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Mineral-potential mapping is the process of combining a set of input maps, each represent-
ing a distinct geo-scientific variable, to produce a single map which ranks areas according to
their potential to host mineral deposits of a particular type. The maps are combined using a
mapping function that must be either provided by an expert (knowledge-driven approach),
or induced from sample data (data-driven approach). Current data-driven approaches us-
ing multilayer perceptrons (MLPs) to represent the mapping function have several inherent
problems: they are highly sensitive to the selection of training data; they do not utilize the
contextual information provided by nondeposit data; and there is no objective interpretation
of the values output by the MLP. This paper presents a new approach by which MLPs can be
trained to output values that can be interpreted strictly as representing posterior probabilities.
Other advantages of the approach are that it utilizes all data in the construction of the model,
and thus eliminates any dependence on a particular selection of training data. The technique
is applied to mapping gold mineralization potential in the Castlemaine region of Victoria,
Australia, and results are compared with a method based on estimating probability density
functions.
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INTRODUCTION

Mineral-potential mapping can be seen as a pro-
cess whereby a set of input maps, each representing a
distinct geo-scientific variable, are combined to pro-
duce a single map which ranks areas according to
their potential to host deposits of a particular type.
Although the traditional approach is to derive the
mapping function on the basis of expert knowledge
of mineral causative factors, data driven approaches
attempt to discover, or learn, the function by measur-
ing in some way the association between mapped pre-
dictor variables and a response map that indicates the
locations of known occurrences of the sought-after
mineral (Bonham-Carter, 1994). The signatures dis-
covered for these known deposits can then be used
to highlight other regions of high mineral potential.
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More formally, the data-driven mapping problem can
be expressed as follows:

Given:

(1) Background information provided by m lay-
ers of data, each of which represents the value
of a distinct geoscientific variable xi at each
pixel p;

(2) A subset of pixels, each of which is known
from historical data to contain one or more
deposits of the sought after mineral;

Find:

A function f(x) that assigns to each pixel p in
the study area a value that represents the fa-
vorability that pixel p contains one or more of
the known deposits, given the evidence sup-
plied by the background information.

The meaning of favorability in this problem defi-
nition is ambiguous and can refer to any qualitative or
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quantitative measure that describes in some general
way the likelihood that some area will contain a min-
eral deposit. Measures that have been used to de-
scribe favorability include the probability, possibility,
certainty, belief, or plausibility that a deposit occurs
in some given area (Bonham-Carter, 1994). In this
paper, the favorability is interpreted as a probability.
Thus, assuming that the evidence for a pixel p is de-
scribed by a vector x = (x1, . . . , xm), the objective is
to learn a function f : X → [0, 1], where f(x) repre-
sents the posterior probability (i.e., conditional prob-
ability) that p contains one or more of the known
deposits, given the evidence provided by x. Once the
function f(x) has been learned, the mineral-potential
map can be produced by mapping f(x) for each pixel
in the study area. The process is depicted in Figure 1.

Figure 1. The mineral-potential mapping process. Function f(x) assigns to each pixel a value indicating posterior probability
that pixel contains one or more of known target deposits.

There are two general approaches to discov-
ering such a mapping function: (i) density estima-
tion approaches based on estimating probability den-
sity functions (pdfs), and (ii) function optimization
approaches.

Density Estimation Based Approach

Density estimation based approaches involve es-
timating the class-conditional pdf, p(x|D) (i.e., the pdf
for pixels that contain at least one of the known de-
posits), and the class-unconditional pdf, p(x) (i.e., the
pdf for all pixels). The densities p(x|D) and p(x) then
can be combined with p(D) (i.e., the probability that
a randomly selected pixel, in the absence of any evi-
dence for that pixel, contains a known deposit) using
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Bayes’ Theorem,

P(D|x) = p(x|D) × P(D)
p(x)

, (1)

to obtain P(D|x) (i.e., the probability that a cell is min-
eralized given the feature vector describing that cell).

The simplest approach to estimating pdfs is to as-
sume the form of the distribution (e.g., Gaussian) and
to estimate the values of the parameters for that dis-
tribution (e.g., mean and covariance in the situation
of a Gaussian distribution); however, many data sets
do not follow a Gaussian distribution, and attempts to
model them in this way will lead to poor estimates of
the density functions. A second approach—the kernel,
or Parzen, method—is a nonparametric approach that
involves modeling the distribution using a series of
probability windows (usually Gaussian) centered at
each sample (Parzen, 1962). The overall pdf is the av-
erage of all of the individual distributions centered
at each point, and the main decision to be made is
the choice of the smoothing parameter σ , which de-
fines the width of the windowing function. A third
approach, which can be seen as lying somewhere be-
tween the two methods, is the Mixture of Gaussians
approach (Titterington, Smith, and Makov, 1985). In
this situation K Gaussian distributions are used to
model the data, where K is smaller than the number of
sample points. The problem in this situations is to de-
termine the means, covariances, and priors for these
K distributions. One method for determining these
parameters is the Expectation Maximization (EM) al-
gorithm (Dempster, Laird, and Rubin, 1977).

Function Optimization Approach

The second general approach to discovering
a mapping function involves estimating a function
which directly provides a mapping from the input
space to a probability. This paper is concerned with
functions of the following form, referred to as multi-
layer perceptrons (MLPs):

f (xn) = h(u) where u =
N1∑
j=0

wkj g

(
N0∑

i=0

w ji xn
i

)
(2)

where N0 is the number of inputs (i.e., the dimen-
sionality of the input feature vector), N1 is the num-
ber of units in a hidden layer, w ji is a numerical
weight connecting input unit i with hidden unit j, wkj

is the weight connecting hidden unit j with output
unit k, h(u) = σ (u) ≡ (1 + exp(−u))−1 (i.e., a logis-
tic function), and g(u) is either a logistic function, or

some other continuous, differentiable, nonlinear func-
tion. MLPs are capable of representing highly nonlin-
ear relationships to an arbitrary degree of accuracy
(Cybenko, 1989; Hornick, Stinchcombe, and White,
1989), and the issues in using this approach are se-
lecting a suitable number of hidden layer units, and
optimizing the weights.

The generic approach in applying MLPs to most
classification and regression problems is to select a
set of training examples, and to iteratively adjust the
parameters (i.e., weights) of the model such that the
overall error between network output and target out-
put is decreased after each iteration. This is referred
to as error back-propagation training (Rumelhart and
McClelland, 1986), and the default error reduction
function used in most approaches is the sum-of-
squared (i.e., quadratic) error. However, there are
several significant problems that arise when applying
MLPs to mineral potential mapping tasks. These
include a high degree of sensitivity to the selection of
training data; dimensionality problems arising from
training use a small number of training examples
in high dimensional input spaces; nonutilization of
contextual information provided by nondeposit data;
and difficulty in giving a physical interpretation to the
output values. This paper contributes a new method
for network training which avoids these problems.

The paper is structured as follows. A critique
is provided first of current approaches to applying
neural networks to mineral-potential mapping tasks.
The critique highlights important inherent problems
in these approaches. The issue of training neural net-
works to represent the probability of mineralization
then is addressed: the learning task is specified for-
mally, and maximum likelihood considerations are
used to derive an error reduction function appropri-
ate to this task. Empirical results then are provided.
These results compare the performance of the pro-
posed technique with an alternative approach, which
is based on estimating probability density functions.
A detailed description also is provided of a special
cross-validation procedure used to optimize the re-
spective model-specific parameters in each situation.
The advantages that the proposed approach has to
current approaches are discussed.

CRITIQUE OF CURRENT APPROACHES

Seminal papers which have addressed the use of
neural networks in mineral exploration include Singer
and Kouda (1996), which reports on the application of
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neural networks to estimating distance to ore in the
Hokoruko District of Japan, and Singer and Kouda
(1997), which describes the use of Probabilistic Neural
Networks to classify deposits into types. However, nei-
ther of these works addresses the mineral-potential
mapping task as it has been defined in this paper:
Singer and Kouda (1997) do not produce an output
map, and the output value assigned to pixels in Singer
and Kouda (1996) represents distance to ore, and not
a value for mineralization favorability per se.

The main interest in this paper is to examine
the capability of MLPs to model accurately poste-
rior probabilities on mineral-potential mapping tasks,
and the most directly relevant papers in this area are
by Brown and others (2000) and Porwal, Carranza,
and Hale (2003), who apply MLPs and radial ba-
sis functions respectively. Also of relevance are Har-
ris and Pan (1999), Singer and Kouda (1999), and
Harris and others (2003), who apply probabilistic neu-
ral networks to the prediction of mineralization po-
tential. The remainder of the section outlines the
method used by Brown and others (2000) and Porwal,
Carranza, and Hale (2003), and highlights some sig-
nificant problems inherent in their approach (which
will henceforth be referred to as the conventional ap-
proach). Probabilistic neural networks are discussed
later.

The general approach used by both Brown and
others (2000) and Porwal, Carranza, and Hale (2003)
can be summarized as follows:

(1) Represent each pixel in the study area as an
input feature vector.

(2) For each feature vector, assign a binary target
value to indicate the presence or absence of a
known deposit in that pixel. (For convenience
we assume a target of 1 for deposit cells, and
a 0 for nondeposit cells).

(3) Divide the feature vectors that have a target
label of 1 randomly into three sets—a training
set, a validation set, and a test set—each of
which contains an approximately equal num-
ber of examples.

(4) Select nondeposit cells and place these in the
training, validation, and test sets such that the
ratio of mineralized to nonmineralized cells
in each set is approximately 1:1.

(5) Train the network using a gradient-descent
algorithm that minimizes the sum-of-squared
error on the training examples, monitoring
the error on the validation set. Stop train-
ing when the network begins to overfit the

training data, which is indicated by a decline
in performance on validation data.

(6) Apply the trained network to each pixel
in the study region and map the results by
choosing suitable thresholds to define favor-
ability classes.

There are several problems inherent in this
approach:

(1) Use of sum-of-squared error. Both Brown
and others (2000) and Porwal, Carranza, and
Hale (2003) use binary target values to rep-
resent the presence or absence of a (known)
deposit. The use of sum-of-squared error in
back-propagation training is based on the sta-
tistical assumption that noise in the train-
ing data is distributed with zero mean and
constant variance around the target function
(Bishop, 1995). Although this assumption is
appropriate on most regression tasks (i.e.,
function approximation tasks in which the
target outputs are continuous), it is not al-
ways appropriate when the target values are
binary, especially when there is a gross im-
balance in the number of training examples
between classes.

(2) Dimensionality problems resulting from
sparsely populated input space. Mineraliza-
tion is a rare event, and it can be assumed that
the proportion of cells containing known de-
posits of the sought after mineral is small. Di-
viding the mineralized cells among training,
validation and test sets means that the num-
ber of mineralized examples used for train-
ing will be small indeed. In high dimensional
input spaces this will introduce dimension-
ality problems, with the resulting networks
displaying high variance; that is, the function
represented by the trained network will be
heavily dependent on factors such as the ini-
tial weights, and the maps resulting from dif-
ferent random restarts will display significant
variation.

(3) Identification of nondeposit training cells.
Whereas cells containing a known deposit
are undoubtedly mineralized, cells that do
not contain a known deposit may or may
not be mineralized. This is a ground truth
problem, and generally we cannot assume
that the absence of a known deposit indicates
that a cell is barren. Because a small num-
ber of nondeposit training examples must be
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selected from the large corpus of nondeposit
cells, and because the presence of misclassi-
fied cells in the training set can present the
model with contradictory or ambiguous in-
formation (Harris and others, 2003), the re-
sulting map can be highly sensitive to the
particular choice of nondeposit training ex-
amples. Porwal, Carranza, and Hale (2003)
address this problem by selecting nondeposit
examples randomly from those in which the
probability of containing a deposit is small,
as determined by using maps modeled pre-
viously using a weights-of-evidence analysis.
Brown and others (2000) select nondeposit
cells randomly from each of 12 main rock
units. Either way, the resulting map will de-
pend to some degree on the particular set of
nondeposit examples used for training.

(4) Rapid convergence. The small training set
also indicates that network training will con-
verge rapidly. Consequently, it will be diffi-
cult to stop training before overfitting begins
to occur.

(5) Interpretation of network outputs. There is no
standard objective interpretation which can
be assigned to the values output by an MLP
trained using the method as described. It can-
not be assumed, for example, that the outputs
represent probabilities.

(6) Nonoptimal use of available data. There is
a convention in most applications of MLPs
(and most areas of supervised machine learn-
ing for that matter) to test the generalization
performance of a network by applying the
(trained) network to novel examples; that is,
examples to which the network had not been
exposed during training. In most situations
this is a reasonable approach because the
class value of the training examples is known
already, and we are interested primarily in the
ability of the network to correctly predict the
class of new examples. However, in the sit-
uation of mineral-potential mapping, we are
trying to predict the likelihood of mineral-
ization, and we do not know in advance what
this likelihood is for any of the pixels in the
study region. Although we may know that
a particular pixel is mineralized, mineraliza-
tion is the realization of a stochastic process,
and we do not know with what probability
that pixel was mineralized. Thus, the objec-
tive is to estimate the value of this proba-

bility for all pixels, including those already
known to be mineralized. This suggests the
following question: Why should we not use
all of the available pixels for training? The
answer suggested by both Brown and oth-
ers (2000) and Porwal, Carranza, and Hale
(2003) is that the gross imbalance between
deposit cells and nondeposit cells will result
in poor recognition of deposits. Brown and
others (2000) make this explicit:

“If deposit patterns were represented in
the training set in the same proportion
as they appear in the total data popula-
tion, the learning algorithm would opti-
mise the performance for non-deposit pat-
terns . . . (it) would not learn to recognise
the rare deposit patterns at all or would
perform very poorly for this class of pat-
terns” (Brown and others, 2000).

The problem that Brown and others
(2000) identify stems from the fact that sum-
of-squared error reduction is being used on
data with binary-valued target outputs. As
will be shown in the next section, sum-of-
squared error is not the best choice in this
context, and, through an alternative choice of
error reduction function, it is possible indeed
to use all examples for training, despite the
gross imbalance between deposit and nonde-
posit examples. Moreover, the function rep-
resented by a network trained using the pro-
posed method can be shown to represent the
posterior probability of mineralization. Not
only does the proposed method provide a
standard objective interpretation for the net-
work outputs, but it also solves the problem
of identifying nondeposit cells, and signifi-
cantly diminishes problems arising from high
dimensionality.

REPRESENTING POSTERIOR
PROBABILITIES USING MLPS

This section describes a method by which MLPs
can be trained to represent the posterior probabil-
ity that a cell contains one or more of the known
deposits in the study area. Although it may at first
sight seem odd to be predicting the probability of
containing a known deposit (considering that the ul-
timate aim is to discover new deposits, and not simply
to determine the probability for existing deposits), it
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is completely consistent with the assumptions which
are always (at least implicitly) made in data-driven
mineral-potential mapping tasks; that is, that the
known mineral-deposit occurrences constitute an ad-
equate and unbiased sample of the true deposits in the
region, and that by discovering signatures for these
known deposits, other regions of high mineral poten-
tial also will be highlighted. A formal specification of
the task is first provided. Maximum likelihood consid-
erations then are used to derive an appropriate error
reduction function for back-propagation training. The
resulting error reduction function is then compared
analytically with sum-of-squared error in the context
of application to mineral-potential mapping tasks.

Specification of Task

Assume the existence of a binary function
g(x) that represents the presence or absence of a
known deposit in a pixel p with feature vector x =
(x1, x2, . . . , vm), where xk is the value of the kth vari-
able for pixel p, and m is the number of input vari-
ables. Thus, if pixel p contains a known occurrence,
then g(x) = 1, otherwise g(x) = 0. Now let f(x) be a
probabilistic function whose output is the probability
that g(x) = 1. The objective is to learn the function
f : X → [0, 1], such that f (x) = P(g(x) = 1). Thus,
pixels containing one or more known deposits are as-
signed a target value of one, and all other pixels in the
study area are assigned a target value of zero.

The function f(x) can be represented by an MLP.
Because the network is required to produce only a sin-
gle value for each input example, only one output unit
is required. Because the output at this unit is to rep-
resent a probability, the output of the network should
be bounded between 0 and 1, and this can be arranged
by using a logistic activation function on the output
node. Thus, the structure of the perceptron is exactly
that which has been described in Equation (2).

Network Training

The network should be trained such that it rep-
resents the function which results in the highest prob-
ability of observing the given data. This function,
fML(x), is turned the maximum likelihood function
or maximum likelihood hypothesis (Duda and Hart,
1973). Suppose that an example xn with target value
tn is drawn randomly from the training set, and that
tn has a value of 1 if xn contains a known deposit, and
0 otherwise. By definition of f(x), the probability that

tn equals 1 is f(xn), and the probability that tn equals 0
is 1 − f (xn). The probability of observing the correct
target value, given f (x), therefore can be expressed as

P(tn| f, xn) = f (xn)ti (1 − f (xn))1−ti (3)

where xn = (xn
1 , xn

2 , . . . , xn
m) is the feature vector for

pixel pn, f(xn) is the value of the function f applied
to vector xn, and tn = 1 if pixel pn contains a known
deposit, and 0 otherwise. Assuming that the examples
are independent and identically distributed (i.i.d.),
the probability of observing the correct target value
for all examples is given by

N∏
n=1

{
f (xn)tn

(1 − f (xn))1−tn}
(4)

where N is the number of examples. The maximum
likelihood function, fML, is the function for which the
given expression is a maximum:

fML(x) = argmax
f

N∏
n=1

{
f (xn)tn

(1 − f (xn))1−tn}
(5)

Taking the logarithm of the expression in braces,
which is justified because ln(fML) is a monotonic func-
tion of fML, and converting the maximization to a min-
imization by multiplying by −1, the maximum likeli-
hood function is the function for which the following
error is minimized:

E = −
N∑

n=1

{tn ln f (xn) + (1 − tn) ln(1 − f (xn))} (6)

This error function usually is referred to as cross-
entropy (Hopfield, 1987; Baum and Wilczek, 1988).
Alternatively, it can be expressed as

E = −
N∑

n=1

ln ((1 − |tn − f (xn)|) (7)

which makes the interpretation of distance between tn

and f(xn) more intuitive (Schumacher, Rossner, and
Vach, 1996). Therefore, the maximum likelihood func-
tion is the function for which the cross entropy error,
and not the sum-of-squared error, is a minimum.

Analytic Comparison Of Cross-Entropy
And Sum-of-Squared Error Reduction

In order to appreciate the difference between use
of sum-of-squared error and cross-entropy error in
the context of mineral potential mapping it is useful
to consider the contribution that the error on a sin-
gle training example makes to the overall error. If
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Figure 2. Contribution of individual pattern error ε to total
cross-entropy error and total sum-of-squares error.

the network output f(xn) for a particular pattern xn is
expressed as f (xn) = tn + εn, then the overall cross-
entropy error function, which will henceforth be de-
noted as ECE, can expressed as

ECE =
N∑

n=1

− ln(1 − |εn|) (8)

and the overall sum-of-squared error function, ESS,
as

ESS =
N∑

n=1

((εn)2) (9)

Figure 2 shows how the contribution of the error εn

on a single pattern contributes to ESS and ECE. There
are several points to note from Figure 2. Firstly, as
the absolute value of the error on a single training
example approaches 1, the contribution of the cross-
entropy error resulting from this example approaches
∞; in contrast, the sum-of-squared error is bounded
by a value of 1. Thus if the error of the MLP on one or

more examples is maximal (i.e., if the MLP assigns a 1
to an example with a target value of 0, or assigns a 0 to
an example with a target value of 1), then the cross-
entropy function will assign an infinite error to that
hypothesis. This is consistent with our expectations
of a function that represents posterior probabilities:
it clearly would be contradictory for a hypothesis to
assign a probability of 1 to a pattern with target out-
put 0, because if the probability of mineralization is 1,
then, by definition, the cell must contain a deposit.
Conversely, it would be contradictory for a hypothe-
sis to assign a probability of 0 to an example with a
target value of 1, because by definition, if the proba-
bility is 0, then the cell cannot contain a deposit. This
reasoning cannot be applied to sum-of-squared error
reduction, because in this example the maximal error
contribution that a single example can make is finite.

A second important difference between the two
error functions concerns the relative contributions
made by large and small pattern errors, and it can be
shown that cross-entropy is more sensitive to small
individual pattern errors than is sum-of-squared er-
ror. For example, suppose that the two points (x1, 1)
and (x1, 0) each occur in the training set. That is,
the two examples have the same feature vector, but
different target labels. Suppose further that f(x1) is
0.95. Consider ECE first. The contribution to this er-
ror function by the first example is −ln(1 − 0.05) =
0.0513, and the contribution due to the second ex-
ample is −ln(1 − 0.95) = 2.9957. Now consider ESS.
The contribution resulting from the first example is
0.052 = 0.0025, and the contribution from the sec-
ond example is 0.952 = 0.9025. As expected, the er-
ror contribution from the first example is less than
the contribution from the second example for both
ECE and ESS. But consider now the contribution of
the first example relative to the contribution from the
second. In the situation of ECE, the value of this ratio
is 0.0171(= 0.0513/2.9957). In the situation of ESS the
value is 0.0028(= 0.0025/0.9025). This indicates that
the cross-entropy error function is far more sensitive
to small individual errors than is the sum-of-squared
error function, and consequently, that cross-entropy
is better at estimating small probabilities. In the con-
text of mineral-potential mapping, this is important
because mineralization is a rare event, and therefore
the expected probabilities will be small.

As was noted in the previous section, both Brown
and others (2000) and Porwal, Carranza, and Hale
(2003) claim that the deposit cells and nondeposit cells
should be represented approximately equally in the
training set. It now can be seen that this requirement
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arises because of their use of sum-of-squared error;
in particular, it results from the fact that the sum-of-
squared error contribution for individual examples is
bounded. By using all examples for training, and by
using cross-entropy and not sum-of-squared error re-
duction, it is no longer necessary that the numbers
of deposit and nondeposit training examples be bal-
anced.

EXPERIMENTAL PROCEDURE
AND RESULTS

This section describes the application of the
proposed approach to the production of a mineral-
potential map showing the favorability for reef
gold deposits over a region in the vicinity of the
Castlemaine district, Victoria, Australia. In order
to test the hypothesis that that the outputs of the
MLP represent posterior probabilities, the map
produced using the MLP is compared with a map
produced using a density estimation-based approach.
A description of the study region is first provided.
This is followed by a discussion of how model-specific
parameters can be optimized for both models, and
includes a description of a special cross-validation
procedure. Empirical results are then presented.

The Castlemaine Study Area

Castlemaine is located in the southeastern re-
gion of Victoria, Australia, and was the site of ex-
tensive gold mining in the 19th Century. Almost half
of the gold located in Victoria occurred in primary
deposits, particularly quartz veins or reefs, in which
it was deposited in cracks that opened up during the
faulting and folding of Paleozoic sandstone and mud-
stone beds between 440 and 360 million years ago. The
remainder occurs in secondary (alluvial) deposits in
soil and creek beds.

The study region used in this report is in the vicin-
ity of Castlemaine, and extends from a Northwest
corner with coordinates 251,250 mE, 5,895,250 mN,
to a Southeast corner with coordinates 258,250 mE,
5,885,000 mN (all specified coordinates are Nor-
things/Eastings, referenced according to AMG Zone
55 AGD 66). Based on a grid-cell resolution of 50 m
by 50 m, the study region was represented by a rect-
angular grid consisting of 141 cells in the horizontal
direction and 206 cells vertically. In total, 16 input
layers were used. These included three layers based
on magnetics (magnetic field intensity, first derivative

of magnetic field intensity, and automatic gain con-
trol filtered magnetics); five layers based on radio-
metrics (Th, U, K, TotalCount, K/Th); seven based
on geochemistry (Au, As, Cu, Mo, Pb, W, Zn), and
distance to closest fault. The number of documented
known reef gold deposits in the study area is 148. Full
details on data preprocessing, interpolation of point-
based data, etc. is given in Skabar (2000). Information
on Victorian geology is in Cochrane, Quick, and
Spencer-Jones (1995) and Clark and Cook (1988).
The Castlemaine Goldfield was described in Willman
(1995).

Parameter Selection and Cross-Validation
Procedure

The performance of both MLP and density es-
timation based approaches depends heavily on se-
lecting suitable values for model specific parameters:
the number of hidden layer units for the MLP ap-
proach, and the width of the Gaussian window for
the Parzen method. For the MLP approach, a proce-
dure is required for determining when to stop train-
ing. The value of these parameters should be selected
such that the generalization capability of the model is
maximized.

A general approach to determining optimal pa-
rameter values is to use cross-validation. The usual
cross-validation technique applied on standard classi-
fication tasks involves dividing the training examples
into n approximately equal sized groups. A classifier
is trained using examples from all but one of these
groups, and performance is monitored on the exam-
ples from the remaining group (i.e., the holdout set).
This procedure then is repeated n-1 times, in each se-
tuation with a different combination of groups used
for training. Results on all holdout sets are then com-
bined, providing an overall measure of the general-
izational capability of the model.

The method that has been proposed requires that
all examples be used for training, and consequently,
the standard cross-validation procedure is not appli-
cable. A modified cross-validation procedure can be
described as follows, where for simplicity, 4-fold cross-
validation is assumed:

(1) Replicate the entire data set four times.
(2) For each of the four replicates, select one

quarter of the positive examples (i.e., 1/4 of
the examples whose target output value is 1)
and change the target value of these examples
from 1 to 0. Refer to these examples as the
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holdout set (note that the holdout examples
for each of the four data sets should be
nonoverlapping; that is, they should have no
examples in common).

(3) For each of the four data sets, train a net-
work using all examples in the data set, and
cross-entropy error reduction. (Note that the
examples in the holdout set are being used
for training; however, the fact that these cells
contain a known deposit is hidden from the
training algorithm.)

(4) During training, monitor the value of the
product of the likelihood to the holdout ex-
amples:

l =
m∏

i=1

f (xi ) (10)

where m is the number of holdout examples,
and f(xi ) is the network output for example
xi . As training progresses, the likelihood on
the holdout examples will increase until a
point is reached where overfilling begins to
occur, and this will be signified by a decrease
in the likelihood on the holdout examples.
Stop training at this point and store the cur-
rent network.

(5) After a network has been trained for each of
the four data sets, calculate the overall likeli-
hood on holdout data by taking the product
of the four individual likelihoods calculated
according to Equation (10).

Step 4 provides the criterion to use in order to
determine when to stop training. However, the opti-
mal number of hidden layer units must be determined,
and this can be done by selecting the network config-
uration that results in the highest overall likelihood
on holdout data (i.e., the quantity calculated in Step
5). This is essentially a sequential search problem and
can be solved as follows. Train a network with a one
hidden unit and calculate the overall likelihood on
holdout data. Then increment the number of hidden
units by 1 and again apply Steps 1 to 5. Continue in-
crementing the size of the network and calculating
likelihood on holdout data until the likelihood begins
to decrease. Select the network structure that gives
best likelihood on holdout data.

The procedure for the density estimation based
approach using the Parzen window technique for es-
timating pdfs is analogous to the procedure described
for MLPs, except that in this Situation it is the σ value
describing the width of the Gaussian window that

must be optimized. In this example, we start with a
large value for σ , and decrease it until the likelihood
on holdout data begins to fall. Note that the holdout
examples should not be used in the calculation of the
class conditional pdf, p(x|D).

Empirical Results

The MLP was trained using the scaled conjugate
gradients algorithm (Møller, 1993). Figure 3 shows the
results of applying the cross-validation procedure as
described.

Note that the measure on the vertical axis is ge-
ometric mean likelihood. This is just the geometric
mean of the likelihood on all holdout examples, and
is calculated as

gml =
(

m∏
i=1

f (xi )

)1/m

(11)

This is a convenient measure because it allows
likelihood to be compared directly with the prior
probability of mineralization, which is 0.0038. Ob-
serve that in the example of the MLP, as the number
of hidden layer units is increased, the mean likeli-
hood on training examples continues to increase,
but the likelihood on the holdout examples reaches
a maximum of approximately 0.006, corresponding
to a network with eight hidden layer units. The fact
that generalization does not decrease significantly
as the number of hidden layer units is increased
beyond this value is because the regularization term
used in training. Regularization is a technique used
to restrict weights from becoming too large, thus
helping prevent over-fitting (see Bishop, 1995). With
the Parzen approach, observe that there is a clear
maximum of slightly more than 0.006 corresponding
to a Gaussian window width (σ value) of 1.2.

The maps produced using each of the approaches
are shown in Figure 4. The darkest gray level rep-
resents a posterior mineralization probability of
greater than 0.03, and white represents a probability
of less than 0.0005. Intermediate levels are scaled in
between. Visual inspection of the maps shows that the
regions predicted most favorable generally coincide
with the location of the known deposits, which are in-
dicated by points. However, in each situation there are
some deposits which fall in regions of low favorability.

The similarity between the maps can be
measured numerically using the product moment
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Figure 3. A, Mean geometric likelihood on training and holdout examples versus number of
hidden layer units for MLP approach; B, Mean geometric likelihood on training and holdout
examples versus width of Gaussian window for Parzen window density estimation based
approach.

correlation, which is defined as

r =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1
(xi − x̄)2

n∑
i=1

(yi − ȳ)2

(12)

where x and y are the pixel values (i.e., posterior prob-
abilities) for each of the two maps, x̄ and ȳ are their
respective means, and n is the number of pixels in the
map. Note, however, that r compares the maps on the

basis of the numeric values assigned to corresponding
pixels, and it is also useful to compare maps on the
basis of the ranking assigned to pixels. This can be
done using Spearman’s rank correlation, rs , which is
defined as

rs =

n∑
i=1

(Rx − R̄x)(Ry − R̄y)√
n∑

i=1
(Rx − R̄x)2

n∑
i=1

(Ry − R̄y)2

(13)
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Figure 4. Probability maps. Darkest gray level represents probabilities greater than 0.03; white represents probabilities below 0.0005.
Points indicate locations of known deposits: A, MLP approach; B, Parzen window density estimation based approach.

where Rx and Ry are the ranks of x and y respectively
and the bar indicates the mean value as before. The
r and rs values for the maps are respectively 0.66 and
0.64, indicating a high degree of similarity.

The maps can be compared by their cor-
responding cumulative deposits versus cumulative
area curves. Such a curve can be constructed by
ranking pixels according to their assigned poste-
rior probability value, and plotting the cumulative
deposits against cumulative area as the poste-
rior probability is decreased from its maximum
to its minimum value. The curves are shown in
Figure 5.

The black and gray solid curves represent re-
spectively the predictive performance on mineralized
training examples and the predictive performance
on mineralized holdout examples. The dashed curve
shows the cumulative sum of posterior probabilities.
(Note that the cumulative deposits are expressed as

a fraction of the total number of deposits; thus the
maximum of 1).

For the MLP (Fig. 5A), it can be seen that the
curve for prediction on training deposits corresponds
closely with the curve representing the cumulative
sum of posterior probabilities. This provides support
for the claim that the outputs of the MLP represent
the posterior probability that a pixel contains one or
more of the training deposits. Further support for the
claim is provided by the fact that the sum of network
outputs over all examples is equal, to within approxi-
mately 0.5%, to the number of examples containing a
target output of 1 (i.e., the number of mineralized ex-
amples in the training set). In regard to prediction on
holdout mineralized examples, approximately 45% of
the holdout deposits occur in the 10% of the region
predicted as most favorable.

For the density estimation based approach,
the predictive performance on holdout data is
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Figure 5. Cumulative deposits versus cumulative area: A, MLP with 8 hidden units;
B, Parzen window density estimation based approach with σ = 1.2.

approximately the same as for the MLP, but the fit be-
tween the curve representing prediction on training
deposits and the curve representing the cumulative
sum of posterior probabilities is poor, indicating that

the predicted values do not represent posterior prob-
abilities as accurately as does the MLP approach. The
reason for this is that the probability density functions
are estimates of the true distributions of the examples,
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and the resulting posterior probabilities therefore de-
pend on the quality of these estimates. Of course, the
width of the kernel window could have been increased
easily until these curves coincided, but then this would
not give optimal performance on the holdout miner-
alized data.

DISCUSSION

Two main features distinguish the method de-
scribed in this paper from the conventional approach
to applying neural networks to mineral potential map-
ping tasks: (i) the use of all cells in the study for train-
ing; and (ii) the use of cross-entropy error reduction
for network weight optimization. The implications of
these features for the reliability of the resulting maps
now are discussed.

There are several important advantages to using
all examples for training. Firstly, because no selec-
tion of training examples is required, any dependence
of the map on this selection is eliminated. Secondly,
using all examples for training significantly reduces
the dimensionality problems resulting from a sparsely
populated input space. For example, in the case study
provided here, approximately 65,000 examples were
used for training; if deposit and nondeposit cells were
represented equally in the training set, then the num-
ber of training examples would be approximately 300.
Using all examples for training reduces the variance
in the network enormously, and thus the final network
will be far less sensitive to factors such as initial weight
assignments. Also convergence will be slower, thus
allowing better precision in using the special cross-
validation procedure to stop training. Finally, using
all examples for training ensures that maximal use is
made of the context provided by the data. The objec-
tive, after all, is to assign to each pixel in the study
area a value indicating its likelihood of being miner-
alized, and, to this end, it makes complete sense to
use all of the available data for training. This does
not cause problems with cross-validation, because, as
described, this can be performed by holding out only
the label attached to holdout examples; that is, the
training algorithm sees the feature vector of holdout
mineralized examples, but does know that the holdout
example is mineralized.

The second distinguishing feature of the ap-
proach is the use of cross-entropy for error reduc-
tion. This paper has shown theoretically that if the
network is trained using cross-entropy error reduc-
tion on a training set consisting of all examples in
the study region, then the network output can be

interpreted as the posterior probability of mineral-
ization, given the evidence associated with the pixel.
The objection could be raised that we do not know
the true prior probability of mineralization, and that
the output is therefore not a true posterior proba-
bility. However, this is not a valid objection because
the output represents the posterior probability that
an example contains one or more of the known de-
posits. Obviously, if more deposits were discovered,
this would affect the prior probability, and in this situ-
ation the outputs could be linearly rescaled to account
for this, or alternatively, the entire network could be
retrained incorporating the newly discovered deposits
into the training data. Nevertheless, the outputs of the
network have a definite interpretation as probabili-
ties, which is not the situation with the conventional
approach.

The problem that the relative scarcity of miner-
alized cells causes for the conventional approach has
been acknowledged by Brown, Gedeon, and Groves
(2003), who propose adding noise to the mineral-
ized training patterns, thus creating additional syn-
thetic deposit training data. Adding noise is a valid
approach to expanding the training set on many in-
ductive learning tasks, and indeed it may improve
the performance of the conventional MLP approach
to mineral-potential mapping. However, the use of
all examples for training, in conjunction with the
use of cross entropy error minimization, eliminates
the perceived requirement that deposit and nonde-
posit training examples be represented in equal pro-
portion in the training data, and thus obviates the
need for any such random expansion of the training
data.

This paper has considered a density estimation
based approach in which class-conditional and class-
unconditional pdfs are estimated using the Parzen
window technique, and combined using Bayes’
Theorem to arrive at an estimate of the posterior
probability. It is possible and straightforward to cast
this approach into a neural network framework, and
the resulting networks are referred to as Probabilistic
Neural Networks (PNNs) (Specht, 1990). It should
be realized, however, that the reformulation of the
technique as a neural network is cosmetic only, and
does not add anything to the original formulation.

In the context of mineral-potential mapping, it
has been claimed that “when the probability that
an area is mineralized is the objective of analysis,
PNN is the appropriate neural network architecture”
(Harris and Pan, 1999). It can be seen that while PNNs
may be an appropriate architecture, MLPs are also
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appropriate, given an appropriate training procedure,
which this paper has described.

Moreover, the results presented in this paper
have shown that the density estimation based ap-
proach and the MLP approach display approximately
equal performance in regard to their predictivity on
holdout examples. This should be expected, in fact,
providing that care is taken in determining the values
of the respective model-specific parameters (number
of hidden units for the MLP, and kernel width for the
density estimation approach). Parameter tuning is an
integral part of the training process, and through the
use of a special cross-validation procedure, this pa-
per has shown that two fundamentally different tech-
niques can yield similar results, mutually supporting
the claim that the resulting maps can be interpreted
as representing the conditional probability of miner-
alization, given the evidence supplied by the back-
ground data.

CONCLUSION

A new technique has been presented for apply-
ing MLPs to the problem of mineral-potential map-
ping. The technique uses all pixels in the study re-
gion for training, thus eliminating any sensitivity to
the particular selection of training examples. Pro-
viding that cross-entropy error reduction is used for
training, the outputs of the MLP can be interpreted
as representing the posterior probability that a pixel
contains one or more of the known deposits, given
the feature vectors describing the pixel. The use of
cross-entropy error reduction, together with the use of
all examples for training, makes the technique much
less susceptible to the dimensionality problems suf-
fered by current approaches to applying MLPs in this
area. It also ensures that use is being made of the
contextual information provided by all nondeposit
examples.
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