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Multivariate analysis is employed to investigate the structure of variations within highly
heterogeneous data. Traditionally, principal component analysis (PCA) is run by analyzing
the entire wireline log and using PCA scores to characterize variability within and between
lithologies. In this paper, we propose a technique using only specific subsets of all well
records to quantify reservoir heterogeneity due to second order lithological variability.
These subsets are chosen from uniform lithofacies parts of the wireline log in order to reduce
the variability in the correlation matrix that otherwise would cause lithological changes. The
purpose is to assess the efficiency of structured PCA in analyzing small-scale heterogeneity
that is captured by wireline logs but often masked by traditional PCA approaches. This
paper shows that a structured PCA procedure based upon special lithological units is
superior to an unstructured PCA, when the focus is within lithology variations. This struc-
tured procedure is applied to data from the Heidrun field, offshore mid-Norway. The results
demonstrate clear benefits from added insight into the variability of a complex fluviodeltaic
heterolithic sequence that poses great challenges to hydrocarbon development.
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INTRODUCTION

The quantification of heterogeneity in sand-
stone reservoirs is often challenging as the magni-
tude and type of heterogeneity is normally not
known beforehand. Multivariate data analysis can
be applied to study and visualize the data in a more
comprehensive way and thereby ease the interpre-
tation of heterogeneity. One common goal of mul-
tivariate data analysis is to reduce the dimensions of
a specific dataset without losing information. Linear
combinations of the original variables created
through principal component analysis (PCA) define
a smaller set of variables that extract successively

the maximum of the remaining variability (Jolliffe,
2002). Another goal can be to seek the most repre-
sentative multidimensional structure according to a
given problem. This implies seeking an appropriate
variance covariance matrix as input to the PCA. The
general objectives can therefore be twofold; data
reduction and interpretation (Davis, 2002). PCA has
the potential to show relationships not previously
suspected, and thereby uncover associations that are
not readily seen.

Standard PCA, investigating the entire dataset
to indicate gross-variability, has been applied to
many disciplines. In geosciences, PCA has been
widely used to evaluate geological processes using
satellite images (c.f. Petrovic, Khan, and Chafetz,
2008) or outline different lithological types from
wireline logs (c.f. Gupta and Johnson, 2001).
Zhang and others (2007) show an example where
PCA has successfully been applied to detect
hydrocarbon bearing sands from satellite images.
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In Zhang�s study, the residual principal compo-
nents (PCs) that are not disturbed by the non-
hydrocarbon influence of the first PCs outlined
different hydrocarbon bearing zones that could be
a target for exploration.

Stanley and Sinclair (1988) introduced the term
structured PCA for an analysis that only uses a
specific subset of variables in a geochemical survey
in order to better outline mineralized zones. Their
results showed that the PCA using only the trace
elements that were related to rock forming minerals
outlined the major lithological units, whereas the
mineralization was not delineated. Different modes
in the frequency distribution of the polymodally
distributed trace elements from the study area were
identified and used to select the variables that in the
structured approach pointed to the mineralized
zones. This interpretation philosophy is in this paper
extended to wireline log interpretation with some
important modifications.

Normally in wireline log analysis the PCs are
computed from the correlation matrix, where each
input variable is equally weighted. The correlation
matrix is chosen due to differences in scale of each
wireline log variable (Doveton, 1994). Although
PCA is a robust and powerful method for both
visualizing and manipulating the multidimensional
representation of wireline data, it cannot be used as
a black box and should be carefully designed in
order to obtain significant results. A major limitation
of PCA is that the first few principal component axes
extract max variability, but this does not guarantee
the best subset of features (Nadler and Smith, 1993).
This is due to the fact that PCA uncovers feature
combinations that model the variance of a data set,
but these may not be the same features that separate
the different lithological changes. However, a
structured PCA approach, analyzing a specific lith-
ological unit or interval, includes only relevant var-
iability and each of the PCs will therefore explain
lithological effects that are not indicated when ana-
lyzing the entire data set which contain both rele-
vant and not-relevant heterogeneity (Stanley and
Sinclair, 1988).

Several methods have been proposed for the
classification and grouping of lithologies (Davis,
2002). One method widely used is lithofacies anal-
ysis, introduced in 1980s using the name electrofa-
cies, to characterize collective associations of
wireline log responses that are linked to geological
attributes (Serra and Abbott, 1982). It has been
used in its standard form to characterize sequence

stratigraphy (Eichenseer and Leduc, 1996), study
heterolithic reservoirs (Gupta and Johnson, 2001),
and for enhanced reservoir description (Pereira and
others, 1990). Several studies of tidal and fluvial
deposits have been analyzed in conjunction with
PCA to enhance the understanding of heterolithic
deposits separated into specific lithofacies (Avseth,
Mukerji, and Mavko, 2005; Bourquin, Rigollet, and
Bourges, 1998; Bridge and Tye, 2000; Hohn and
others, 1997; Moline and Bahr, 1995; Singh, 2007). A
common challenge in wireline log interpretation and
petrophysics is to determine the relation and reli-
ability of measurements of rock properties made at
the borehole scale with the same property at the
reservoir scale (Corbett, Jensen, and Sorbie, 1998).
This challenge is particularly apparent in heteroge-
neous fluviodeltaic deposits (Martinius and others,
2005).

The present study uses PCA in a non-standard
form in both unstructured and structured mode to
characterize fluviodeltaic reservoir heterogeneity
from wireline logs. The wireline logs represents
separate measurements of different physical prop-
erties of the rock-fluid system and do not pose any
simplex space constrains that in the case of com-
positional data violates the use of standard PCA.
The objective is to describe and evaluate the ben-
efits of using a modified structured PCA approach
to show how petrophysical wireline log responses
can be decomposed to reflect different orders of
variability and how these can be differentially
interpreted to provide additional insight into flu-
viodeltaic heterogeneity and its lithological
complexity.

METHOD

Study Area, Wireline Data, and Software

The present study was carried out over a 300 m
zone of the Upper Triassic to Lower Jurassic flu-
viodeltaic Åre Fm. (Dalland and others, 1988) from
the Heidrun Field, offshore mid-Norway. A vertical
water saturated well was selected where both core
and petrophysical parameters have been thoroughly
studied relative to five wireline logs (gamma ray,
neutron porosity, bulk density, resistivity, and sonic
logs). The computations have been performed
within the R language, a free and open source soft-
ware, which facilitates data manipulation, calcula-
tion, and graphical display (Dalgaard, 2008).
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Univariate Analysis

The first step of an univariate analysis is to
interpret the shape of the frequency distribution.
The most prominent populations revealed by the
five wireline logs can be identified by cumulative
probability plots with the percentiles of the normal
distribution as x-axis. Any polymodality in the five
distributions might be caused by specific lithological
processes. The identification of the number of
modes or populations is determined by the inflection
points in each of the probability plots (Stanley and
Sinclair, 1988). The overlap between the neighbor-
ing populations is calculated separately for data with
more than two populations and summed to portray
the total magnitude of population overlap.

Unstructured and Structured PCA

Multivariate analysis of the five independent
wireline log responses needs to be performed in
order to supplement the univariate analysis.
Eigenvectors representing orthogonal directions in
space permit the viewing of data from a variety of
perspectives. The aim of the modified structured
PCA used in this study is not to reduce the
dimensionality of the data, but to work on subsets
of the wireline log and only include those samples
in the correlation matrices that capture particular
heterogeneity effects related to specific lithological
units. PC loadings and scores are, according to this
procedure, calculated from (1) a total unstructured
analysis of all well records from all wireline log
variables and (2) a structured subset of separate
well records from specific lithological units. The
analysis of the entire 300 m interval has been
named TPC due to the use of the total number of
records, whereas the structured approach is named
according to the lithological units covered (sand-
stone, shale, coal, and cemented layers). A lithofa-
cies classification is used to outline the geologic
variation in rock types. The total wireline log
interval was manually classified into four lithofacies
based upon core analysis and wireline log responses
according to the following rock types: sandstone (ss),
shale (sh), coal (co), and cemented layers (cc). The
choice of what samples to include in a subset was
done on the basis of this facies interpretation in order
to obtain apparently homogeneous lithological sam-
ples that could unmask the internal heterogeneity
that otherwise is obstructed by intra-lithological

variability. The loadings from the structured subsets
are used to calculate PC scores that can be used to
extrapolate the specific lithological signatures to the
totality of well records. This calculation makes it
possible to compare the log responses from the
unstructured and the structured approach for the
complete well.

Stability in the Eigenvectors

In order to ensure representativity of the com-
puted eigenvectors for the sandstone (ss) subset, the
following procedure was chosen: The subset was
divided randomly into two groups and each group
was analyzed. The loadings for the two subset
groups were compared and expressed as a percent-
age difference between the initial subset and the two
subset groups. The size of this percentage reflects
the stability of the eigenvectors.

Visualization and Interpretation Methods

The populations defined by the PC scores, both
resulting from unstructured and structured PCA, are
evaluated by probability plots and histograms.
Crossplots are used to visualize the relationship
between components, both for the original data and
for PC scores. Polymodal distributions are identified
by selecting inflection points on each of the empiri-
cal cumulative frequency distributions, indicating a
transition from one to the other population.

Standard PCA is often applied without inter-
preting the weighting (loadings) of each PC (Moline
and Bahr, 1995). The interpretation of the loading
values is however crucial as the loading signature
represents a linear combination of variables that
may or may not represent a process that make sense
from a geological point of view. A comparison of the
unstructured and structured loadings and their
explained variability permits a detailed understand-
ing of the relationship between geologic processes
and the PC loadings and scores. Traditionally,
loadings are only displayed in table form. In this
study, two additional visualizations are carried out
to enhance multidimensional similarity. The first
uses visualization as star diagrams (Wegman, 1990)
and the second is a glyph representation of Chernoff
faces (Chernoff, 1973) mimicking human faces
according to loading values.
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RESULTS

Univariate Analysis

Initially, the statistical treatment of wireline
data followed the procedure indicated by Stanley
and Sinclair (1988) with the separation by univari-
ate analysis of different populations of wireline
log responses. Based upon these petrophysical
responses, three major lithological units, sandstone
(ss), shale (sh), and coal (co), in addition to
cemented layers (cc), were manually identified on
the basis of 15 cm well record intervals (Fig. 1 and
Table 1). Probability plots of each wireline log were
evaluated to identify the polymodality of the
cumulative frequency distributions which in most
cases reflects specific lithological populations. All
five wireline logs exhibited polymodal distributions.
The GR, RHOB, NPHI, and DT logs are visualized
in Figure 2. The probability plot of the GR log

indicates six populations, where the A population is
interpreted to represent clean channel sands or
cemented sandstone zones, B represents bayfill
sands, F represents GR-rich spikes, and the C–E
populations reflect coal and shale influenced sand-
stone intervals (Fig. 2a). Four populations are
indicated on the RHOB log: A representing coal, B
sand, C shale, and D cement (Fig. 2b). The largest
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Figure 1. Five wireline logs (gamma ray, neutron porosity, density, resistivity, and sonic) that show a clear indication of vertical hetero-

geneity form the basis for the multivariate analysis. The lithofacies log derived from interpretation of cm scale core samples and the original

wireline logs has the following notation: (1) sand, (2) shale, (3) coal, and (4) cemented layers.

Table 1. Summary of the Lithofacies Description of the Studied

Fluviodeltaic Well Interval

Lithofacies Lithofacies ID Description Counts

Sand 1 Fine to medium

grained sandstone

867

Shale 2 Shale and clay to very

fine siltstone

830

Coal 3 Organic-rich coal to silt

influenced coal

149

Cemented layer 4 Cemented layer 28
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population of the NPHI log holds 93.5% of the total
records (Fig. 2c) and reflects a range of sand/shale
mixtures. The remaining three populations are
interpreted to represent end-members with extreme
low and high NPHI values related to cement and
organic-rich coal, respectively. Interpretation of the
DT log shows that the B–D populations reflect sand
and shale intervals, whereas A indicates cement and
E indicates organic rich coal (Fig. 2d). The two most
exotic populations, organic-rich coal and cemented
intervals, are clearly differentiated by these specific
wireline responses. On the other hand, sand, shale,
and impure coal intervals are found to be less dis-
tinguishable on the basis of only univariate analysis.
An additional plot, describing the initial wireline log
response distributions in relation to each lithological
unit, indicates large variations of population overlap
between the lithological units (Fig. 3).

Unstructured and Structured PCA

An unstructured PCA based on the total num-
ber of well records was used to observe the major
variability from all lithogical units. The calculations
are computed from standardized wireline log values
so all variables have equal variability (Table 2).
Separate analysis of the probability plot of the first
two unstructured PCs (TPC1 and TPC2) indicates
four populations each (Fig. 4). The TPC1 does not
allow for a clear distinction between all the different
lithological population types (Fig. 4a). This is espe-
cially evident for the sand-shale population over-
lap. The second PC, TPC2, identifies the major
cemented layer with extreme low TPC2 scores, as
well as the difference between sand and shale units
(Fig. 4b). The TPC1-TPC2 crossplot (Fig. 4c), com-
bining the principal two unstructured PCs, allows for
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Figure 2. The probability plots, represented by four of the five wireline responses, indicate polymodal distributions. The

mean and standard deviations for each distribution are specified including the percentile of the total records within each

population. The red circles specify the inflection point between two populations and the lines indicate the average value for

each population.
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only a rough discrimination of the principal litho-
logical units. However, this unstructured PCA
crossplot still permits a more precise separation of
the lithological units that can be obtained from the
crossplot of the RHOB and NPHI wireline logs
(Fig. 4d).

The structured PCA that is based on the cor-
relation matrix calculated from only a subset of well
records highlights the internal variations within each
of the interpreted lithological units, named PC_ss,
PC_sh, PC_co, and PC_cc for sandstone, shale, coal,
and cement, respectively (Table 2). All the proba-
bility plots for each separate lithological unit
(Fig. 5), where the inter-lithological effect has been
removed, still indicate polymodal distributions.
However, the polymodality is caused by different
intra-lithological populations characterized by the
specificities of the structured loadings that now
reflect the higher order variability once the inter-
lithological variability has been removed. The prin-
cipal sandstone lithological component, PC1_ss, can
be separated into four subpopulations, where the A
and B sub-populations comprise 3.0% of the total
records. These populations are interpreted as
GR-enriched sandstone and coal influenced sand-
stone, and the C and D sub-populations represent
bay fill sand and channel fill deposited sandstone,
respectively (Fig. 5a). Four sub-populations are also
indicated by the PC2_ss (Fig. 5b): A represents a
specific 4 m sandstone interval with low GR and
NPHI values and higher RHOB values interpreted
to be channel sands, B bay fill sand, C channel fill
deposited sandstone, and D coal influenced sand-
stone. The principal shale component, PC1_sh
(Fig. 5c), can be divided into two dominant sub-
populations, assumed to be pure shale (B) and sand
influenced shale (C). The dominant sub-population
of PC2_sh (B), comprising 97% of the shale records,
explains internal variations within the shale assumed
to be related to porosity variations in contrast to the
A and C sub-populations that respectively represent
coal and cement influenced records (Fig. 5d). For
the coal intervals, four sub-populations are indicated
both for PC1_co and PC2_co. The A sub-population
in PC1_co is pure coal and the remaining three
populations are assumed to be related to the degree

Figure 3. Separate plots displaying Kernel density plots of the

initial wireline log responses within the records corresponding to

four separate lithofacies units shown in Figure 2 with the fol-

lowing lithology notations: (1) sand, (2) shale, (3) coal, and

(4) cemented layers.

Table 2. The First Three PC Loadings for the Total Unstructured PCA (TPC) and the Structured PCA of Each of the Lithofacies

Groupings are Outlined

TPC1 TPC2 TPC3 PC1_ss PC2_ ss PC3_ss PC1_sh PC2_sh PC3_ sh PC1_co PC2_co PC3_co PC1_cc PC2_cc PC3_cc

GR �0.169 �0.612 0.587 �0.741 0.171 0.645 �0.620 �0.196 0.734 0.043 �0.498 �0.164 0.106 0.190 0.713

RHOB �0.592 �0.233 0.078 �0.221 �0.373 �0.076 �0.533 0.092 �0.245 0.573 �0.616 �0.079 �0.245 0.699 0.236

NPHI 0.468 �0.478 0.159 �0.461 0.226 �0.632 �0.112 �0.733 �0.214 �0.550 �0.501 �0.360 0.232 �0.039 0.518

RT 0.130 �0.578 �0.743 �0.435 �0.320 �0.394 �0.273 �0.379 �0.491 �0.361 �0.344 0.853 �0.844 �0.442 0.297

DT 0.621 0.091 0.270 0.011 0.823 �0.148 0.495 �0.522 0.338 �0.487 0.052 �0.332 0.402 �0.529 0.281

Variability 33.7% 29.7% 18.2% 47.5% 22.9% 17.4% 40.0% 26.5% 15.0% 61.1% 13.5% 11.5% 59.4% 21.4% 9.5%

Note: The percentage of the total variability accounted for by each PC is shown in %.
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of impurities (Fig. 5e). The PC2_co also contain four
sub-populations, indicating coal–sand (B) and coal–
shale (C) relations (Fig. 5f). The cemented interval
outline four sub-populations of PC1_cc (Fig. 5g),
where the A population represents records from the
middle part of a 2 m cemented interval, the B pop-
ulation is related to the rim of this interval. The C–D
populations are related to cement records influenced
by nearby lithology types. For the PC2_cc (Fig. 5h),
also interpreted to have four sub-populations, the A
population is related to siderite cement, whereas the
D population represents the middle part of the 2 m
cemented interval. The B and C populations are
assumed to be influenced by the nearby lithology
types.

As the different PC within a specific PCA are
independent of each other, crossplots are introduced
to show how the sub-populations of the PC scores
are interacting. The crossplot of the structured PCA,
PC1_ss, and PC2_ss shows the internal variations of
the 867 records representing the sandstone litho-
logical unit, where clean sand is plotted in the right
part of the diagram, while GR-rich sand, silt and
coal influenced records are plotted in the left, lower
left, and upper parts, respectively (Fig. 6a). The
trend lines illustrate the intra-lithology variations.
The populations of the PC1_ss and the PC2_ss
generate a more precise description of the within
sandstone lithological variations than the unstruc-
tured PCA can provide. The crossplot of the shale
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Figure 4. Analysis of the unstructured PCA. Polymodal distributions are indicated for the two first PCs. For visualization

purposes only every fifth point is plotted in the crossplots. (a) TPC1 has four populations, where B and C populations contain

94% of the records, and (b) TPC2 also indicates four populations. (c) The TPC1-TPC2 crossplot illustrates that the TPC1
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crossplots, only every twentieth record is displayed.
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lithological units indicate that PC1_sh separate
sand–shale variations and the low PC2_sh scores
outline coal influenced shale (Fig. 6b). The inter-
pretation of the crossplot of the coal records show
that low PC1_co scores represent organic-rich coal,
whereas the PC2_co discriminates between sand-
stone without impurities and shale influenced sand-
stone (Fig. 7a). The crossplot of the cemented
interval separates both cement types and the thick-
ness of the cement interval that is not discovered by
the unstructured PCA (Fig. 7b). The internal varia-
tions within the specific lithological units give a more

precise picture of the intra-lithological variability
than the unstructured PCA.

The loadings of the two first PCs of each sepa-
rate lithological unit are separately applied to cal-
culate new wireline records to visualize how the
specific score values used to explain within litho-
logical variations will perform when applied to the
entire study interval. These new PC scores covering
all records of the study interval help to determine
the variations. The crossplot of PC1_ss and PC2_ss
scores include all lithologic units using the sandstone
lithological loadings. This sandstone view allows us
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Figure 6. Crossplots of the first two PCs of the (a) sandstone and (b) shale lithological units, including crossplots where the

loadings of each specific lithological unit are applied to the entire study interval (c and d) to illustrate the difference between

the structured PCAs. In (a) and (b) only every tenth record is displayed, whereas (c) and (d) display every twentieth record.
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to differentiate between cemented intervals, varia-
tions in coal and shale records in addition to the
shale and within sandstone variations (Fig. 6c).
Similar crossplot using shale loadings (Fig. 6d)
illustrates how sandstone can be discriminated from
shale as well as displaying gradations of shale vari-
ation including cemented and coal intervals. The
crossplot of PC1_co and PC2_co differentiates
between coal and other lithologies, including coal
quality along the x-axis and sand influence along the
y-axis (Fig. 7c). Similar crossplot of cemented load-
ings (Fig. 7d) indicates that the 2 m thick cemented
interval has its own signature compared to the other
cemented records plotted along the sand–shale–coal

line. This result shows that applying structured PCA
and later using these specific PC loadings to include
all study interval records can go beyond the inter-
pretation of both univariate and unstructured PCA
when the separation of petrophysical variations are
in focus. In order to ensure the representative of the
computed eigenvectors, the sandstone (ss) subset
was divided randomly into two groups. The loadings
for these two subset groups of eigenvectors were
compared with the initial sandstone subset and the
results show that only loadings between �0.1 and
0.1 give percentile variation above 10% (Table 3).
This test shows that there is stability in the
eigenvectors.
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Figure 7. Crossplots of the first two PCs of the (a) coal and (b) cement lithological units, including crossplots where the

loadings of each specific lithological unit are applied to the entire study interval (c and d) to illustrate the difference between

the structured PCAs. In (a) and (b) only every tenth record is displayed, whereas (c) and (d) display every twentieth record.
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Comparison of Unstructured and Structured
PCA Loadings

The difference in loading values, including their
ability to explain the total data variability, is distinct
when comparing unstructured PCA and the four
separate structured PCAs (Table 2). The bar plot
(Fig. 8a) shows that the first two PCs of the
unstructured PCA explain less of the total variability
than the structural PCAs. This implies that
unstructured PCA uses a correlation matrix that has
less strong correlations due to a larger part of het-
erogeneity from inter-lithological variations. The
separate structured PCA analyzes specific lithologi-
cal units avoids interactions from intra-lithological
variations.

The star diagrams (Fig. 8b) visualize the rela-
tion between the unstructured and structured PC
loadings expressed in Table 2. The PC1_ss has about
identical loadings as TPC2, indicating that TPC2
represents the residual sandstone variability due to
internal sandstone variations once the major lithof-
acies variability has been removed by TPC1. The
similarity between PC2_ss and TPC1 shows that the
residual variability once the intra-lithological sand
variability is removed contains much of the same
heterogeneity as shown in the totality of the well
records. This indicates a sort of fractal behavior of
the lithological mix at the Åre Fm. scale (300 m) and
the scale of the combined sandstone layers (130 m).
The TPC3 signature is related to the PC1_cc, indi-
cating variation due to the cemented records. A
second graphical visualization of the PC loadings in
Table 2 is represented by Chernoff faces (Fig. 8c);
these faces that mimic human faces are drawn based
upon the loading values of the five wireline variables
and can discriminate similar PC loading patterns and
correspond to the results of the star diagrams.

Comparison of Unstructured and Structured
PCA Scores

PCA can be regarded as a data-driven method
because of the dependency between the position of
the eigenvector and the gravity field of the samples.
PCA can therefore give different results according
to a specific selection of input variables and/or
samples. It is therefore important to ensure that as
much of the unwanted heterogeneity is removed by
including a proper choice of samples representative
for each lithological subset. Similarities in PCA
loadings of unstructured and structured PCA can
either be related to pure luck or, if properly
designed, driven by specific geologic phenomena. In
the following, the relationship between unstructured
and structured PCA is illustrated by plotting the
associations in crossplots. In this paper, only differ-
ences in eigenvector loadings between the structured
and unstructured approach for each subset are con-
sidered. However, Figure 9 portrays how the indi-
vidual score values of the unstructured PCA in the
sandstone subset match the scores calculated with a
structured correlation matrix based only on the
subset samples. The similarity of the sandstone
records of TPC1 and PC2_ss (Fig. 9a) could give the
impression that the total unstructured analysis is as
good as obtained with structured loadings, but this is
only a consequence of the difference in the loadings
for GR and RT being cancelled out because of close
to zero standardized values in the sandstone for the
wireline logs and similar loadings for RHOB, NPHI,
and DT resulting in an alignment along the pure
sand–shale trend line. The TPC2-PC1_ss plot
(Fig. 9b) shows an alignment along a coal–sand–
shale–cement trend along the structured PC1_ss
vector. The TPC2-PC1_ss plot shows the close
correlation between the variables with a marginal

Table 3. The Stability in Eigenvectors was Tested by Selecting at Random Half of the Samples within the Sandstone Lithofacies

PC1_ss1 PC2_ss1 PC3_ss1 PC1_ss2 PC2_ss2 PC3_ss2 PC1_ss01 PC2_ss01 PC3_ss01 PC1_ss02 PC2_ss02 PC3_ss02

GR �0.744 0.079 0.661 �0.739 0.269 0.612 �0.10% 18.40% �0.61% 0.07% �11.14% 1.31%

RHOB �0.219 �0.365 �0.157 �0.224 �0.368 0.006 0.23% 0.54% �17.38% �0.34% 0.34% 58.57%

NPHI �0.457 0.312 �0.601 �0.465 0.128 �0.653 0.22% �7.99% 1.26% �0.22% 13.84% �0.82%

RT �0.437 �0.261 �0.419 �0.434 �0.381 �0.355 �0.11% 5.08% �1.54% 0.06% �4.35% 2.60%

DT 0.009 0.834 �0.038 0.014 0.794 �0.270 5.00% �0.33% 29.57% �6.00% 0.90% �14.59%

Variability 46.9% 23.2% 17.3% 48.1% 22.8% 17.3%

Note: Columns 2–7 outline loadings for the two specific halves and show only marginal difference. Columns 8–13, expressing the percentile

loading variation between all sandstone samples (PC_ss in Table 2), and the two specific halves, respectively, show that only loadings

between �0.1 and 0.1 give percentile variation above 10%.
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difference in the lower values interpreted to be
related to GR-rich sandstone records. The sandstone
records deviating perpendicular to the trendline is
interpreted to be related to larger standardized
values of RT. In the two crossplots, the two modes

of each of the PCs, illustrated by the gray lines,
express the similarity between the populations and
show that the structured PCA modes have a wider
separation, even if the gross lithology relation is
similar.

PC1 PC2 PC3 PC4 PC5

TPC
PC_ss
PC_sh
PC_co
PC_cc

T
ot

al
 v

ar
ia

bi
lit

y 
[%

]

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

GR

RHOB
NPHI

RT
DT

x x x x x

x x x x x

x x x x x

TPC1 PC1_ss PC1_sh PC1_co PC1_cc

TPC2 PC2_ss PC2_sh PC2_co PC2_cc

TPC3 PC3_ss PC3_sh PC3_co PC3_cc

TPC1 PC1_ss PC1_sh PC1_co PC1_cc

TPC2 PC2_ss PC2_sh PC2_co PC2_cc

TPC3 PC3_ss PC3_sh PC3_co PC3_cc

(a)

(b)

(c)

Figure 8. Separate plots displaying and comparing unstructured and structured PCA loadings and

their magnitude of variability visualized from the data in Table 2. (a) The bar plot explains the total

variability of each PC both for unstructured and structured PCA. (b) The star diagrams show that

each PC loading has its own specific signature that can be compared to other loadings. The most

prominent loadings are easily identified by their high negative or positive values confirming that

similar loadings have different PC rank. Zero loading is plotted at the dotted line and high negative

loading is at the center point. The dotted line of the diagram is where PC loadings are zero.

(c) Another visualization of the PC loadings is Chernoff faces, which use faces to display five

variables in one plot; GR, height of face; RHOB, width of face; NPHI, shape of face; RT, height of

mouth; DT, width of mouth.
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The near perfect correlation between the
TPC2 and PC1_ss scores indicates that the largest
contribution to the total variability captured by
TPC1 comes from overall shale, coal, cement vs.
sandstone contrasts and that the residual variability
captured by TPC2 reflects the dominant intra
sandstone variability portrayed by PC1_ss. The
scatter from the less perfect correlation between
TPC1 and PC2_ss is an indicator of the fractal
nature of the variability where the dominant shale,
coal, cement vs. sandstone contrasts in a fractal way
is representative both by the gross 300 m Åre Fm.
interval as well as residual sandstone variability,
PC2_ss, once the dominant intra-sandstone vari-
ability is removed.

In the TPC1-PC2_ss crossplot, the deviating
samples perpendicular to the general trendline are
related to minor lithology variations interpreted to
be caused by extreme GR-enriched sandstone (>200
API units). Even if these points are related to the
GR-enriched population of TPC1, these points fall
within the two modes of the structured PCA,
PC2_ss. This indicates that the GR-enriched sand-
stone variations are entirely captured by the princi-
pal structured PC, PC1_ss, whereas for the
unstructured PCA both the two first PCs are needed
to express this phenomenon.

A more in-depth analysis of the structured
approach where the original log responses are
recalculated based upon differences in heterogeneity
will be published in a separate paper that is based
upon the preliminary results presented in Brands-
egg, Hammer, and Sinding-Larsen (2008).

Comparison Between Univariate and Multivariate
Overlap

The distance between the mean value of each
sub-population can indicate their separation. An
overlap criterion is introduced to evaluate the dif-
ference between univariate, unstructured, and
structured PCA. The population overlap between
each component is determined by the percentage of
data which falls between the mean plus two standard
deviations of the lower population and the mean
minus two standard deviations of the upper popu-
lation (Stanley and Sinclair, 1988). The information
conveyed in Table 4 shows that there is a marked
difference in the amount of overlap between the
primary and secondary PCs for the unstructured and
structured PCA. The unstructured PCA has little
overlap between populations because the variability
is spanning the full variability space and thereby
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Figure 9. The crossplots of only sandstone lithology units of TPC and PC_ss illustrate the difference between unstructured

and structured PCA with close to similar loading signatures. (a) The GR-rich sandstone records are classified as shale

influenced sand by TPC1, whereas it is within the channel sand population of PC2_ss. (b) The crossplot of TPC2 and PC1_ss

indicates similar scores for values over zero interpreted to be channel and bayfill sandstone, whereas there is a slight

difference in the negative scores. The difference in the negative scores is related to GR-enriched sandstone and shale

influenced sandstone. Only every tenth record is displayed.
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identifies end member populations focusing on inter-
population variability rather than intra-population
variability. The increase in the degree of overlap with
higher order PCs reflects the increasing compactness
of the variability space and hence the increasing
overlap of the lithological populations. The struc-
tured PCs show the opposite trend whereby the first
PC displays a large overlap between what is now
differences within the lithological population due to
an expansion of internal heterogeneity in the
respective lithological unit. These observations per-
mit us to break the apparent uniform lithological
population defined from the unstructured into sub-
populations reflecting the local petrophysical con-
trast within the lithological unit.

Comparison Between Two Lithofacies
Classifications

In the previous analysis, with four lithofacies
classifications related to rock types that have been
separately calculated, an increased separation
between each of the lithofacies was achieved. In
order to portray the effect of sedimentary features
related to depositional environment, a new lithofa-
cies classification was introduced, following the work
of Kjærefjord (1999) and Hammer, Mørk, and Næss
(2009). The new lithofacies types, predominantly
based upon core analysis, were segmented into four

sedimentary features related to deposition environ-
ment: fluvial channel (FCH), floodplain fines (FF),
sandy bay-fill (SBF), and muddy bay-fill (MBF). The
RHOB/NPHI crossplot outlines the high and low
RHOB values of cemented and coal influenced
intervals, in addition to portraying an overlap of the
sandy and muddy bay-fill deposition feature popu-
lations (Fig. 10a). The overlapping of sandy and
muddy bay-fill is related to the highly heterolithic
deposition of a bay-fill environment which is difficult
to differentiate (Svela, 2001; Hammer, Mørk, and
Næss, 2009). The structured sandstone PCA load-
ings, indexed by the four sedimentary features, allow
considerable additional differentiation to be mapped
out, which otherwise would have been missed
(Fig. 10b). When applied to all interval records
studied, the first PC, PC1_ss, separates two popula-
tions of sand and one population of shale, whereas
the PC2_ss separates two sandstone populations and
the end-members of coal and cemented records. The
crossplot of these two PCs points to two sandstone
populations related to FCH and SBF, with a more
pronounced separation than the initial NPHI/
RHOB crossplot. The PC2_ss separates FCH and
SBF, whereas PC1_ss explains the internal varia-
tions within these records. An increased separation
between SBF and MBF is generated when applying
the two PCs of the structured shale PCA (Fig. 11),
as the SBF records are clustered, surrounded by the
MBF records.

The structured PCA crossplot is superior to the
initial wireline log responses when focusing on spe-
cific variations within a specific depositional setting.
The calculations and graphical visualization of data
using loadings expressing variations in the sandstone
population has enhanced the differentiation between
the different depositional environments without
interfering with the other specific lithologies, such as
coal and cement influenced intervals.

DISCUSSION

A basic requirement for using multivariate
analysis on geologic data is to reflect on the quan-
tification procedure measuring the geologic pro-
cesses that constitute the input data for your analysis
(Davis, 2002). By the use of PCA, analyzing patterns
within the data aim to translate geologic objects that
are described by a set of indirect information (e.g.
wireline logs) into categorical information, which
refers to a given geologic property (e.g. lithology

Table 4. Comparison of Component Population Overlaps

Including the Number of Populations of All Initial Wireline Log

Variables and the Most Significant PCs of Both Unstructured and

Structured PCA

Variable Populations Percent Overlap (%)

GR 6 12.5

RHOB 4 11.3

NPHI 4 0.1

RT 3 0.9

DT 5 10.7

TPC1 4 15.5

TPC2 4 25.2

TPC3 4 67.8

TPC1_ss 4 7.6

TPC2_ss 3 56.2

PC1_ss 4 50.8

PC2_ss 4 5.5

PC3_ss 3 0.7

PC1_sh 3 48.4

PC2_sh 3 1.1

PC1_co 4 29.3

PC2_co 4 14.7

PC1_cc 4 35.7

PC2_cc 4 17.9
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by the structured sandstone intervals with lithofacies types classified according to Hammer, Mørk, and Næss (2009). There is
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type and porosity). In this study, petrophysical wire-
line responses in combination with core analysis
have outlined four lithofacies types to be separately
evaluated to determine their independent signatures
that can express geologic processes that operate
within lithofacies scale. It should therefore be noted
that the lithofacies types used here are based upon
manual lithofacies classifications interpreted from
cores, supplemented by wireline log analysis in non-
cored intervals, and not an automatic pattern rec-
ognition identification of lithofacies types. However,
our aim has been to identify the merit of using
specific lithofacies weights to explain variations
within specific lithofacies and to show how these
weights can be used to enhance lithofacies inter-
pretation. The populations identified from the initial
wireline logs do not independently outline specific
rock types and/or lithological processes in contrast
to the unstructured/structured PCA procedure. The
different populations in the probability plot analysis
have the potential to have large overlaps if the PCs
are polymodally distributed with component popu-
lation means of roughly equal magnitude, but with
large standard deviations. Ignoring discernable uni-
variate patterns in the design of subsequent multi-
variate analysis may lead to unnecessary ambiguities
and/or complexities in the multivariate results and
the subsequent interpretation (Stanley and Sinclair,
1988). New variables calculated from structured
PCA can be powerful discriminators for visualizing
within lithofacies signatures that are not achievable
with a standard PCA approach. Griffiths (1988)
stated that a question asked may be unanswerable
within the system in which it is formulated and to
solve such a problem it is necessary to enlarge the
system, creating a meta-language, and find the
solution, if any, within this enlarged system. In this
study, the reasoning of Griffiths is applied by using
separate loadings from lithological units as a form of
meta-language to explain within lithological con-
trasts. This is further exemplified by the principal
structured PCA sandstone loading that had close to
identical loading of the second unstructured PC:
Despite the fact that the unstructured PCA included
other lithofacies wireline responses, its similarity to
sandstone processes could not be identified prior to
the structured PCA.

The limitation scale for this study is related to
the sampling interval of the wireline logs. Even
though the sample interval is 15 cm, some of the
different wireline log measuring tools can have
larger distance between transponder and receiver

resulting that not small-scale heterogeneities are
captured. Nordahl and Ringrose (2008) concluded
that, by using the representative elementary vol-
ume (REV) concept as a basis, it is important to
incorporate lamina scale (mm) and lithofacies scale
(dm-m) heterogeneities into full field reservoir
scale heterogeneity to reduce uncertainty in reser-
voir modeling. This structural PCA approach has
been applied on wireline logs to enhance the sep-
aration of petrophysical contrasts in fluviodeltaic
deposits and support the estimated lithofacies REV
around 20 cm lengths stated by Nordahl and
Ringrose (2008).

CONCLUSIONS

We have evaluated separate PCAs derived from
different lithological subsets of the well records to
detect and interpret for higher order heterogeneity
within the different lithologies. This procedure has
allowed us to gain a clearer and more comprehen-
sive interpretation of the data than by use of tradi-
tional PCA procedures. A case study analyzing
higher order lithological effects from the fluviodel-
taic environment of the Heidrun Field, offshore mid-
Norway, has indicated that our ability to map and
interpret higher order variability will improve the
fluviodeltaic reservoir heterogeneity description that
is important for production scheduling. The struc-
tured/unstructured PCA method adds to the stan-
dard interpretation of the wireline log data by
identifying specific intra-lithological processes that
are not outlined by traditional approaches. This
workflow can easily be applied to isolate other
depositional environments and is assumed to be
particularly valuable in other studies involving het-
erolithic deposits. The structured/unstructured PCA
method permits the effective removal of variability
due to gross lithological effects and allows for dif-
ferential interpretation of heterogeneity. This pro-
cedure can further be applied into lithofacies
classification routines for incorporating small-scale
heterogeneities that potentially can be used to
decrease the misclassification records. The use of
separate PCAs through the examples given has been
effective in portraying petrophysical variability of
reservoir properties within different lithological
units. We suggest that this procedure should be used
to pre-process effective reservoir properties in
order to enhance the choice of reservoir drainage
strategies.

60 Brandsegg, Hammer, and Sinding-Larsen



ACKNOWLEDGMENTS

Heidrun Unit (Statoil Petroleum AS (operator),
Petoro AS, ConocoPhillips Skandinavia AS, Eni
Norge AS) is acknowledged for providing well data
and permission to present case examples from the
Heidrun Field. This paper represents a contribution
to the GeoEnhance consortium on reservoir char-
acterization at the Norwegian University of Science
and Technology (NTNU). The research stems from
the post-graduate work of K. B. Brandsegg and
E. Hammer at the Faculty of Engineering Science
and Technology at NTNU. Special thanks to Arve
Næss and Mali Brekken at Statoil and Steinar
Ellefmo for helpful comments. Two anonymous
reviewers gave valuable comments which greatly
improved this paper.

REFERENCES

Avseth, P., Mukerji, T., and Mavko, G., 2005, Quantitative seis-
mic interpretation: applying rock physics tools to reduce
interpretation risk: Cambridge University Press, Cambridge.

Bourquin, S., Rigollet, C., and Bourges, P., 1998, High-resolution
sequence stratigraphy of an alluvial fan-fan delta environ-
ment: stratigraphic and geodynamic implications—an exam-
ple from the Keuper Chaunoy sandstones, Paris basin: Sed.
Geol., v. 121, no. 3–4, p. 207–237.

Brandsegg, K. B., Hammer, E., and Sinding-Larsen, R., 2008,
Quantifying fluvial sandstone heterogeneity by using multi-
variate analysis, in Sirum, H. J. H., and Haukdal, G. K., eds.,
NGF Abstracts and Proceedings of the Geological Society of
Norway: Stavanger, Norway, p. 7–9.

Bridge, J. S., and Tye, R. S., 2000, Interpreting the dimensions of
ancient fluvial channel bars, channels, and channel belts from
wireline-logs and cores: AAPG Bull., v. 84, no. 8, p. 1205–
1228.

Chernoff, H., 1973, The use of faces to represent statistical asso-
ciation: J. Am. Stat. Assoc., v. 68, p. 361–368.

Corbett, P., Jensen, J., and Sorbie, K., 1998, A review of
up-scaling and cross-scaling issues in core and log data
interpretation and prediction, in Harvey, P., and Lovell, M.,
eds., Core-Log Integration. Vol. 136 of Geological Society
Special Publication, 136: Springer, London, p. 9–16.

Dalgaard, P., 2008, Introductory Statistics with R (2nd edn.):
Springer, London.

Dalland, A., Augedahl, H., Bomstad, K., and Ofstad, K., 1988,
The post-Triassic succession of the Mid-Norwegian Shelf, in
Dalland, A., Worsley, D., and Ofstad, K., eds., A Litho-
stratigraphic Scheme for the Mesozoic and Cenozoic Suc-
cession Offshore Mid- and Northern Norway. Vol. 4,
Norwegian Petroleum Directorate Bulletin: Springer, Stav-
anger, p. 5–42.

Davis, J. C., 2002, Statistics and data analysis in geology: Wiley,
NewYork.

Doveton, J. H., 1994, Geological log analysis using computer
methods. Vol. 2, AAPG Computer Applications in Geology.

Eichenseer, H. T., and Leduc, J. P., 1996, Automated genetic
sequence stratigraphy applied to wireline logs: Bulletin Des

Centres De Recherches Exploration-Production Elf Aqui-
taine., v. 20, no. 2, p. 277–307.

Griffiths, J., 1988, Measurement, sampling and interpretation, in
Chung, C. F., Fabbi, A. G., and Sinding-Larsen, R., eds.,
Quantitative Analysis of Mineral and Energy Resources.
NATO ASI Series, 82: D. Reidel Publishing Company,
Boston, p. 37–56.

Gupta, R., and Johnson, H. D., 2001, Characterization of
heterolithic deposits using electrofacies analysis in the tide-
dominated Lower Jurassic Cook Formation (Gullfaks
Field, offshore Norway): Petrol. Geosci., v. 7, no. 3, p. 321–
330.

Hammer, E., Mørk, M. B. E., and Næss, A., 2009, Facies controls
on the distribution of diagenesis and compaction in fluvial-
deltaic deposits. Marine Petrol. Geol. Corrected proof (in
press). doi:10.1016/j.marpetgeo.2009.11.002.

Hohn, M. E., McDowell, R. R., Matchen, D. L., and Vargo, A. G.,
1997, Heterogeneity of fluvial-deltaic reservoirs in the
Appalachian basin: a case study from a Lower Mississippian
oil field in central West Virginia: AAPG Bull., v. 81, no. 6,
p. 918–936.

Jolliffe, I., 2002, Principal component analysis (2nd edn.):
Springer, New York.

Kjærefjord, J., 1999. Bayfill successions in the lower Jurassic Åre
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