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The spatial distribution of discovered resources may not fully mimic the distribution of all
such resources, discovered and undiscovered, because the process of discovery is biased by
accessibility factors (e.g., outcrops, roads, and lakes) and by exploration criteria. In data-
driven predictive models, the use of training sites (resource occurrences) biased by explo-
ration criteria and accessibility does not necessarily translate to a biased predictive map.
However, problems occur when evidence layers correlate with these same exploration fac-
tors. These biases then can produce a data-driven model that predicts known occurrences
well, but poorly predicts undiscovered resources.

Statistical assessment of correlation between evidence layers and map-based exploration
factors is difficult because it is difficult to quantify the ‘‘degree of exploration.’’ However, if
such a degree-of-exploration map can be produced, the benefits can be enormous. Not only
does it become possible to assess this correlation, but it becomes possible to predict
undiscovered, instead of discovered, resources.

Using geothermal systems in Nevada, USA, as an example, a degree-of-exploration
model is created, which then is resolved into purely explored and unexplored equivalents,
each occurring within coextensive study areas. A weights-of-evidence (WofE) model is built
first without regard to the degree of exploration, and then a revised WofE model is calcu-
lated for the ‘‘explored fraction’’ only. Differences in the weights between the two models
provide a correlation measure between the evidence and the degree of exploration.

The data used to build the geothermal evidence layers are perceived to be independent
of degree of exploration. Nevertheless, the evidence layers correlate with exploration be-
cause exploration has preferred the same favorable areas identified by the evidence patterns.
In this circumstance, however, the weights for the ‘‘explored’’ WofE model minimize this
bias. Using these revised weights, posterior probability is extrapolated into unexplored areas
to estimate undiscovered deposits.

KEY WORDS: Weights-of-evidence, GIS, geothermal, resources, undiscovered, data-driven,
exploration.

INTRODUCTION

Data-driven modeling techniques such as
weights-of-evidence and logistic regression have

proven useful for modeling the spatial distribution of
a variety of natural resources and natural phenom-
ena (Bonham-Carter, 1994; Raines, 1999). Two is-
sues may not be explicitly dealt with in data-driven
models that derive from the utilization of known
resource occurrences as training sites. The first issue
is that bias inevitably occurs during the selective
search and exploration for training sites (usually
referred to here as ‘‘deposits’’). Sources of
exploration bias are many, and include accessibility
factors such as the location of outcrops, roads, lakes,
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swamps, property boundaries, political boundaries,
etc., as well as perceived exploration criteria, such as
faults, alteration, geochemical anomalies, etc. The
result is a set of training sites accumulated after
years of exploration that is not likely to be spatially
random in regards to the full set of all occurrences,
known and unknown. The second issue is that data-
driven models do not by themselves quantify the
undiscovered resource base, which usually is their
ultimate objective.

The use of training sites biased by exploration
criteria and accessibility does not necessarily trans-
late to a biased predictive map, as long as the
exploration search is unbiased in regards to the
evidence layers used to predict the resource. An
example would be a training set of raptor nests
compiled by searching trees within 500 m of acces-
sible roads. As long as this search corridor is unbi-
ased relative to patterns or classes in the evidence
layers used for modeling, the biases may not be
transmitted to the predictive map. The road corri-
dors might thus resemble the random walk of an
individual. But if the roads are biased with respect to
the occurrence of wetlands, for example, and wet-
lands are used as evidence, the resulting model
might be biased. And of course, proximity to roads
should not be used as a predictive layer in the model
if the roads themselves were used as a basis for
searching for training sites.

Common sense can be used to avoid obvious
bias between training sites and evidence layers, but
the sources of bias may be subtle. For example,
some geologic formations are more resistant to
weathering and thus more likely to form outcrops
where mineral deposits would be discovered. An-
other source of bias occurs when evidence layers
correspond with the same exploration criteria used
by explorers in the past, with the result that training
points have been searched more extensively for in
the areas identified by the evidence. This seems to
be the source of a systematic moderate bias that has
affected all four of the evidence layers used in the
geothermal model presented below.

If it were possible to build a map showing
where resources (training sites) have been searched
for, and how effective that search has been, it
would be possible to assess possible spatial corre-
lations between the degree-of-exploration and po-
tential evidence layers. Importantly, it also would
make it possible to estimate undiscovered re-
sources, if the degree-of-exploration map is com-
bined with other models that predict where such

resources are most likely to occur. Building a de-
gree-of-exploration map is anything but easy,
however, which is probably why there are not many
examples of such maps. Exploration for mineral
deposits has taken place over hundreds, if not
thousands of years, using a multitude of techniques
of varied effectiveness, each with its own spatial
bias.

In the geothermal example presented here,
fuzzy logic and expert guidance are used to build a
‘‘degree-of-exploration’’ map. This map then is
intersected with a WofE predictive model of geo-
thermal systems to estimate the number of undis-
covered geothermal systems. In the process,
correlations between evidence layers and degree of
exploration are assessed and minimized.

INITIAL WEIGHTS-OF-EVIDENCE
(WOFE) MODEL

An initial WofE model of geothermal potential
was constructed for the state of Nevada, USA,
without considering any factors related to the degree
of exploration. The geothermal systems used as
training points are subsurface circulation zones
(0–4 km below the land surface) of thermal
groundwater with temperatures ‡100�C. By virtue of
their temperatures, these groundwaters have the
potential to generate electricity when fed through
turbines. A total of 69 such geothermal systems in
Nevada were known to exist as of the preparation of
this paper, and all were used as training sites.

Several types of geological, geophysical, and
geochemical evidence are predictive of geothermal
potential (Koenig and McNitt, 1983; Coolbaugh and
Bedell, 2006). For the current model, evidence was
selected carefully for its ability to predict geother-
mal potential independently of the degree of
exploration. For example, a map of watertable depth
was not used directly as an evidence layer, even
though areas of shallow groundwater correlate with
known geothermal activity. Areas with shallow
groundwater tend to have surface indications of
geothermal activity that would attract exploration
efforts.

Four evidence layers were used, derived from
(1) earthquakes catalogs (Coolbaugh and others,
2005), (2) crustal strain rates from global positioning
system station velocities and slip rates from Qua-
ternary faults (Coolbaugh and others, 2005), (3) the
isostatically corrected gravity field (Singer, 1996),
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and (4) the total horizontal derivative of gravity. The
training site unit cell size was 9 km2 and the condi-
tional independence (CI) ratio (Bonham-Carter,
1994) was 0.95; weights of evidence are listed in
Table 1a. The posterior probability map (Fig. 1A)
was moderately successful in classifying the training
sites; 77% fell within the upper 55% of the proba-
bility rankings (weighted by area) and 40% fell in the
upper 90% of the probability rankings.

DEGREE-OF-EXPLORATION MODEL

Exploration for geothermal systems in Nevada
is far from complete, partly because the entire state
of Nevada is permissive for the occurrence of geo-
thermal systems (Coolbaugh and others, 2005), and
partly because many geothermal systems have no
surface expression. The presence of deep waterta-
bles, cold water aquifers, and near-surface imper-
meable cap rocks may prevent thermal
groundwaters from reaching the surface, and where
they do reach the surface, they may have been
cooled or diluted with near-surface groundwaters
that disguise the geothermal signature. Of the 69
geothermal systems used as training points, 24 (35%)
are not associated with hot springs and thus can be
considered concealed.

There are many ways to search for geothermal
systems, including searching for hot and warm
springs, water geochemical sampling, geologic
mapping, gravity, magnetic, and seismic surveys, and

well drilling. The effectiveness of each of these
techniques, and where they have been employed in
the state, is a matter for debate. A variety of ap-
proaches for building a degree-of-exploration model
are possible, employing a variety of statistical rela-
tionships. The fairly simple method presented here
is not a unique solution, but serves as an example of
how such a model might be built.

Fuzzy logic and expert knowledge were used to
build a degree-of-exploration model scaled from 0
representing 0% efficiency (no exploration and no
geothermal systems located), to 1 representing 100%
efficiency (all geothermal systems discovered). Four
types of evidence were used: (1) temperature gra-
dient and geothermal wells, (2) other (nongeother-
mal) wells, (3) depth to the watertable, and (4)
presence of a carbonate aquifer. Temperature gra-
dient and geothermal wells were compiled from
databases at Southern Methodist University (http://
www.smu.edu/geotheirnal/) and the Nevada Divi-
sion of Minerals (http://minerals.state.nv.us/) and
total 6,671 in number. Nongeothermal wells were
compiled from the United States Geological Survey
National Water Information System (NWIS) data-
base (http://waterdata.usgs.gov/nwis/), the Nevada
Division of Water Resources well log database
(http://water.nv.gov/Engineering/wlog/wlog.cfm), and
a Nevada Bureau of Mines and Geology oil and gas
well database (Hess, 2001), and total 161,753 wells.
Tim Minor of the Desert Research Institute, Reno,
Nevada, generated a depth-to-watertable map using
approximately 40,000 NWIS water well records.

Table 1. Weights-of-Evidence Statistics

Evidence layer

Pattern 1 Pattern 1 Pattern 2 Pattern 2 Pattern 3 Pattern 3

Contrast ConfidenceWeight Stan. Dev. Weight Stan. Dev. Weight Stan. Dev.

(a) Initial Weights of Evidence, without Degree of Exploration

Gravity gradient 1.3739 0.2899 0.5895 0.2299 ) 0.3775 0.1623 1.75 5.27

Crustal strain 0.8362 0.2005 0.3338 0.2003 ) 0.7510 0.2295 1.59 5.21

Earthquakes 0.3030 0.1350 ) 0.7065 0.2674 1.01 3.37

Isostatic gravity 0.2558 0.1669 ) 0.2201 0.1742 0.48 1.97

(b) Revised Weights of Evidence, with Degree of Exploration

Gravity gradient 1.1760 0.2926 0.4692 0.2309 ) 0.3407 0.1627 1.52 4.53

Crustal strain 0.6473 0.2016 0.2828 0.2011 ) 0.6700 0.2299 1.32 4.31

Earthquakes 0.2603 0.1356 ) 0.6420 0.2678 0.90 3.01

Isostatic gravity 0.1967 0.1675 ) 0.1782 0.1747 0.37 1.55

(c) Percent Change, Explored vs. Initial Model

Gravity gradient ) 14.4 0.9 ) 20.4 0.4 ) 9.7 0.2 ) 13.4 ) 14.0

Crustal strain ) 22.6 0.5 ) 15.3 0.4 ) 10.8 0.2 ) 17.0 ) 17.3

Earthquakes ) 14.1 0.4 ) 9.1 0.1 ) 10.6 ) 10.8

Isostatic gravity ) 23.1 0.4 ) 19.0 0.3 ) 21.2 ) 21.5

Confidence equals contrast divided by its standard deviation. The term ‘‘evidence layer pattern’’ is equivalent to the term ‘‘evidence layer class.’’
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Prudic, Harrill, and Burbey (1995) provided a car-
bonate aquifer map.

Well-drilling is one of the more effective
methods of geothermal exploration. Deep wells are
more likely than shallow wells to encounter ther-

mal waters, and consequently a higher degree of
exploration was assigned to areas with deeper wells
(Table 2). The presence of geothermal or tempera-
ture gradient wells is believed more indicative of
serious geothermal exploration than the presence of

Table 2. Degree-of-Exploration Estimated for Areas Outside the Carbonate Aquifer Under the Specified Conditions of Distance to Wells,

Type and Depth of Drilling and Watertable Depth

Distance from well (km) Drilling depth (ft)

Watertable depth (ft)

0–50 50–200 >200

(a) Geothermal and Temperature Gradient Wells

>2 None 0.30 0.25 0.18

£ 2 0–50 0.70 0.60 0.50

£ 2 50–200 0.70 0.60 0.50

£ 2 200–1000 0.80 0.70 0.65

£ 2 >1000 0.90 0.85 0.81

(b) Non-Geothermal Wells

>2 None 0.30 0.25 0.18

£ 2 0–50 0.35 0.30 0.23

£ 2 50–200 0.40 0.38 0.28

£ 2 200–1000 0.45 0.43 0.34

£ 2 >1000 0.50 0.48 0.42

Values for the carbonate aquifer were estimated at 10% less than the values shown here.

Figure 1. Geothermal potential for state of Nevada, USA. Initial weights-of-evidence posterior probability

map A was created without consideration of degree of exploration; B, depicts potential for undiscovered

geothermal systems after intersecting initial weights-of-evidence model with degree-of-exploration model

(Fig. 2). Darker colors on both maps represent progressively higher probability levels, using seven natural

breaks. White circles are geothermal training sites.
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nongeothermal wells, because geothermal drilling
may be accompanied by other types of exploration,
and also because hot water usually is not reported
when encountered in nongeothermal wells. For this
reason, for a given well depth and watertable depth,
higher degrees of exploration were assigned to
geothermal-related wells than to nongeothermal
wells (compare equivalent cells in Table 2a and 2b).

All wells were assigned a 2-km circular radius of
influence. Five of seven newly recognized geother-
mal systems in Nevada (unpublished data, 2005,
Great Basin Center for Geothermal Energy
(GBCGE), Reno, Nevada) occur within 2 km of
existing wells, suggesting that at greater distances,
the presence of a well is not an effective exploration
guide.

Geothermal systems are less likely to be con-
cealed, and consequently will be better explored for,
in areas where the watertable is shallow. Koenig and
McNitt (1983) and Coolbaugh and others (2002)
have documented a correlation between shallow
watertables and the location of hot springs and
known geothermal systems in the Great Basin.
Logically, surface exploration techniques (such as
looking for hot springs) are more effective when the
watertable is shallow.

Complicating this relationship is the fact that
geothermal systems also correlate with low topo-
graphic elevations (which in turn are associated with
active crustal tectonics). Shallow watertables and
low topographic elevations may occur in the same
areas and it was difficult to separate the effects of
the two quantitatively. Instead, a more qualitative
method based on observed field relationships in
known geothermal areas was used. The watertable
map was classified into three categories: 0–50 ft, 50–
200 ft, and >200 ft (Table 2). For mountain ranges,
where water wells are lacking, water depths were
assumed to fall within the ‘‘>200 ft’’ category.
Shallow groundwaters are present locally in moun-
tain ranges, but they may occur in perched water
zones that do not provide useful information on the
deeper geothermal potential. The WofE contrast
statistic was useful in picking a threshold depth of
50 ft, at which a maximum statistical distinction oc-
curs between shallow waters that correlate with
geothermal systems, and deeper waters that do not.

Fewer known geothermal systems than ex-
pected occur in areas underlain by regional aquifers,
such as the carbonate aquifer in Nevada (Coolbaugh
and others, 2005). It is hypothesized that aquifers
may capture and entrain rising thermal fluids before

they reach the surface. Consequently, these areas
are considered less well explored than nonaquifer
areas, when other exploration factors are equal. For
the carbonate aquifer, the degree of exploration was
reduced by 10% relative to equivalent categories
outside the aquifer.

To produce a degree-of-exploration map, the
exploration evidence was combined together to form
a unique conditions map grid, and for each unique
condition, degree-of-exploration values (exploration
efficiency) were assigned as shown in Table 2
(Fig. 2). Unique conditions include the presence or
absence of drilling (i.e., £ 2 km from a well or
>2 km from a well), the type of drilling, depth of
drilling, depth to the watertable, and presence or
absence of the carbonate aquifer. A fuzzy ‘‘OR’’
statement was used when multiple types and depths
of wells are present, such that the well with the
highest ranked degree of exploration was used.

Figure 2. Degree-of-exploration model for geothermal systems in

Nevada. Darker colors represent progressively greater degrees of

exploration. Pyramid Lake Paiute Reservation is outlined in black

with label ‘‘P’’.
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INTERSECTION OF THE WEIGHTS-OF-
EVIDENCE MODEL WITH THE DEGREE-
OF-EXPLORATION MODEL

The simplest situation of intersecting a degree-
of-exploration model with a data-driven predictive
model occurs when the exploration map is binary;
that is, composed of perfectly explored and unex-
plored areas. In this situation, a revised WofE model
can be calculated using the reduced area of the
perfectly explored area, and then the revised prior
probability and revised weights of the explored area
can be extrapolated into the unexplored area using
the unique conditions table of evidence patterns to
estimate undiscovered deposits.

A more general situation occurs when degree of
exploration is not binary but is instead scaled from 0 to
1. The approach adopted here is to resolve the scaled
degree-of-exploration model into perfectly explored
and perfectly unexplored equivalent fractions, both of
which fall into coextensive study areas. For example, a
polygon considered 40% explored (0.40 in Table 2)
would have 40% of its area assigned to a ‘‘completely
explored’’ study area, and 60% assigned to a ‘‘com-
pletely unexplored’’ study area, even though it is not
possible to determine exactly which cells in the
polygon are the explored ones and which are
the unexplored ones. All training sites belong to the
‘‘completely explored’’ fraction, because it would be
impossible to discover them without some type of
exploration. In these circumstances, the total area of
the initial study, AI, (i.e., the state of Nevada in the
geothermal example), would equal the sum of the
areas of the completely explored fraction, AE, and
completely unexplored fraction, AU, study areas:

AI ¼ AE þAU; ð1Þ

where values for AE and AU can be determined by
summing the explored and unexplored fractions of
each grid cell in the total study area AI.

The calculation of a revised WofE posterior
probability for the explored fraction study area
(PEpost) then can proceed using only the ‘‘com-
pletely explored’’ study area in the calculations.
There are some tricks involved with this computa-
tion, however, because the average degree of
exploration for the entire study area will inevitably
differ from the average degree of exploration asso-
ciated with each evidence layer class or pattern. An
example calculation using geothermal systems is
provided below.

It ends up being convenient, for purposes of
assessing exploration bias, to compare the compu-
tation of PEpost to the computation of posterior
probability of the initial WofE model (PIpost), which
was done without consideration to exploration. The
first step involves calculation of prior probability.
The prior probability of the explored model (PEprior)
will differ from the prior probability of the initial
model (PIprior) because the explored area is smaller
than the total area:

PIprior ¼ ðNT � unit cellÞ=AI; and; ð2Þ

PEprior ¼ ðNT � unit cellÞ=AE; ð3Þ

where NT = total number of training sites and the
unit cell = unit area assigned to each training site.
Using Equations (2) and (3), PEprior can be reex-
pressed in terms of PIprior:

PEprior ¼ PIprior=ðAE=AIÞ: ð4Þ

In other words, the prior probability in the explored
fraction of the study area is equal to the initial prior
probability divided by the ratio of the ‘‘explored’’
study area to the initial study area.

Similarly, the weights for each pattern of each
evidence layer in the explored model can differ from
the weights in the initial model. The relationship
between the weights in the initial and the explored
models is formulated here using a simplified
expression of weights of evidence in terms of a
normalized density function (Mihalasky and Bon-
ham-Carter, 2001; Coolbaugh and Bedell, 2006):

WIi;j ffi ln½ðNi=NTÞ=ðAIi=AIÞ�j; and; ð5Þ

WEi;j ffi ln½ðNi=NTÞ=ðAEi=AEÞ�j; ð6Þ

where WIi,j = the weight for pattern ‘‘i’’ on evidence
map ‘‘j’’ in the initial WofE model, WEi,j = the
weight of pattern ‘‘i’’ on evidence map ‘‘j’’ in the
explored model, Ni = number of deposits or geo-
thermal systems associated with pattern ‘‘i’’ on evi-
dence map ‘‘j’’, AIi = area of pattern i (on the
evidence map j) in the initial study area, and
AEi = explored fraction of the area of pattern i (on
the evidence map j).

Mihalasky and Bonham-Carter (2001, appen-
dix) show that when the unit cell is reduced in area,
the weights approach the natural logarithm of the
�normalized density� [equivalent to Eqs. (5) and (6)]
and are identical when the unit cell has zero area.
Coolbaugh and Bedell (2006) demonstrate for geo-
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thermal systems in Nevada, that errors associated
with representing weights-of-evidence as density
functions were typically less than 1/2 of 1%
(Coolbaugh, oral comm., 2006). It is not necessary
here to formulate the weights in terms of a density
function, but it is done for simplicity and to better
illustrate the relationship between the weights of the
explored and initial WofE models.

WEi,j can be expressed in terms of the initial
WIi,j by expanding Equation (6) as follows:

WEi;jffilnf½ðAIi=AIÞ=ðAEi=AEÞ��½ðNi=NTÞ=ðAIi=AIÞ�gj:

ð7Þ
With substitution of Equation (5) and rearranging of
terms, Equation (7) becomes:

WEi;j ffiWIi;j þ ln½ðAE=AIÞ=ðAEi=AIiÞ�j: ð8Þ

Using the revised weights and prior probability, the
posterior probability PEpost can be determined using
the weights-of-evidence formulas of Bonham-Car-
ter, Agterberg, and Wright (1988). Because PEpost

has been calculated only for the fully explored
fractions of areas, it can be considered equal to the
total density or frequency of occurrence of the re-
sources or deposits being modeled. The probability
of locating an undiscovered resource or deposit then
depends on the degree of exploration, as follows:

PU ¼ PEpost � ð1� fEÞ ð9Þ

where PU = probability of an undiscovered deposit
and fE = the degree of exploration. When the degree
of exploration is 1 (100%), the probability of an
undiscovered deposit is 0, and when the degree of
exploration is 0, the probability of an undiscovered
deposit = PEpost.

RESULTS – MEASURE OF CORRELATION

Several methods are available for measuring
correlation between maps, including Pearson�s and
Spearman�s correlation coefficients, the chi-square
statistic, the coefficient of agreement kappa, and the
odds ratio (Bonham-Carter, 1994). An alternative
method in the current context is suggested by
Equation (8), which shows that a weight for the
explored fraction of the total study area WEi,j will not
differ from the initial weight of the total study area,
WIi,j, unless the average degree of exploration for a
given pattern (as measured by AEi/AIi) differs from
the average degree of exploration for the entire study

area (as measured by AE/AI). The explored weight
WEi,j can either go up or down, relative to the
corresponding initial weight WIi,j, depending on
whether the area of a given pattern is better or worse
explored compared to the average degree of explo-
ration of the entire study area. Consequently, the
difference in the weights calculated with and without
the effects of degree-of-exploration, is in itself a
measure of the exploration bias.

This weight-difference measure reveals a sys-
tematic moderate exploration bias in all evidence
layers of the geothermal model (Table 1c, Fig. 3).
The magnitudes of the weight differences range
from 9% to 23% and the contrast differences range
from 11% and 21%, and in each situation the mag-
nitudes of the weights and contrasts decrease in the
exploration model relative to the initial model.
This is a direct result of historical exploration
being biased towards areas of higher favorability
as defined in the current model. For the isostatic
gravity layer, the confidence of the contrast (Stu-
dentized contrast) dropped from 1.97 to 1.55.
Although this layer was retained in the final WofE
model, it could be argued that the contrast is no
longer significant, in which example this evidence
layer would be removed from the model, and the
exploration analysis would have played the role of
eliminating evidence that initially (falsely) seemed
to have a significant correlation with training sites.

Figure 3. Weights-of-evidence for gravity gradient and strain

evidence layers before and after degree-of-exploration. Error bars

for preexploration weights shown for comparison. Although

change in weights is overlapped by error, weight changes caused

by exploration bias are systematic and real.
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The data values used to create the four
geothermal evidence layers are believed to be
independent of degree-of-exploration. If this is true,
then the observed correlation between the evidence
and the degree-of-exploration is presumed to be the
result of a natural tendency of the model to identify,
at least in part, the same favorable conditions rec-
ognized by explorers when they searched for geo-
thermal systems. Under these circumstances, the
revised weights of the explored study area correct
for this exploration bias by effectively eliminating
the ‘‘exploration variable’’ from the equations (with
the obvious caveat of course, that the degree-of-
exploration model is qualitative and not quantitative
in nature). A more complicated situation is pro-
duced when the data used to create evidential layers
is itself biased by geothermal exploration, in which
case the modeling methods presented here do not
compensate for such bias, and more complex anal-
yses would be required before such layers could be
used in an unbiased manner.

RESULTS – UNDISCOVERED DEPOSITS
AND NEW DISCOVERIES

Using the methodology as described, a total of
170 undiscovered geothermal systems (fitting the
criteria of the training points) are predicted in the
state of Nevada. This number is, of course, entirely
subject to the qualitative nature of the degree-of-
exploration model. The same model also predicts 75
known geothermal systems in the state, slightly
higher than the 69 training sites used. The C.I. ratio
of the revised explored model therefore is 0.92,
slightly lower than the 0.95 of the initial model. This
ratio could be used to downward-revise the number
of estimated undiscovered deposits from 170 to 157,
on the assumption that moderate conditional
dependencies exist in the model.

There are three primary differences between
the posterior probabilities of the initial (Fig. 1A)
and final (Fig. 1B) models. First, posterior proba-
bilities generally are higher in the final model com-
pared to the initial model because of the increase in
the prior probability in the former. Second, areas
that are well explored have low probabilities
for undiscovered resources in the final model, as
expected. Finally, in a more subtle effect, the con-
trast between high-probability and low-probability
areas in the initial model is somewhat more subdued
in the final model, a consequence of the final model�s

compensation for the initial model�s tendency to
over-predict probabilities in high-favorability areas
(because of exploration bias). As a consequence, the
final model tends to predict relatively higher favor-
ability in peripheral areas; peripheral areas that
were defined initially as being relatively unfavorable
based on the evidence layers alone (Fig. 4).

An earlier attempt at estimating undiscovered
geothermal resources in Nevada (Coolbaugh and
Shevenell, 2004) highlighted an area in west-central
Nevada, including the Pyramid Lake Paiute Reser-
vation (P, Fig. 2) as having high potential. The new
model similarly predicts good potential in this area,
and estimates 1.5 undiscovered systems within the
1400 km2 of the reservation. In the past year, two
and possibly three geothermal systems were dis-
covered (Coolbaugh and others, 2006) on the res-

Figure 4. Ranked difference between initial weights-of-evidence

posterior probability map (Fig. 1A) and the undiscovered pos-

terior probability map of Figure 1B. The input maps (Fig. 1A and

B) were reclassified into 20 equal-area ranks prior to subtraction.

Initial WofE map was subtracted from undiscovered map.

Black = ) 11 to ) 1; white = 0, diagonals with white background

1 to 3; diagonals with gray background = 4 to 6.
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ervation during an exploration program conducted
by the University of Nevada, Reno. The three sys-
tems fall within the top 99th, 91st; and 66th per-
centiles of cumulative-area probability rankings of
the undiscovered geothermal model. The lower
ranking of the 3rd system (66th) may be because it
occurs at lake level (e.g., a high watertable). The
good exploration results can be attributed partly to
the fact that the reservation is less well explored
than the rest of the state, for cultural and economic
reasons that were not included in the degree-of-
exploration model.

DISCUSSION

The methodology presented here provides a
method for assessing the effects of exploration bias
on data-driven predictive models, and also provides
a way of using that bias to predict undiscovered
resources. The concept of a ‘‘degree-of-exploration
model’’ also is promoted, because however difficult
building such a model is, it provides an additional
tool for exploring the complexities of predicting
undiscovered resources (and only some of those
complexities have been described herein).

Although weights-of-evidence was used as an
example, the methodology could be adapted easily
to, and may be more appropriate for, other data-
driven methods such as logistic regression that are
not as dependent on assumptions of conditional
independence. The accuracy of the correlation
measures and estimates of undiscovered resource
potential are wholly dependent on the degree-of-
exploration model. In spite of the qualitative nature
of this degree-of-exploration model, it provides a
framework within which potential exploration bias
can be investigated. The geothermal example sug-
gests that such exploration bias may be widespread
in natural resource modeling. The methodology
also facilitates the iterative evaluation of multiple
scenarios wherein different degree-of-exploration
models can be evaluated for their impact on the
implied undiscovered resource base.
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