarity conversion. While we cannot
directly use cross-validation to determine rsb, the
results have shown that the heuristic described
above has led to an appropriate choice for this
parameter.

DISCUSSION AND CONCLUDING
REMARKS

While the similarity-based and kernel
approaches yield similar results when the dimen-
sionality of the input space is low, the similarity-based
approach achieves markedly superior performance in
higher-dimensional input spaces. To explain this
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Figure 4. (a) Hold-out negative log likelihood versus rk for kernel approach; (b) histogram of mineralization probabilities corresponding to

rk = 0.45.
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phenomenon, it is insightful to recognize that the
kernel approach can in fact be considered equiva-
lent to similarity-based density estimation using
degree—as opposed to eigenvector—centrality. While
eigenvector centrality computes centrality recur-
sively, the degree centrality, CD(v), of a vertex v in
some graphs is defined more simply as the sum of the
weights of the edges incident on it; i.e.,
CDðvÞ /

PN
j¼1 wij. If these (similarity) weights are

derived from Euclidean distances according to
wij ¼ expð�x2

ij=2r2Þ, where xij is the Euclidean dis-
tance between points i and j, then the degree cen-
trality calculated at some test point is effectively just
the weighted sum of Gaussians centered at the
training points and evaluated at the test point, and
this is exactly what is calculated by the (Gaussian)
kernel approach. While in the case of degree cen-
trality the density estimate at some point is based only
on N distances (i.e., the distances between the test
point and each of the training points), in the case of
eigenvector centrality, the estimate is based on
N + N(N� 1)/2 distances; i.e., the N distances
between the test and training points, and (implicitly)

on each of the pairwise distances between training
points. It is because the similarity-based method used
in conjunction with eigenvector centrality utilizes this
richer information set that it is better able to estimate
densities in higher dimensional spaces.

The kernel-based method used in this article was
based on the use of a common sigma value for each
input variable, and performance can sometimes be
improved by allowing separate sigmas for each var-
iable. The difficulty with this, however, is that using
separate sigmas for each of the 16 input variables
increases the number of model parameters which
must be estimated from 1 to 16. Estimating these
parameters in a 16D input space using only 148
training points would result in exceedingly poor
estimates of the sigmas, and would almost certainly
result in predictive performance inferior to that
obtained using a single sigma. However, just as the
kernel method can be extended to allow sigmas for
each variable, so too can the similarity-based method
be extended in an analogous way by simply replacing
Euclidean distance with Mahalanobis distance as the
measure of separation between data points. Just as
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Figure 6. Cumulative deposits versus cumulative area curves: (a) similarity-based method (rsb = 1.0); (b) kernel method (rk = 1.6).

Table 1. Comparison of Predictive Performance Based on Leave-One-Out Testing

Favorability Group

Percentage of Deposits in Favorability Group

Similarity-Based Method Kernel Method MLP

Highest 5% 27% 12% 26%

Highest 10% 38% 18% 35%

Highest 20% 53% 38% 51%

Area under prediction curve 0.734 0.671 0.726
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the use of multiple sigmas with the kernel method
may lead to improved performance (given sufficient
data to reliably estimate the sigmas), so too might the
use of Mahalanobis distance be expected to improve
on the use of Euclidean distance.

Although we have applied similarity-based
density estimation to (Euclidean) attribute data, it
can be applied to any domain in which pairwise
similarities are available. Indeed, a very attractive
feature of the technique is that when applied directly
to similarities, it is absolutely parameter free. Its
ability to estimate densities in non-metric spaces,
where distances need not satisfy the triangle rule,
make it useful for domains in which similarities be-
tween objects are expressed using some form of
human judgment. A mineral geoscientist may, for
example, use his/her knowledge and expertise to
assign a similarity between two locations that may
be very difficult to quantify in terms of available
attribute-based data.

One of the limitations of the technique is its
memory requirements. The full matrix of pairwise
similarities must be kept in memory, and this could
be expensive if the number of training points is high.
This is not so much of a problem in the mineral
prediction domain, since the number of known
deposits will normally not be high.

While we have concentrated in this article on
the use of similarity-based methods to estimate
densities, the technique can also be extended to
perform classification. This could be done by mod-
eling each of the classes as a separate graph, esti-
mating the corresponding class-conditional densities,
and classifying a test example into the class for
which the density, scaled by the prior is greatest. An
example might be land-cover classification.
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