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One of the most important features of spatial datasets is that they often exhibit spatial
autocorrelation, where locational similarities are observed jointly with similarities in values.
Both logistic regression (LR) modelling and weights of evidence (WE) modelling are
methods commonly applied in binary pattern recognition. While a spatially autocorrelated
variant of the LR model, the so-called autologistic regression (ALR) model, exists in the
literature, a spatially autocorrelated variant of the WE model does not exist. In this paper, a
spatially autocorrelated weights of evidence (SACWE) model will be proposed. It will be
demonstrated that the new model contains the same amount of spatial information as does
an ALR model, and it is easy to program and implement. Via a simulation study, it will be
shown that, in the presence of spatial autocorrelation, both in terms of in-sample fit and out-
of-sample predictions the SACWE model is on par with the ALR model, while significantly
outperforming the conventional WE model.
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INTRODUCTION

Weights of evidence (WE) modelling is a
Bayesian probability method used in explaining and
predicting occurrences of binary events. It relates
the presence of a binary response variable to a
number of binary maps of geological features, which
are used as predictor patterns, and it produces a map
of estimated posterior probabilities as the end
product. Detailed descriptions of the method can be
found in Bonham-Carter, Agterberg, and Wright
(1988, 1989), Agterberg, Bonham-Carter, and
Wrightand (1990), and Bonham-Carter (1994).
Although in the majority of its empirical applica-
tions WE modelling has been used to produce maps
of mineral deposit potentials, increasingly it has
been adopted in fields beyond mineral exploration.

For instance, Hansen (2000) and Hansen and others
(2002) used WE to analyze archeological site dis-
tributions, Romero-Calcerrada and Luque (2006)
predicted the habitat suitability of Picoides tri-
dactylus (three-toed woodpecker), Mathew, Jha, and
Rawat (2007) and Dahal and others (2008) studied
landslide susceptibility, Emelyanova and others
(2008) investigated cattle farm distribution in
Australia, amongst others.

Upon close inspection, however, one notices
that the binary response variable of interest in these
recent studies are likely to be spatially autocorre-
lated. Human beings are social animals, and human
settlements, such as farms, as well as archeological
finds, are likely to exhibit strong clustering behavior.
Likewise, the presence of animal species in a par-
ticular region is likely to be influenced by the pres-
ence of the same species in nearby regions. The
occurrence of landslides in neighboring areas is also
likely to lead to structural instabilities and increase
the probability of landslides in the area being sur-
rounded. While significant spatial autocorrelation is
likely to be present, it has not been considered in
these recent studies.
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It has long been recognized that stochastic pro-
cesses in close spatial proximity often exhibit spatial
autocorrelation, where locational similarities are
observed in conjunction with similarities in values.
The first law of geography, as first described in Tobler
(1970), states clearly that ‘‘everything is related to
everything else, but near things are more related than
distant things.’’ Since then, important works of Cliff
and Ord (1973), Ord (1975), Anselin (1980, 1988),
Cressie (1993), just to name a few, have made sig-
nificant contributions in incorporating spatial auto-
correlation in spatial modelling. However, spatial
autocorrelation has never been formally incorpo-
rated into WE modelling. This is perhaps due mainly
to the fact that WE modelling was initially developed
for mineral potential mapping, where the spatial
process under consideration is inanimate and not
expected to exhibit significant spatial dependencies.
But as WE modelling is increasingly being imple-
mented in fields beyond mineral exploration, the
need to incorporate spatial autocorrelation should be
acknowledged. It should also be noted that, even if
the spatial process of interest is on its own not spa-
tially autocorrelated, it is possible that some of the
underlying predictor patterns may be spatially auto-
correlated. And if one or more of these spatially
autocorrelated predictor patterns are missing from
the modelling process, the residuals of the model will
exhibit spatial patterns, a situation that has received a
lot of attention in the spatial econometrics literature
and gave rise to the so-called spatial error model; for
more details see Anselin (1988).

Logistic regression (LR) is another loglinear
binary events recognition method prominent in the
literature; detailed descriptions of its applications in
mineral research can be found in Agterberg (1992),
Agterberg and others (1993), and Agterberg and
Bonham-Carter (1999). Importantly, Besag (1972,
1974, 1975) developed a class of autologistic
regression (ALR) models, where response variable
values of the spatial neighbors are incorporated into
the logistic model, thus explicitly accounting for
spatial autocorrelation. Subsequently, Haining
(1985) used ALR to investigate spatial price com-
petition, Augustin, Mugglestone, and Bucklandand
(1996, 1998) studied spatial distribution of wild life,
Wu and Huffer (1997) and Huffer and Wu (1998)
studied spatial distribution of plant species, Wintle
and Bardos (2006) investigated species–habitat
relationships, amongst others. Both simulation
studies and empirical studies have shown that, in the
presence of significant spatial autocorrelation, the

ALR model outperforms the LR model in terms of
fit and predictive ability.

It is well understood that the WE model and the
LR model share many similarities, and that in some
special cases they are equivalent (see Deng, 2009).
Given the importance of spatial autocorrelation in
spatial processes and the close links between the WE
model and the LR model, development of a WE
variant of the ALR model would be a useful addition
to the spatial literature. In this paper, I will propose a
spatially autocorrelated weights of evidence (SACWE)
model, where values of the spatial neighbors are
incorporated as additional predictor patterns in the
model. It will be demonstrated that the SACWE
model contains the same amount of information as
the ALR model, and it is easy to program and
implement. Via a simulation study, it will be shown
that in the presence of spatial autocorrelation the
SACWE model significantly outperforms the WE
model both in terms of in-sample fit and out-of-sam-
ple predictions, and is on par with the ALR model.

THE AUTOLOGISTIC REGRESSION
MODEL

Before developing the SACWE model, it is
instructive to first look at the ALR model in detail.
For spatial observation i, let the response variable be
defined by a binary random variable yi, and yi = 1
when the event is present and yi = 0 when absent.
For simplicity and without loss of generality, let
there be one predictor pattern, which is defined by a
binary random variable x1,i, and x1,i = 1 when the
predictor pattern is present and x1,i = 0 when absent.
Furthermore, let pi be the probability of yi = 1.
Following the notation of Augustin, Mugglestone,
and Buckland (1996), the ALR model is specified as:

log
pi

1� pi

� �
¼ aþ b1x1;i þ bauto autocovi ð1Þ

where a is the usual intercept term, b1 is the
regression coefficient associated with the predictor
pattern x1,i, and bauto is the regression coefficient
associated with the so-called spatial autocovariate,
autocovi, which is calculated as:

autocovi ¼
Pki

j¼1 wijyjPki

j¼1 wij

ð2Þ

where ki is the total number of spatial neighbors for
i, and wij is the spatial weight given to its jth
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neighbor. It can be seen from Eq. 2 that the spatial
autocovariate autocovi is a weighted average of the
spatial neighbors of observation i. The autocovariate
autocovi differs from the normal predictor pattern
x1,i in that it is a function of the response variable,
and its inclusion explicitly accounts for spatial
autocorrelation. It is clear that autocovi has a lower
bound of 0, as in the case of all neighbors of
observation i being 0, and an upper bound of 1, as in
the case of all neighbors being 1. When bauto is
positive, the probability of yi = 1 is positively influ-
enced by the average value of the spatial neighbors
of i, and the more neighbors taking on a value of 1
the higher the probability of yi being equal to 1.

There are a large number of ways of specifying
the spatial structure and hence the spatial weights
wij, and a detailed discussion of the topic is beyond
the scope of this paper. The most simplistic specifi-
cation, which is defined by a binary contiguity
matrix, can be found in Ord (1975) and Anselin
(1988). Essentially, a binary contiguity matrix treats
spatial relationships as a binary relationship: one is
either a spatial neighbor (wij = 1) or not a spatial
neighbor (wij = 0). To demonstrate, consider the
regular lattice in Figure 1, where i is the spatial
observation of interest. One of the most commonly
used binary contiguity matrix, known as the Queen
contiguity matrix (named after its resemblance to
the movements of the Queen in a chess game),
defines all shaded cells in Figure 1 as spatial neigh-
bors of observation i. In this case, ki = 8 and wij = 1
for all of the eight neighbors. From this point
onwards, for ease of discussion and without loss of
generality, all spatial weights matrices used will be
of the Queen contiguity design.

It should be noted that, despite its intuitive
appeal and its apparent functional simplicity,

estimation of the ALR model as given in Eq. 1 is not
straightforward and it still remains an active area of
research. In the traditional setting for a logistic
regression (LR) model, the response variables are
assumed to be independent, and the full likelihood is
simply the product of the likelihoods of individual
spatial observations. In the ALR model, however,
the presence of autocovi on the right-hand side of
Eq. 1 means that the response variables are no
longer independent. As shown in Huffer and Wu
(1998), the full likelihood for the ALR model is
known only to within a normalization constant,
which is a function of the regression parameters and
is thus intractable except in trivial cases, and the
standard maximum likelihood (ML) results do not
apply.

A number of estimators have been proposed in
the literature, and only the most important ones are
outlined below, as a comprehensive literature review
is beyond the scope of this paper. Besag (1972, 1974)
suggested a simple coding method, in which the
spatial sample is divided into spatially independent
subsets, for which separate ML estimates are
obtained and combined at the end. But the coding
method was found to be inefficient and sensitive to
choice of coding schemes. Besag (1975) suggested a
maximum pseudo-likelihood (MPL) estimator.
Essentially, MPL assumes that the spatial units are
independent and treats autocovi as another covari-
ate. Comets (1992) showed that the MPL estimates
are consistent and asymptotically normal, although
the MPL estimates do not have a valid variance
measure. As the MPL estimator is intuitive and can
be computed using conventional logistic regression
techniques, it is the most widely used estimator in
practice. Finally, Wu and Huffer (1997) and Huffer
and Wu (1998) developed a Markov Chain Monte
Carlo (MCMC) method for approximating the dis-
tribution of the ML estimators for spatially auto-
correlated binary choice models. Their method is
computationally far more intensive, and its conver-
gence depends on the choice of the trial state being
sufficiently close to the true MLE value. But they
showed that their MCMC MLE produces the best fit
in most cases.

Each estimator has its own advantages and
disadvantages, and it is clear that the MPL estimator
has the closest link with the traditional LR estima-
tor. Therefore, for the purpose of developing a
method for a spatially autocorrelated WE model,
the MPL method of Besag (1975) appears to be the
most appropriate starting point and the benchmark

Figure 1. A regular lattice, in

which observation i is of

interest, and the shaded cells

are considered spatial neigh-

bors of i.
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against which the new model�s performance will be
compared against.

A NEW SACWE MODEL

Recall that, in Eq. 2, autocovi is a continuous
variable bounded between 0 and 1. In a WE mod-
elling setting, however, all predictor patterns are
required to take on binary values, and a predictor
pattern with multiple discrete states needs to be
redefined into several binary predictor patterns,
each representing one of the states. Therefore, to
incorporate the spatial term autocovi in WE mod-
elling one must first redefine autocovi. Consider a set
of nine hypothetical data points in a regular lattice in
Figure 2, amongst which observation 5 is the data
point of interest. Under the Queen contiguity
design, observations (1, 2, 3, 4, 6, 7, 8, 9) are con-
sidered spatial neighbors of observation 5. Accord-
ing to Eq. 2, the spatial autocovariate autocov5 is
calculated as:

autocov5 ¼
P9

j¼1 w5jyjP9
j¼1 w5j

ð3Þ

Following the convention in the literature, w55 is set
to 0 as spatial observation 5 is not considered as its
own neighbor, and w5j = 1 for j = 1, 2,…, 9 and
j „ 5. Then:

autocov5 ¼
y1 þ y2 þ y3 þ y4 þ y6 þ y7 þ y8 þ y9

8

ð4Þ

And when Eq. 4 is substituted into Eq. 1, one can
write:

log
p5

1� p5

� �
¼ aþ b1x1;5 þ

bauto

8
ðy1 þ y2 þ y3 þ y4

þ y6 þ y7 þ y8 þ y9Þ ð5Þ

where all spatial neighbors are treated as equivalent,
and that each additional yj = 1 for a spatial neighbor
increases the value of the log-linear function by

exactly bauto=8: Let us define a set of eight binary
variables:

autosumðkÞ5 ¼ 1 iff
X9

j¼1;j 6¼5

yj ¼ k; k¼ 1;2; . . . ;8

ð6Þ

It is clear that the set of autosum(k)5�s and the
continuous variable autocov5 have a one-to-one
correspondence and they contain the same amount
of information. For instance, suppose that y1, y3, and
y7 are all equal to 1, while the rest of the spatial
neighbors are all 0, then autocov5 ¼ 3=8; which
corresponds uniquely to a set of autosum(k)5�s, in
which autosum(3)5 = 1 and all other autosum(k)5�s
equal to 0.

Generalizing for any spatial observation i, the
set of eight binary autosum(k)i�s, together with the
exogenous binary variable x1,i, give a total of nine
predictor patterns, which are then used in WE
modelling. The autosum(k)i�s are derived from the
spatial autocovariate autocovi and they explicitly
account for spatial autocorrelation, hence the new
model is termed the SACWE model. Its imple-
mentation is relatively straightforward. Once a spa-
tial structure has been specified, one only needs to
count the number of neighbors scoring a value of 1
for each spatial unit, and generate a set of binary
autosum(k)i�s. As discussed in the section ‘‘The
autologistic regression model,’’ under the MPL set-
ting the estimation of an ALR model is the same
as that of a typical LR model. Therefore, along
the same line of reasoning, the calibration of the
SACWE model will be the same as that of a typical
WE model.

It should be emphasized that, just as the MPL
estimates for an ALR model are only valid in large
samples, the results for a SACWE model must also
be interpreted with caution and in the context of the
available sample size. Currently, exact ML results
for ALR models do not exist except for trivial cases.
And while MCMC ML procedures have been shown
to adequately approximate the distributions of the
true ML estimators, for more detailed discussions
see Wu and Huffer (1997) and Huffer and Wu
(1998); these procedures are computationally highly
intensive and do not appear to be transferable to
WE modelling. While the inclusion of the auto-
sum(k)i�s in the SACWE model is a first attempt on
accounting for spatial autocorrelation in WE mod-
elling, its finite sample limitations need to be
acknowledged.

Figure 2. A regular lat-

tice of nine spatial obser-

vations.
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A SIMULATION STUDY

Simulation Design

A simulation study will now be presented. Let
there be six exogenous binary predictor patterns, x =
(x1, x2, x3, x4, x5, x6)T. Moreover, the potential for
the binary dependent variable to be spatially auto-
correlated needs to be incorporated in the data
generating process. It has been well-established in
the econometrics literature that underlying every
discrete choice model is a so-called latent variable
model; for detailed discussion see Johnston and
Dinardo (1997). More specifically, suppose there
exists a continuous but unobserved latent variable y*
such that:

y�i ¼ aþXT
i bþ ei ð7Þ

where a is the intercept term, Xi is a (6 9 1) vector
of six exogenous binary predictor patterns for
observation i, ei is an identically and independently
distributed (i.i.d.) random disturbance term, and b is
a (6 9 1) vector of coefficients associated with the
predictor patterns. The binary value of yi can be
defined by the following rule:

yi ¼ 1 if y�i [0; and 0 otherwise ð8Þ

which implies:

p yi ¼ 1ð Þ ¼ p y�i [0
� �

ð9Þ

Therefore, to simulate spatially autocorrelated bin-
ary values of yi, one can first simulate spatially
autocorrelated continuous values of y�i . One can
write down the well-known spatial autoregressive
process (see Anselin, 1988) for the latent variable y*
in matrix notation:

y� ¼ qWy� þ aiþXbþ e ð10Þ

where y* is an (N 9 1) vector of unobserved latent
variables, i is an (N 9 1) vector of 1�s, X is an
(N 9 6) matrix of six exogenous binary predictor
patterns observed for all spatial units, and e is an
(N 9 1) vector of i.i.d. random disturbances. W is
the (N 9 N) spatial weights matrix, where wij iden-
tifies the spatial relationship between the ith and jth
spatial unit. In the current study, W is constructed
based on the Queen contiguity structure (Fig. 1),
where every spatial unit has eight neighbors. To
avoid complications that can arise from the so-called
edge effects, where spatial units on the edges of the

map have fewer neighbors and might require special
treatments, the spatial units on the edges are
excluded from the analysis to ensure that every unit
in the current simulation study faces the same spatial
structure and has the same number of neighbors. q is
the so-called spatial autoregressive parameter. For a
positively spatially autocorrelated process, q is
bounded between (0, 1). It is clear that, when q = 0,
the model has no spatial autocorrelation and is
reduced to the usual case of LR, while the closer q
is to 1 the stronger the spatial autocorrelation.
Although by definition the vector of latent variables
y* is latent and unobserved, Eq. 10 has the following
reduced form:

y� ¼ I� qWð Þ�1 aiþXbþ eð Þ ð11Þ

where I is an (N 9 N) identity matrix. It is clear that,
given a fixed spatial structure specified by W, and
given a set of simulated X, one can simulate a set of
N spatially autocorrelated y�i . Then by Eq. 8 one can
easily transform the continuous y* into spatially
autocorrelated binary yi.

It will be assumed that ei is i.i.d. N(0, 32), and xj

follows a Bernoulli distribution with p(xj = 1) = 0.5
for all j = 1, 2,…, 6. The following parameter values
will be used:

and the effect of spatial autocorrelation will be
investigated by changing the value of the spatial
autoregressive parameter q from 0 (no spatial
autocorrelation) to 0.6 (strong spatial autocorrela-
tion), with an increment of 0.1 in each scenario. To
demonstrate that the method described above can
adequately simulate spatially autocorrelated land-
scape, Figure 3 contains two typical maps from the
simulations. It can be seen that, in the absence of
spatial autocorrelation, the presence of the response
variable characteristic (i.e., yi = 1) is scattered ran-
domly in the landscape with no specific patterns,
while in the presence of strong spatial autocorrela-
tion distinct clusters are formed.

For each iteration, a sample size of 450
(excluding the edge cells) is generated. The simula-
tion is then repeated 1000 times for each scenario
and all the results presented below are averaged
results, unless specified otherwise.

Parameter: a b1 b2 b3 b4 b5 b6

Value �5.5 1.5 1.2 1.0 1.5 1.2 1.0
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Simulation Results

The simulation results will be presented in two
parts. Firstly, the in-sample fit and estimates of the
three models, ALR, WE, and SACWE, will be com-
pared. Secondly, the out-of-sample spatial predictive
performances of the three models will be compared.

In-Sample Results

The in-sample fit of the three models will first
be compared. Two measure of goodness of fit will be
used in this study. The first one is the sum of squared
residuals (SSR), as defined in Amemiya (1981):

SSR ¼
X450

i¼1

yi � p̂ yi ¼ 1ð Þ½ �2 ð12Þ

where p̂ yi ¼ 1ð Þ is the estimated probability of yi = 1
computed by the model. If a model offers a good fit,

p̂ yi ¼ 1ð Þ will be high for cases where yi = 1, and low
for cases where yi = 0. Clearly, a low value of SSR
indicates a good fit. Table 1 provides a comparison
of SSR for all three models (ALR, WE, and
SACWE) for increasing values of the spatial auto-
regressive parameter q. From the last two columns
of Table 1, it is clear that, for all values of q, ALR
and SACWE outperform WE. When q = 0, the
difference in SSR between the three models is
minimal. This is expected, as in the case of
zero spatial autocorrelation the three models are
expected to be equivalent. But as q increases, i.e., as
the strength of spatial autocorrelation increases,
while the difference in SSR remains small between
ALR and SACWE, both models exhibit increasingly
superior fit over WE.

Another validation method often used for
validating binary response models is receiver
operator characteristic (ROC) curve analysis, which
produces a plot of true positive identification rates

Figure 3. The shaded cells correspond to observations of yi = 1. (a) A typical simu-

lated landscape with no spatial autocorrelation has no distinct patterns; (b) a typical

simulated landscape with strong spatial autocorrelation shows distinct clusters.
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against false positive identification rates for all
possible cutoff values. The distance between the
ROC curve and the leading diagonal indicates the
accuracy of the model in binary classification, and
the larger the area under the curve the better the
fit of the model. Detailed discussions of ROC
analysis can be found in Vining and Gladish (1992),
Zweig and Cambell (1993), Mathew, Jha, and
Rawat (2007), amongst others. Figure 4 shows the
ROC curves for three scenarios, q = 0, q = 0.3, and
q = 0.6, respectively. In the absence of spatial
autocorrelation (q = 0), the three ROC curves are
almost identical. But as the value of q increases,
the gap between WE and the two spatially auto-
correlated models ALR and SACWE increases.
When q is large (q = 0.6), this gap becomes sub-
stantial. The ROC curve analysis further confirms
that, in the presence of spatial autocorrelation, the
fit of SACWE is comparable to that of ALR, and it
is superior to WE.

To see why WE underperforms against both
ALR and SACWE, Figure 5 contains maps of esti-
mated probabilities p̂ yi ¼ 1ð Þ for all three models in
the case where q = 0.6 and for the same simulated
landscape as that in Figure 3b. The darker the cell is
the higher the value of the estimated probability. It
can be seen that, while the estimated probabilities
from both ALR and SACWE models exhibit clus-
ters of high values, the type of behavior expected in
the presence of spatial autocorrelation, the WE
model fails to identify any clusters. And when these
maps are compared against the true spatial land-
scape in Figure 3b, it can be seen that both ALR and
SACWE mimic the clusters in the true landscape
successfully, while WE does not.

It is also instructive to compare the estimate of
bauto for the spatial autocovariate autocovi in ALR

against the contrasts calculated for the set of auto-
sum(k)i�s in SACWE. Their values are presented in
Table 2. Note that, throughout the simulations
conducted, autosum(8)i was found to be almost
always 0, as the case of all eight spatial neighbors
being 1 was extremely rare, and the contrast for
autosum(8)i could not be calculated. But the
behavior of the contrasts of the remaining auto-
sum(k)i�s shows interesting results. First, it is noted
that, as q increases in value, the estimate of bauto in
ALR also increases. Similarly, the values of the
contrasts for the autosum(k)i �s also increase along
with q in each column of the table, capturing
the increasing effect of spatial autocorrelation.

Table 1. Comparison of In-Sample SSR

q

SSR of Individual Models

% Difference

Relative to

SSR(WE)

ALR WE SACWE ALR SACWE

0.00 80.483 81.110 80.106 �0.77 �1.24

0.10 77.068 77.751 76.693 �0.88 �1.36

0.20 73.033 73.995 72.670 �1.30 �1.79

0.30 67.324 68.852 67.171 �2.22 �2.44

0.40 59.720 61.880 59.703 �3.49 �3.52

0.50 50.289 53.191 50.480 �5.46 �5.10

0.60 38.399 41.574 38.619 �7.64 �7.11

Figure 4. ROC curves of the three models (ALR, WE, and

SACWE). As the strength of spatial autocorrelation (deter-

mined by q) increases, a sizable gap merges between the ROC

curves of the spatially autocorrelated ALR and SACWE and

that of the spatially uncorrelated WE.
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Secondly, the general pattern across the rows of the
table is that the contrast for autosum(k + 1)i exceeds
that of autosum(k)i. Therefore, as the number of
spatial neighbors recording 1 increases, the posterior
probability estimate also increases in SACWE, a
result that is consistent with expectations.

Out-of-Sample Predictions

It has been demonstrated in the previous sec-
tion that both ALR and SACWE produce superior
in-sample fit over WE in the presence of spatial
autocorrelation, it is also interesting to compare the

Figure 5. Maps of estimated probabilities from the three models (ALR, WE, and

SACWE). The darker the cells are the higher the estimated probabilities are.

While both ALR and SACWE show clusters of high probability estimates, WE

does not.
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spatial predictive performance of the three models.
If the response variable yi is continuous, to perform
spatial predictions one can utilize the fact that the
well-known spatial autoregressive equation:

y ¼ qWyþ aiþXbþ e ð13Þ

has a convenient reduced form:

y ¼ I� qWð Þ�1 aiþXbþ eð Þ ð14Þ

where the value of the response variable y is
explicitly expressed as a function of X; for a more
detailed discussion, refer to Anselin (1988). To
predict the values of yi in areas not yet sampled, so
long as the exogenous predictor patterns X are
observed for those areas and that the spatial struc-
ture (as defined in W) is known, one can compute
their predicted values using Eq. 14.

However, when the response variable takes on
discrete values, such as in the case of a binary yi,
analytical solutions for the reduced form do not
exist, and simple solutions such as Eq. 14 cannot be
used for spatial prediction of binary yi. Moreover,
even if we assume that a spatial model, such as the
ALR of Eq. 1, can be perfectly specified and esti-
mated, when the spatial landscape is only partially
sampled it is likely that autocovi cannot be calcu-
lated in many cases as some of the spatial neighbors
have not yet been observed.

Augustin, Mugglestone, and Buckland (1996,
1998) have suggested incorporating the Gibbs sam-
pler into the ALR model, where the presence/
absence values in unsurveyed spatial units are
recursively updated given neighboring values until
convergence. Their method is computational inten-
sive and does not appear to be directly transferable
to the WE method. In the current simulation study,
I will propose a simple method, where both model
calibration and spatial prediction will utilize

information only from units where observations on
yi are available. To demonstrate, suppose that
amongst the 12 data points in Figure 6, units
(1, 2, 3, 6, 9, 10) are observed (highlighted in grey),
while units (4, 5, 7, 8, 11, 12) are unobserved. For
the WE model, the lack of observations on
(y4, y5, y7, y8, y11, y12) does not lead to any compli-
cations in either model calibration or prediction, as
it does not take into account neighboring values. For
the ALR and SACWE models, however, both the
autocovi and the set of autosum(k)i�s need to be
modified accordingly. In calibrating the ALR model,
taking the 6th observation as an example, the
equation becomes:

log
p6

1� p6

� �
¼ aþXT

6 bþ bauto autocov6 ð15Þ

where

autocov6 ¼
y1 þ y2 þ y3 þ y9 þ y10

5
ð16Þ

For unit 6, out of a total of eight possible neighbors
only five of which (namely y1, y2, y3, y9, and y10) are

Table 2. Comparison of the Estimated Effects of the Spatial Terms

q

ALR SACWE

b(autocov) Contrast of autosum(k)

autocov k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

0.0 �0.193 0.002 �0.007 �0.018 �0.031 �0.083 0.306 0.921 N/A

0.1 0.408 �0.127 �0.039 0.062 0.116 0.138 0.568 0.981 N/A

0.2 1.043 �0.216 �0.001 0.137 0.245 0.354 0.810 1.117 N/A

0.3 1.750 �0.302 0.034 0.287 0.443 0.655 1.098 1.342 N/A

0.4 2.515 �0.296 0.146 0.447 0.658 1.020 1.376 1.493 N/A

0.5 3.515 �0.250 0.340 0.708 0.999 1.473 1.735 1.400 N/A

0.6 4.697 �0.091 0.599 1.040 1.573 2.041 2.087 1.962 N/A

Figure 6. An incom-

pletely sampled spatial

dataset of 12 points,

where the shaded cells

are observed, while the

rest are not.
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observed, and the spatial autocovariate autocov6 is
calculated as an averaged value of only these five
neighbors. Similarly, in generating the set of auto-
sum(k)6�s for the SACWE model in using Eq. 6, only
values on these five neighbors will be used. Now
suppose that one is interested in calculating p̂7; the
predicted probability of y7 = 1, using the ALR
model:

log
p̂7

1� p̂7

� �
¼ aþXT

7 bþ bauto autocov7 ð17Þ

where

autocov7 ¼
y2 þ y3 þ y6 þ y10

4
ð18Þ

Once again the spatial autocovariate autocov7 is an
averaged value of only the observed neighbors
(namely y2, y3, y6, and y10). Similarly, in using the
SACWE model, the set of autosum(k)7�s will also
only involve these observed neighbors.

The forecasting experiment will be conducted
as follows. Spatial observations will be generated for
q = 0.60, which means significant spatial autocorre-
lation is present. Out of the simulated spatial sample
of N = 450, a proportion of the observations will be
randomly chosen as areas with ‘‘unobserved’’ yi and
set aside for forecasting performance evaluation,
while the remaining observations will be used for
model calibration. Three scenarios will be separately
investigated: a sparsely sampled landscape of just
�25% of the units having been observed, a half-
sampled landscape of �50% being observed, and a
well-covered landscape of �75% being observed.
Figure 7 shows what the three scenarios typically
look like. The forecasting performances of the three
models will be compared based on the SSR calcu-
lated for the unobserved cells, and the results are
summarized in Table 3. It is clear that both ALR
and SACWE forecast more accurately than WE in
all three scenarios. Interestingly, the two spatially
autocorrelated models show distinct advantages in
all three scenarios, even in the extreme case where
the spatial landscape is only sparsely sampled
(�25% observed). As the number of possible
neighbors is 8 in a Queen contiguity spatial struc-
ture, in the most extreme scenario only one quarter
(or 2) of the spatial neighbors are expected to be
observed on average for each unit. This suggests
that, despite the lack of knowledge on the majority
of the neighbors, incorporation of spatial informa-
tion from those limited number of observed neigh-
bors still help to significantly improve the predictive

performance of the model. Another way of
explaining this result is that, while many neighbors
are not observed and hence not used in forming
predictions, the values of those neighbors that are
observed take on greater significance. This can be
seen from a comparison of the calibrated SACWE
contrasts in Table 4. The contrasts for autosum(1)

Figure 7. The shaded cells are randomly selected as being

observed. Three scenarios are investigated: 25% observed,

50% observed, and 75% observed.

Table 3. Comparison of SSR of Predicted Cells

Scenario

SSR of

Individual

Models

% Difference

Relative to

SSR(WE)

ALR WE SACWE ALR SACWE

25% observed 28.812 30.467 28.882 �5.43 �5.20

50% observed 19.414 20.560 19.290 �5.57 �6.17

75% observed 9.531 10.186 9.537 �6.43 �6.37
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(having exactly one neighbor recording yi = 1) and
autosum(2) (having exactly two neighbor recording
yi = 1) are both significantly larger for the scenario
where only 25% of the cells are observed. Thus, the
positive evidence provided by any yi = 1 neighbor is
significantly more important when the landscape is
only sparsely sampled.

CONCLUDING REMARKS AND FURTHER
ISSUES

The new SACWE model developed in this
paper attempts to incorporate spatial autocorrela-
tion into binary pattern recognition. The method is
simple and has close links with the well-known ALR
method. Additional predictor patterns are generated
by counting the number of spatial neighbors
recording a value of 1 and are subsequently used in
computing posterior probabilities. These additional
predictor patterns are shown to contain the same
amount of information as the autocovariate in an
ALR model. The simulation study conducted show
that the SACWE model is on par with ALR both in
terms of in-sample fit and out-of-sample predictions,
and it significantly outperforms WE when spatial
autocorrelation is present. The author hopes that the
introduction of the SACWE provides a useful
addition to the existing spatial modelling toolbox
and can expand the application of GIS-based
weights of evidence modelling into research areas
previously ignored.

It should be acknowledged that modelling spa-
tially autocorrelated binary data is a complex prob-
lem. There remains a number of important issues
that have not been resolved in this paper, which will
be listed below:

1. In this paper, the spatial landscape is based
on a regular lattice, which may not be the
case in many empirical research. One way
of dealing with this problem could be to

incorporate a distance measure, where only
observations within a certain radius can be
thought of as spatial neighbors. As a related
issue, it is also noted that another popular
spatial structure commonly used in empirical
research is that of a distance-decay design,
where spatial neighbors are considered less
important when they are further away. One
possible alternative is to divide the spatial
neighborhood into zones, where observa-
tions within the same zone are treated as
equally influential, but zones further away
are less important than zones close by.
Finally, the choice of cell size in a regular
lattice may also be of great importance. An
optimal cell size should be chosen judiciously
and in the context of the specific spatial
process under investigation. The spatial
process within each cell should be relatively
homogenous, while significant spatial inter-
actions are expected to occur between cells.

2. As emphasized throughout the paper, due to
the lack of independence between response
variables, statistical properties of the
SACWE model must be interpreted cau-
tiously and taking into consideration the
available sample size. The endogenous nat-
ure of both the spatial autocovariate auto-
covi in the ALR and the autosum(k)i�s in the
SACWE invalidates most of the traditional
finite sample results. It remains to be seen
whether a more advanced method can be
found to circumvent this issue when cali-
brating the SACWE.

3. The spatial forecasting experiment con-
ducted has assumed that a large spatial
landscape is incompletely sampled, and that
values within the landscape need to be pre-
dicted. But it is also often the case that an
entire section of the landscape becomes
unobserved. In these situations, information
on spatial neighbors is completely missing,
and it remains to be seen if it is still possible
to produce predictions using SACWE.
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Table 4. Comparison of the Calibrated SACWE Contrasts

SACWE Contrasts

autosum(1) autosum(2)

All cells observed �0.091 0.599

25% observed 0.840 1.893
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