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Abstract Glioblastoma (GBM), the most prevalent 
primary brain tumor in adults, remains highly chal-
lenging due to its invasive nature, limited treatment 
effectiveness, and short median survival durations. 
Standard of care includes surgery, radiation, chemo-
therapy, and tumor treating fields; however, there has 
been little improvement in survival rates. Biomimetic 
nanoparticles (NPs), coated with cell membranes and 
endogenous components, have immense potential for 
improving chemotherapy in GBM, by imitating cel-
lular architecture and eluding immune clearance. 
With more individualized and efficient drug deliv-
ery, immunotherapeutic approaches and biomimetic 
NPs may increase patient survival rates. This article 
summarizes the main research on biomimetic NPs for 
GBM therapy, focusing on the classification, mecha-
nisms, advantages, and challenges, along with the 
advancements in the development of GBM vaccines.
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Introduction

The World Health Organization (WHO) classi-
fies glioblastoma (GBM) as a grade IV astrocytoma 
mostly located in the frontal, parietal, temporal, and 
occipital lobes, among other supratentorial brain 
regions which sometimes is seen in the cerebellum, 
brain stem, and spinal cord [1] and comprises up to 
50% of all gliomas. Characterized by rapid, infiltra-
tive growth, setting it apart from lower grade gliomas 
due to the presence of necrosis and/or microvascular 
proliferation, it may develop as a primary or second-
ary tumor, with the latter occurring due to a malig-
nant transformation resulting from an inferior-grade 
brain tumor and/or a mutation in the isocitrate dehy-
drogenase (IDH) gene [2–5]. Ionizing radiation expo-
sure stands out as a significant risk factor for GBM, 
alongside other risk factors such as age, gender, 
obesity, atopy history, allergies, and immune-related 
disorders. Rare genetic syndromes like Li–Fraumeni 
syndrome and Lynch syndrome account for less than 
1% cases [6–9]. GBM patients that are newly diag-
nosed are usually treated with a multimodal approach, 
with surgery and concomitant radiotherapy and 
chemotherapy being the mainstay of treatment [10]. 
Nevertheless, surgery has its limitations as GBM is a 
highly diffuse, invasive, and vascularized tumor, risk-
ing the removal of healthy tissues; thus, treatments 
relied on alkylating drugs, primarily chloro-ethyl-
ating, nitrosourea derivatives such as carmustine, 
nimustine, and lomustine, which have demonstrated 
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efficacy in GBM treatment through cellular death, but 
drawbacks include hepatic and pulmonary toxicity, as 
well as non-targeted distribution of chloro-ethylating 
agents, which may cause apoptosis in healthy cells 
[11]. Hence, the current standard of care post-sur-
gery involves adjuvant and concurrent temozolomide 
(TMZ) and radiation therapy, often accompanied by 
using dexamethasone at large doses to treat vasogenic 
edema [12]. Nevertheless, chances are that postopera-
tive radiation will result in radiation damage and a 
subsequent cancer in the exposed area [13]. Chemo-
therapy is another vital therapeutic strategy that can 
raise overall survival rates, but it has some systemic 
side effects [14]. Tumor treating fields (TTFs), a 
portable Optune device, apply an electric field to the 
tumor, representing one of the limited FDA-approved 
treatment options for newly diagnosed GBM [15]. A 
summary of the current therapies undergoing clini-
cal trials is given in Table  1. Recurrence is inevita-
ble, with most patients relapsing into a more aggres-
sive tumor form [16–18]. Despite complete therapy, 
prognosis is poor, with a 5-year overall survival rate 
of 9.8%, a progression-free survival of 7–8  months, 
and a median survival of 14–16  months [3]. Symp-
toms from infiltrative tumor growth severely disrupt 
patients’ lives, gradually diminishing their quality of 
life [1, 3, 6, 16–18].

Challenges for drug delivery to the brain

The blood–brain barrier (BBB) is a semiperme-
able interface which regulates central nervous sys-
tem homeostasis. It is composed of endothelial cells, 
tight junctions, receptors, transporters, and efflux 
pumps. The BBB acts as a structural barrier prevent-
ing most drugs including chemotherapeutic agents 
that are systemically delivered from reaching suf-
ficient concentrations in the brain [14, 45, 46]. The 
distinct molecular features of GBM manifest a com-
plex interplay of tumor heterogeneity, angiogenesis, 
and immunosuppressive mechanisms, collectively 
shaping its aggressive behavior and dismal prognosis 
[34]. Targeting these critical hallmarks of GBM—
tumor heterogeneity, angiogenesis, and immunosup-
pression—is paramount in devising effective thera-
peutic strategies against this formidable brain cancer. 
GBM tumors comprise a diverse cell population, each 
exhibiting distinct molecular signatures and biologi-
cal behaviors and a multiplicity of signaling pathways 

[35–38]. Meanwhile, angiogenesis, a hallmark feature 
of GBM, is sustained by overexpression of pro-angi-
ogenic proteins such vascular endothelial growth fac-
tor (VEGF). This robust vascularization not only sup-
ports tumor growth but also facilitates the invasion of 
tumor cells into surrounding brain tissue. The poor 
immunogenicity of GBM prevents a robust immune 
response, and the TME increases the resistance of 
the tumor to radiation and chemotherapy [39]. Fur-
thermore, the angiogenic propensities of GBM and 
the main obstacle to GBM treatment is temozolamide 
resistance via the O6MG methyltransferase (MGMT) 
[40–44]. Furthermore, the deep brain infiltration of 
glioma (stem) cells precludes therapeutic therapy 
with resection alone [1, 2].

Currently, there are no groundbreaking treatments 
that have resulted in substantial and lasting improve-
ments in patient survival. To  overcome the present 
obstacles in both conventional and experimental 
GBM treatment, the search for efficient drug delivery 
systems is ongoing [44].

The concept of using nanoparticles (NPs) to target 
cancerous tissues for better diagnosis and treatment 
has a longstanding presence [47, 48]. This is due to 
NP high drug payload, stability, and increased drug 
solubility, improved permeability across the BBB, 
targeted delivery to mitigate systemic side effects, and 
versatility of incorporation in various delivery meth-
ods [44, 49]. Conventional NP drug carriers passively 
target tumors by the enhanced permeability and reten-
tion (EPR) effect in tumor milieu [50–52]. These car-
riers include solid lipid NPs (SLNs), nanostructured 
lipid carriers, liposomes, dendrimers [53], polymers, 
micelles, and magnetic and inorganic NPs [54, 55]. 
Vascular permeability is enhanced in the tumor due to 
elevated levels of VEGF, peroxynitrite, nitric oxide, 
and bradykinin, resulting in widened inter-endothe-
lial cell gaps and facilitating NP entry into the tumor 
site [56]. Moreover, the reduced lymphatic drainage 
in the tumor increases the retention of NPs and their 
accumulation [49, 57]. Also, NP surface functionali-
zation aids in their tumor targetability and BBB pen-
etrability. However, conventional NPs are vulnerable 
to clearance by the reticuloendothelial system (RES) 
and have off-target effects making the effectiveness of 
NP drug delivery systems challenging [44, 49, 58].

To address these limitations, recent breakthroughs 
in bio-imitating natural components of the body have 
become an area of interest for drug delivery [59]. 
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Biomimetic drug delivery systems (BDDS) mimic 
biological structures and functions, providing benefits 
including immune evasion, minimal immunogenicity, 
lowered toxicity and greater safety than non-biomi-
metic synthetic NPs, greater accumulation and longer 
duration of circulation, and biocompatibility targeting 
drugs through cells, membranes, proteins, and other 
biological macromolecules [39, 60, 61].

This review provides an overview of biomimetic 
nanodrug delivery systems (BNDDS) and their appli-
cation in targeting GBM (Fig.  1). It covers the dif-
ferent types of BNDDS, their mechanisms, and the 
advantages they offer. The challenges associated with 
BNDDS are also addressed. Also, an overview on 
vaccines used in GBM is discussed.

Challenges in drug delivery to brain

Overcoming biological barriers in GBM therapy

After intravenous injection, nanodrugs travel through 
a series of cascade processes to take action, including 
crossing the BBB, building up at the tumor site, infil-
trating tissue, undergoing endocytosis, and releas-
ing the drug payload [62]. The anti-tumor activity of 
these carriers is strongly influenced by the effective-
ness of these steps. BNDDS have immense potential 
in overcoming biological barriers [63] and attaining 
targeted medication delivery [64, 65]. This section 
outlines the main biological barriers that nanodrug 
delivery systems face when delivering drugs to tumor Ta
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Fig. 1  Challenges in treatment of glioblastoma and role of 
biomimetic nanoparticles
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locations and how BNDDS can help overcome such 
barriers (Fig. 2).

Evading blood barriers

After intravenous injection, NPs face challenges tra-
versing the bloodstream to reach the GBM tumors. 
They must evade protein adsorption, premature 
enzyme degradation, and RES clearance [66, 67]. 
Clearance is influenced by the size, shape, and 
charged surface of NPs; biomimetic coatings are 
essential for improving biocompatibility and avoiding 
clearance [68].

Penetrating the blood–brain barrier and blood–brain 
tumor barrier

BBB and blood–brain tumor barrier (BBTB) are 
formidable barriers that limit the ability of chemo-
therapeutic agents to enter the brain and malig-
nant tissue, respectively [69, 70]. Along the brain 
and spinal cord’s blood vessels, the BBB acts as a 
highly selective interface, regulating the passage 
of molecules between the bloodstream and the 
central nervous system (CNS) to maintain homeo-
stasis [71]. Composed of cerebral endothelial cells 
(CECs) with tight junctions formed by claudins and 
occludins [72], the BBB boasts a remarkably higher 
transendothelial electrical resistance (TEER) than 
other body tissues. Astrocytes and pericytes play 
crucial roles in supporting CECs, forming a neuro-
vascular unit that contributes to the integrity of the 

BBB. The microenvironment surrounding the BBB 
includes various cell types and the basal membrane, 
ensuring its rigidity and functionality. Beyond its 
defensive roles, the BBB regulates the passage of 
medications into the CNS, often thwarting thera-
peutic efforts due to multidrug resistance proteins 
and complex transport mechanisms [73]. Pathologi-
cal conditions of GBM can disrupt BBB physiol-
ogy and morphology, leading to variable or partial 
impairment. This disruption, typically observed 
at primary tumor sites, contributes to vasogenic 
brain edema, complicating drug delivery and treat-
ment efficacy. Therapeutic resistance in GBM stems 
from factors including disturbed BBB, active drug-
resistant mechanisms, low blood flow, and high 
intra-tumoral pressure [74]. The BBTB emerges 
at the interface between capillary vessels and cer-
ebral tumor tissues, resulting from disruptions in 
the BBB caused by the progression of GBM [75]. It 
forms due to tumor membrane breakdown and dete-
rioration, replacing the BBB via angiogenesis and 
impeding the delivery of drugs. VEGF expression 
drives angiogenesis in hypoxic tumor areas, enhanc-
ing nutrient and oxygen supply but hindering drug 
penetration. GBM therapy efficacy hinges on the 
permeability of the neo-vasculature of the tumor, 
which varies in vessel density and diameter across 
three phases. The BBTB can become leaky in high-
grade gliomas due to their heightened metabolic 
demands. Still, the barrier remains largely intact, 
limiting the effectiveness of EPR strategies. The 
unique microenvironment of gliomas exacerbates 
this challenge, demonstrating the role of the BBTB 
in impeding therapeutic agent delivery at effective 
concentrations [76, 77].

Overcoming the BBB and BBTB are crucial in 
treating GBM effectively. BNDDS present promising 
solutions to traverse these barriers [78], employing 
innovative strategies such as utilizing ligand installed 
nano-carriers [79], neutrophils [80, 81], or genetically 
modified cell membranes [82–84] with endothelial 
crossing capabilities to traverse endothelial barriers. 
NP diffusion is further hampered by the high intersti-
tial pressure in the tumor and malfunctioning blood 
vessels. Anti-angiogenic drugs can partially alleviate 
these barriers by normalizing tumor blood vessels 
and reducing the interstitial pressure [85]. The engi-
neered biomimetic nanocarriers expressing extracel-
lular matrix (ECM)–degrading enzymes enhance NP 

Fig. 2  Biological barriers in tumor drug delivery and role of 
biomimetic NPs
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penetration and cell infiltration into the tumor tissue, 
facilitating effective delivery of therapeutics to GBM 
sites [86, 87].

Cellular membrane traversal and intracellular 
delivery

For therapeutic efficacy, chemotherapeutic drugs 
encapsulated within NPs must enter tumor cells. 
However, steric hindrance, dense cell matrices, and 
electrostatic interactions pose challenges to NP diffu-
sion [88]. Biomimetic NPs offer innovative solutions 
to enhance cellular membrane traversal and intracel-
lular delivery, utilizing modifications such as peptides 
that infiltrate tumors [89, 90] and cell-specific recog-
nition ligands [91, 92].

Overcoming multidrug resistance

Multidrug resistance (MDR) mediated by drug efflux 
pumps remains a major obstacle in GBM therapy 
[93]. Overexpression of efflux transporters leads to 
drug expulsion from tumor cells, reducing intracel-
lular drug concentrations and treatment effectiveness 
[94]. Biomimetic NPs, aided by non-invasive focused 
ultrasound, efficiently remodel the immunosuppres-
sive microenvironment of glioblastoma, acting as 
potent checkpoint inhibitors to reduce PD-L1 expres-
sion, while NIR II light irradiation converts the tumor 
from "cold" to "hot," inducing immunological mem-
ory to prevent recurrence [95].

Biomimetic nanodrug delivery system

NPs with sizes ranging from 10 to 100 nm in at least 
one dimension serve as effective medication carri-
ers and aligns well with the dimensions of DNA and 
proteins [96]. They have two major mechanisms of 
cellular targeting—active and passive [97, 98]. Pas-
sive targeting capitalizes on the characteristics of the 
TME and the EPR effect [99, 100]. Unlike in normal 
tissues where NPs are cleared by the mononuclear 
phagocytic system or kidney filtration, tumors exhibit 
neovascularization, leading to leaky blood vessels 
with large pores [101]. This allows macromolecules, 
including NPs, to accumulate within the tumor tis-
sue. In addition, disrupted lymphatic function in 
tumors results in minimal fluid uptake, contributing 

to particle retention in the tumor interstitium via the 
EPR effect [102]. Nanocarriers exploit properties of 
the TME such as acidic pH, higher redox potential, 
and lytic enzyme secretion for uniform drug delivery. 
The acidic milieu created by glycolytic metabolism 
of cancer cells triggers pH-sensitive NPs to release 
drugs near cancer cells [103]. However, passive tar-
geting limitations encompass non-specific drug distri-
bution, inconsistent EPR effect presence, and variable 
blood vessel permeability among tumor types. In con-
trast, active targeting employs ligands on NP surfaces 
to specifically target cancer cells with overexpressed 
receptors, facilitating receptor-mediated endocytosis 
for effective drug release. Targeting moieties (mono-
clonal antibodies, peptides, amino acids, vitamins, 
and carbohydrates) bind to receptors such as transfer-
rin, folate, glycoproteins, and epidermal growth factor 
[104].

However, a significant issue concerning the EPR 
effect of NPs within bodily fluids is the risk of medi-
cation leakage into malignant cells. This results from 
opsonization, where plasma proteins such as comple-
ment proteins and immunoglobulin G (IgG) adhere to 
NP surfaces, prompting the RES to identify and elim-
inate therapeutic NPs as foreign entities [92]. To over-
come this, nano-carriers have undergone significant 
evolution, developing complex chemical architectures 
to incorporate specific functionalities that enable 
them to selectively target desired sites with their pay-
load while evading unwanted immune clearance [105, 
106]. Various hydrophilic polymers, including poly-
ethylene glycol (PEG), are commonly used to coat 
NPs for enhanced evasion of the immune system and 
amplification of the EPR effect. In addition, proteins, 
vitamins, peptides, antibodies, and aptamers are uti-
lized as functional ligands to decorate the PEGylated 
NP surface, aiming to overcome steric hindrance and 
improve NP compatibility within biological environ-
ments [107]. These considerably prolong the duration 
of NP uptake in  vivo, changing it from minutes for 
NPs without PEG coating to hours for NPs coated 
with PEG [105]. These ligands are selected for their 
strong affinity to receptors, especially those over-
expressed on tumor cells, enabling precise target-
ing based on the unique features of the target cells 
[108]. However, PEGylation presents challenges, as 
recent research indicates that PEG-coated NPs can be 
swiftly eliminated by the liver upon repeated dosing, 
a phenomenon termed "accelerated blood clearance 
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(ABC)" [109]. This is linked to IgM antibodies tar-
geting PEG and PEG-induced complement activa-
tion, potentially leading to hypersensitivity reactions 
in certain instances [84]. However, problems related 
to compatibility and immunological responses persist, 
and therefore, researchers have turned to studying 
human cells and proteins to develop advanced treat-
ment strategies such as cell membrane camouflaging 
[110]. The use of natural cell membranes (CMs) in 
a biomimetic camouflage method to enhance tumor-
targeted therapy has garnered significant attention in 
recent years. An innovative BNDDS has surfaced, 
wherein NPs are encapsulated with CMs produced 
from biological sources. By maintaining the phys-
icochemical characteristics and drug-carrying ability 
of the particles, this novel approach aims to maintain 
the physiological function of the source cells while 
actively passing through biological barriers like angi-
ogenic tumor vessels, inflamed vessels, and the BBB. 
This provides the opportunity to get past these bar-
riers without depending on the EPR effect [111]. By 
mimicking the natural cell membranes, the biomi-
metic camouflage enables the NPs to evade immune 
detection and clearance mechanisms, thus prolonging 
circulation time and enhancing tumor accumulation 
via active targeting mechanisms. Also, the biomi-
metic coating provides additional functionalities, such 
as specific targeting ligands or therapeutic molecules, 
which can further increase the tumor specificity and 
efficacy of medication delivery sites [70, 92, 108].

Preparation of BNDDS

Typically, BNDDS consists of drug-loaded core 
particles encased in biologically active biomimetic 
outer membranes [70]. The core particles are typi-
cally composed of materials classified as inorganic, 
organic, or hybrids of organic and inorganic matri-
ces. Organic materials such as proteins, polymers, 
and lipid-based NPs have been approved by the regu-
latory agencies such as the USFDA and EMA since 
the 1990s. Because they have distinct electrical, 
magnetic, and optical properties, inorganic materi-
als like metals, carbon-based NPs, mesoporous silica 
NPs (MSNs), and metal–organic frameworks provide 
excellent drug loading rates and biocompatibility. As 
remarkable organic–inorganic hybrid nanomaterials, 
metal–organic frameworks combine the benefits of 
both components. Personalized designs are necessary 

for a variety of clinical applications due to the signifi-
cant impact core nanomaterials have on drug release 
patterns, pharmacokinetics, and the size and form of 
delivery systems. Biomimetic materials, which serve 
vital functions in packing, safeguarding, targeting, 
and improving NP biocompatibility, include natu-
ral CMs, CM mimics, functionalized CMs, and CM 
derivatives (extracellular vesicles). These materials 
successfully replicate biological systems [105, 108]. 
Typically, the process involves three main steps for 
self-assembly [84, 112, 113]. Figure  3 provides an 
overview of the steps involved in the preparation of 
BNDDS.

It is crucial to characterize BNDDS post-prepara-
tion, with an emphasis on confirming full wrapping of 
NPs and biomimetic membrane, investigating proper-
ties such as morphology, particle size, and surface 
electrical charge changes of modified NPs. Safety 
and functionality tests include evaluation of the tox-
icity, release, and efficacy of functional proteins and 
encapsulated drugs [114, 115]. However, because of 
the dynamic and complicated nature of BNDDS upon 
entry into the body and the variability of the TME, 
characterization is still difficult [70].

Types of BNDDS

Various types of biomimetic NPs have been investi-
gated based on biomaterials such as red blood cells 
(RBCs), white blood cells (WBCs), natural killer 
(NK) cells, macrophages, platelets, extracellular 
vesicles (EVs), and even cancer cells, which can be 
employed for coating drug NPs (Fig.  4) [116–119]. 
This amplifies their biomimetic capabilities and 
demonstrates higher efficacy across a spectrum of 
treatments showcasing prolonged in  vivo circula-
tion, precise targeting capabilities, reduced immune 
system clearance, and promising advancements to 
clinical trials [92, 108]. In the realm of fundamental 
biomaterials, biomimetic nanocarriers can be classi-
fied into two primary categories: (1) synthetic nano-
carriers, which are engineered to replicate biological 
materials, for example, natural proteins, viral capsids, 
and monoclonal antibodies, augmented by synthetic 
counterparts such as aptamers and targeting peptides 
[92]; (2) biological building blocks like bacteria and 
viral vectors that have undergone passivation [108]. 
Cell membranes without cytoplasm and organelles, 
termed "cell ghosts," exhibit precise markers for NP 
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distribution, mirroring their source cells structurally 
and functionally. They facilitate direct NP coating 
without additional chemical modifications, yielding 
biologically intact bilayer membranes that replicate 
source cell surfaces. They can actively cross biologi-
cal barriers such the BBB, angiogenic tumor vessels, 
and irritated vasculature. Biomimetic DDS can go 
beyond these barriers without depending on the EPR 
effect. This enhances nanocarrier biocompatibility, 
enabling efficient and prolonged in  vivo circulation 
and targeted performance. Thus, incorporating CMs 
into biomimetic methods offers precise biological 
identity through structured arrays of membrane pro-
teins, ensuring specific molecular interactions [120]. 
The stability, content, orientation, and glycosylation 
of membrane proteins may be impacted by the experi-
mental techniques used in the synthesis of complex 
NPs, which could have an impact on biological inter-
actions, necessitating investigation of the interaction 
between biological components and biomimetic NPs 
[105].

RBC membrane–coated NPs

Advancements in molecular and cellular biology, cou-
pled with nanotechnological progress, have spurred 
researchers to devise nanocarriers inspired by RBCs, 
the predominant cellular component of human blood. 
RBCs are enucleate and measure approximately 7 µm 
in diameter [121]. Their capacity to alter shape dur-
ing circulation and their convenient isolation from 
blood render them an optimal source of cell mem-
branes for in  vivo navigation within patients’ blood 
vessels(108, 121). They possess CD47 (self-antigen) 
protein on their surface, which extends their lifes-
pan in vivo (approximately 120 days in humans and 
50 days in mice) [122]. Moreover, their naturally bio-
degradable, non-toxic, and semipermeable membrane 
facilitates constant drug release enhances their utili-
zation in coating specific NPs for targeted drug deliv-
ery [105]. RBC membrane-covered SLNs, equipped 
with T7 and NGR peptides and carrying vincristine, 
demonstrate potent anti-glioma effects by improving 

Fig. 3  Schematic illustration of steps in the preparation of biomimetic nanoparticles
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drug transport to the brain, overcoming barriers like 
the BBB and BBTB [105]. In another study, doc-
etaxel (DTX) nanocrystals were encapsulated, and a 
lipid insertion technique was employed to fabricate 
T7/NGR-co-modified RBC membrane-coated SLNs, 
showcasing remarkable tumor cell specificity and 
robust therapeutic efficacy in orthotopic GBM mouse 
models [123]. Chai et al. demonstrated through com-
prehensive in vitro and in vivo studies that CDX pep-
tide (derived from candotoxin)-RBC NPs effectively 
penetrate the BBB, exhibiting remarkable brain tar-
geting ability. Loading these nanoparticles with doxo-
rubicin (DOX) notably extended the median survival 
of mice with glioma [124]. Functionalizing RBCM 
with angiopep-2 and loading pH-sensitive NPs (com-
prising dextran, DOX, and lexiscan) onto these modi-
fied membranes enhanced blood circulation duration 
and facilitated exceptional penetration through the 
BBB. Furthermore, in orthotopic U87MG human 
GBM tumor-bearing nude mice, this approach 
resulted in heightened accumulation and prolonged 
retention in the tumor, showcasing promising poten-
tial for GBM therapy [125]. Fu et  al. engineered a 
novel RBC-coated SLN (RBCSLN), dual-modified 
with T7 and NGR peptides and encapsulated with 

vincristine. These demonstrated superior anti-glioma 
effects in vitro and in vivo, resulting in dual-targeted 
delivery [126]. Furthermore, a nanogel formulation 
incorporating miR155 NPs coated with RBCM was 
found to extend the circulation lifetime of the micro-
RNA, while also imparting active tumor-targeting 
ability and efficacy in inhibiting GBM [127, 128].

WBC membrane–coated NPs

Leukocytes possessing unique characteristics have 
emerged as significant carriers for targeted drug 
delivery. They induce inflammation in tumor areas, 
promote vascular permeability, facilitate particle 
movement, and evade immune surveillance, making 
them crucial for targeted administration [110]. Larger 
than RBCs, they exhibit rapid and efficient movement 
from the bloodstream into surrounding tissues, mak-
ing them abundant, both within blood vessels and 
outside them. Their adhesive properties enable direct 
interaction with tumor cells either within the cancer-
ous environment or in the bloodstream [70, 105]. Of 
the five primary classes of leukocytes (lymphocytes, 
monocytes/macrophages, neutrophils, eosinophils, 
and basophils), macrophages [129] and neutrophils 

Fig. 4  Types of biomimetic nanodrug delivery systems
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are highly utilized [84, 130]. Macrophages, with 
surface markers like CD11b or CD49d, possess 
the ability to interact with chemokines and inflam-
matory factors within tumor tissues, enabling spe-
cific targeting of tumor cells [130]. This capability 
allows for precise drug delivery to target sites such 
as tumors and inflamed tissues. Moreover, the con-
trolled release profiles offered by NPs facilitate tai-
lored treatment strategies for optimized therapeu-
tic outcomes [110]. In addition, tumor-associated 
macrophages, influenced by their polarization state, 
tumor type, and disease stage, can serve both as ther-
apeutic targets and as carriers for drug delivery, dem-
onstrating their versatile roles in cancer treatment 
[70]. NPs coated with macrophage membranes pos-
sess the unique ability to seamlessly traverse between 
blood vessels and extravascular tissues, facilitated by 
their biocompatibility and immune evasion mecha-
nism conferred by CD47 embedded within the 
membranes [131]. An engineered system consisting 
of macrophage membrane-coated poly (lactic-co-
glycolic acid) (PLGA) NPs containing DOX showed 
better transport through the BBB and enhanced ther-
apeutic efficacy in GBM due to enhanced expression 
of programmed cell death-1 (PD-1) [132]. A study 
demonstrated the effectiveness of DSPE-PEG NPs 
loaded with near-infrared Ib (NIR-Ib) fluorescent 
dye IR-792, decorated with macrophage membrane, 
in crossing the BBB and selectively accumulating 
at the tumor site. This approach enables a combina-
tion of NIR-Ib imaging and NIR-Ib imaging-guided 
photothermal therapy, leading to significant inhibi-
tion of glioma growth [133]. In  vitro studies con-
firmed that silica NPs containing DOX, coated with 
macrophage membrane, exhibit enhanced cellular 
uptake and penetration into the core of glioma sphe-
roids compared to bare NPs. In addition, in nude 
mice with intracranial U87 glioma, loading NPs into 
macrophages significantly improved their tumor-tar-
geting efficiency [131]. Another study utilized DOX-
loaded NPs covered with monocytes which improved 
tumor drug delivery efficacy and damage-associated 
molecular patterns emission via BBB penetration 
and GBM infiltration [127]. Neutrophils, constitut-
ing over 50% of leukocytes, serve as initial respond-
ers in acute inflammation, making them promis-
ing candidates for targeted delivery systems [130]. 

Activated neutrophils migrate toward inflammatory 
sites guided by chemotactic gradients, engaging in 
pathogen elimination via phagocytosis. Further-
more, neutrophils possess the ability to traverse the 
BBB or BBTB, infiltrating tumor masses [134]. Xue 
et al. showcased that neutrophils carrying paclitaxel 
(PTX) liposomes retained their physiological activ-
ity and migrated to the inflamed brain tumor, conse-
quently enhancing the survival of mice [81]. Also, 
zoledronate NPs wrapped in macrophage membrane 
performed better than bare ones in GBM orthotopic 
mice model [135].

Platelet cell membrane–coated NPs

Platelet membranes, derived from megakaryocyte 
progenitors, offer remarkable physiological functions 
and are readily available in large quantities, making 
them of significant interest as platforms for cancer 
targeting. Platelets, which can be used to coat NPs, 
possess functions beyond hemostasis. They target 
injured tissues and tumor sites via various surface 
marker such as CD47, CD55/59, CD44, and P-selec-
tin receptors, enabling immune evasion, preventing 
complement activation, and binding to circulating 
cancer cells [70, 105]. Despite their superior targeting 
ability compared to RBCs, platelets face challenges 
due to their limited proportion in blood and poor sta-
bility, hampering their clinical translation [105]. A 
study proposed that MEDI-575, an immunoglobulin 
G2K monoclonal antibody, exhibits high specificity 
in binding to platelet-derived growth factor-α recep-
tor (PDGFR-α), thereby reducing the growth of GBM 
tumors [136]. Another strategy employing DOX-
loaded pH/redox dual-responsive nanogels (DOX@
PNGs) targeted orthotopic GBM, enhancing the 
therapeutic efficacy of the drug. This functional drug 
delivery system was targeted to the tumor site through 
interactions with membrane surface proteins, releas-
ing DOX promptly in response to the TME. In vivo 
tests demonstrated the remarkable targeting effects of 
the system and increased survival time [137]. Load-
ing quercetin inside platelets resulted in enhanced 
anti-tumor activity, with greater inhibition of 
U373-MG tumor cells observed (14.52 ± 1.53% cell 
viability) compared to free quercetin (21.99 ± 2.09% 
cell viability) [138].
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Cancer cell membrane–coated NPs

Cancer cell membranes (CCMs) are easily cultured 
in vitro, providing abundant membranes with inher-
ent homologous targeting (unlike most other mem-
branes) and antigenic library functions, allowing 
for natural targeting without complex modifica-
tions [139]. Adhesion molecules on CCMs, such 
as integrins, selectins, and E-cadherins, facilitate 
cancer development and metastasis by mediat-
ing cell–cell adhesive contacts. CD47, overex-
pressed on tumor cells, promotes immune evasion 
by blocking phagocytosis [140]. CCM-coated NPs 
(CCM-NPs) exploit these mechanisms, offering 
immune evasion through CD47, homotypic target-
ing via cadherin and integrins, and cancer immuno-
therapy through vaccination, leading to enhanced 
tumor-specific accumulation, longer circulation, 
and efficient drug or gene delivery while stimulat-
ing immune responses against tumor-associated 
antigens to elicit antitumor effects [141, 142]. Also, 
through increased photothermal therapy efficacy 
and magnetic particle imaging sensitivity in animal 
models, the CCM-coated SPIO nanoprobe improved 
early-stage glioma detection and treatment [143]. 
CCM-NPs exhibited a 40-fold and 20-fold increase 
in uptake in MDA-MB-435 cells compared to RBC-
coated NPs and bare PLGA cores, respectively, 
underscoring their affinity for cancer cells due to 
cancer cell adhesion molecules from cancer CMs 
[139]. Pasquale et al. developed DOX-loaded boron 
nitride nanotubes (BNNTs) coated with GBM cell 
membranes (DOX-CM-BNNTs), demonstrating 
their specific targeting and killing of GBM cells 
in  vitro, while sparing healthy brain cells after 
crossing an in  vitro BBB model [144]. A hybrid 
nanocube, comprising an inorganic core  (Fe3O4/
MnO2) enveloped with cell membranes derived 
from the U-251 MG cell line, displayed favorable 
magnetic properties and NMR relaxation times. 
This suggests their promising utility as theranostic 
agents for GBM [145, 146]. Magnetic NPs (MNPs) 
efficiently co-load TMZ and cisplatin (CDDP), 
crossing the BBB to target GBM specifically. Mice 
with orthotopic U87MG or drug-resistant U251R 
GBM tumors treated with MNPs@TMZ + CDDP 
exhibit potent anti-GBM effects, significantly 
extending survival compared to single-drug loaded 
NPs [147]. Sorafenib encapsulated within iron 

oxide and manganese oxide NPs, coated with GBM 
cell membrane, facilitated homologous targeting, 
resulting in increased apoptosis and necrosis in 
GBM cells [148].

Stem cell membrane–coated NPs

Stem cells, including mesenchymal stem cells 
(MSCs), harvested from diverse tissues like adipose 
tissue, peripheral blood, placenta and umbilical cord, 
possess exceptional self-renewal abilities and sup-
port various cell types. MSCs exhibit unique biologi-
cal properties and in vitro proliferation, making them 
suitable for in  vivo applications. With advantages 
such as prolonged circulation, immune evasion, and 
inherent cancer-targeting capabilities, MSCs are well 
suited for delivering biomimetic NPs [149]. These 
capabilities stem from specific ligands expressed 
by MSCs, facilitating precise targeting of cancer-
ous and damaged tissues in  vivo. Coating NPs with 
membranes derived from MSCs offers a promising 
approach for targeted tumor treatment, leveraging 
their abundance of targeting molecules and innate 
homing capacity. MSCs use complex signaling net-
works to interact with not only the tumor cells, but 
also with the TME and with the immune system, thus 
demonstrating inflammatory tendency and tumor tar-
getability. Enveloping NPs with MSC membranes 
heightens their biocompatibility and also their thera-
peutic effect of NPs by simulating MSCs’ targeting 
capabilities. Different sources of MSCs have vary-
ing therapeutic potentials due to variations in con-
tent, accessibility, proliferation, cytokine profiles, 
and immunoregulation [70, 105]. Chang et al. geneti-
cally engineered 150 human pluripotent SCs using 
CRISPR/Cas9 to express the anti-GBM–chimeric 
antigen receptor (CAR) constructs with T-specific 
CD3 + or neo-genin specific γ-signaling domains. 
The CAR vectors demonstrated effective anti-tumor 
activity against GBM, delivering TME-responsive 
NPs specifically and non-invasively. This combina-
tion therapy significantly extended the lifespan of 
female mice with tumors. In another study, MSCs/NP 
systems showed a faster migration rate toward malig-
nant glioma cells (U87) compared to single nano-
composites [140]. Yen et al. and Lai et al. developed 
stem cell-NP systems (SNS) for GBM targeting and 
improvement in gadolinium-neutron capture therapy 
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(Gd-NCT), using magnetized UMSCs loaded with 
gadodiamide-concealed MNPs (GdFPFNP), leading 
to improved treatment efficacy and extended survival 
in orthotopic GBM rat models [150, 151].

Hybrid membrane‑camouflaged NPs

To enhance NP properties and address limitations 
in single-cell membrane disguises, researchers fuse 
multiple cell membranes to optimize tumor target-
ing and tissue penetration, and minimize toxic effects, 
achieving better drug and NP distribution and thera-
peutic outcomes [141]. Platelet–cancer cell hybrid 
membrane-coated hollow PLGA NPs loaded with 
β-mangostin exhibit enhanced anticancer efficacy 
against glioma cells, offering homotypic cell target-
ing, immune escape, sustained tumor growth inhibi-
tion, metastasis suppression, and excellent biocom-
patibility, making them promising glioma treatment 
candidates [152]. A biomimetic nanosystem (HM-
NPs@G) with coating of cancer cell–mitochondria 
hybrid membranes (HM) on gboxin-loaded NPs dem-
onstrates enhanced biocompatibility, pharmacokinetic 
profile, BBB permeability, and homotypic dual tar-
geting, leading to improved blood circulation (4.90 h 
vs 0.47  h for free gboxin) and tumor accumulation 
(7.73% ID/g vs 1.06% ID/g for free gboxin) [153].

Cell‑mediated NPs

Endogenous cells possess innate capabilities to 
breach the blood–brain barrier and infiltrate tumor 
sites, rendering them potential carriers for brain-tar-
geted drug delivery systems. Immunocytes, including 
mononuclear phagocytes, lymphocytes, and neutro-
phils, alongside stem cells, exhibit homing proper-
ties enabling migration to injury, inflammation, and 
tumor locations [154, 155]. Xue et  al. utilized neu-
trophils as carriers for PTX-loaded liposomes to 
enhance brain-targeted delivery and effectively sup-
press postoperative glioma recurrence [81]. Utilizing 
dendritic cells and macrophages as delivery vehicles 
presents a promising strategy for circumventing the 
BBB and overcoming various structural and meta-
bolic hurdles that typically hinder drug penetra-
tion into GBM [156]. Yu et  al. created a dendritic 
cell–mediated nano-DOX system to boost anti-GBM 
immune response [157], while Hao et  al. developed 

stem cell–delivered nanogels for enhanced tumor 
MRI [158].

Extracellular nanovesicle‑camouflaged NPs

Extracellular vesicles (EVs), like exosomes and 
microbubbles, play vital roles in cell communica-
tion and disease processes. While they hold promise 
as lipid bilayer nanocarriers for cancer treatment due 
to their compatibility with organisms, low toxicity, 
and high drug capacity, their industrial production 
remains limited [159]. Despite challenges, engi-
neered exosomes show potential for enhanced drug 
delivery through various modifications. However, 
addressing complexities in preparation, understand-
ing mechanisms, and improving production efficiency 
are essential for realizing their clinical potential 
[160]. Research has validated the anti-GBM efficacy 
of ESC-exosomes, showcasing their effectiveness 
compared to alternative drug carriers [161]. Patient-
derived GBM cell lines were used in the investigation 
by Araujo et al. to identify and thoroughly character-
ize EVs. The overall amount of medications required 
to cause an effect on tumor cells was shown to be 
reduced after loading them with two distinct phar-
maceuticals, TMZ and EPZ015666 [162]. Niu et  al. 
pioneered a biomimetic drug delivery system by com-
bining natural grapefruit EVs with DOX-loaded hep-
arin-based NPs, demonstrating high efficiency in gli-
oma treatment [163]. Zhu et  al. utilized endogenous 
embryonic stem cell–derived exosomes as drug car-
riers, confirming their efficacy against GBM and pre-
paring c(RGDyK)-modified, PTX-loaded exosomes 
(cRGD-Exo-PTX) [164]. A tailored delivery system, 
employing angiopep-2 and TAT peptide-functional-
ized small EVs, effectively breaches the BBB, targets 
gliomas, infiltrates tumors, and enables precise chem-
otherapy, reducing drug-induced side effects [70].

Virus‑based NPs

Viral vectors have been pivotal in glioma gene ther-
apy trials over the past 25 years, with retroviral (e.g., 
Toca 511) and adenoviral vectors (e.g., Ad-p53) 
showing promise despite limited clinical transla-
tion due to challenges in tumor penetration and sur-
vival increases. To address these issues, engineered 
viral vectors like adeno-associated virus (AAV) and 
plant viruses, such as cowpea mosaic virus (CPMV), 
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are emerging as promising options for brain tumor 
treatment [165]. Lam et al. developed novel CPMV-
based NPs for targeted delivery of mitoxantrone, 
demonstrating effective uptake and retained thera-
peutic efficacy in GBM cells, addressing challenges 
associated with systemic delivery [166]. A hepatitis 
B core protein-virus-like particle (VLP)-based dual-
targeting delivery system was engineered, employing 
brain-targeting peptide TGN for BBB penetration and 
GBM-targeting ligand RGD. This system efficiently 
co-delivered PTX and siRNA to invasive tumor sites, 
resulting in synergistic antitumor effects, including 
enhanced necrosis and apoptosis, and reduced tumor 
invasion with minimal cytotoxicity, showing prom-
ise for GBM therapy [167]. Virotherapy including 
oncolytic viruses [168] employs Newcastle Disease 
Virus (NDV) alongside TMZ-PLGA-NPs, which 
demonstrated synergistic antitumor effects against 
GBM. The combination therapy, evaluated in  vitro 
on AMGM5 GBM cells, revealed higher cytotoxic-
ity and inhibition of colony formation than individ-
ual treatments [169]. The study utilized three virus-
like particles (VLPs): MS2 spheres, tobacco mosaic 
virus (TMV) disks, and nanophage filamentous rods, 
modified with DOX. While all VLPs demonstrated 
effective drug delivery and cell uptake in  vitro, gli-
oma-bearing mice treated via convection-enhanced 
delivery with TMV disks and MS2 spheres conju-
gated to DOX showed increased survival rates. This 
was demonstrated particularly in TMV-treated mice, 
following a single VLP-DOX CED injection at sig-
nificantly lower doses compared to traditional intra-
venous doses [170]. C6 GBM CM-coated NPs effi-
ciently delivered PEI25k/pDNA (polyethylenimine) 
complexes, demonstrating high transfection effi-
ciency, low toxicity, and enhanced therapeutic effects 
in GBM models [171]. Sendai virus enabled efficient 
cytosolic delivery of quantum dots in GBM cell cul-
tures, reducing nonspecific endocytosis by 50% as 
demonstrated by fluorescence microscopy and trans-
mission electron microscopy [172].

Protein‑based NPs

Proteins and peptides play crucial roles in brain func-
tion, regulating cerebral blood flow, BBB perme-
ability, neurotransmission, neuromodulation, and 
immune responses, making them promising candi-
dates for brain-targeted drug delivery systems [173]. 

Their inherent biodegradability, biocompatibility, low 
toxicity, and ease of modification make protein-based 
drug delivery systems advantageous [141, 174]. Con-
sequently, protein nanocarriers have garnered signifi-
cant attention as potential drug delivery systems for 
brain tumors. The cRGD peptide selectively binds to 
GBM cells, and the results showed that the uptake of 
cRGD by bovine serum albumin and human serum 
albumin (BSA/HSADOX) in tumor cells was sig-
nificantly enhanced [175]. Gregory et  al. developed 
synthetic protein NPs (SPNPs) using polymerized 
human serum albumin (HSA) and the cell-penetrating 
peptide iRGD, capable of delivering siRNA against 
STAT3 (oncogenic signal transducer and activator 
of transcription 3) in GBM. This approach leads to 
STAT3 downregulation in  vitro and in  vivo, result-
ing in tumor regression and prolonged survival when 
combined with radiation therapy, while also induc-
ing anti-GBM immunological memory in mice [176]. 
Temozolomide acid (TMZA)–loaded HSA NPs were 
developed targeting GBM and brain cancer stem cells 
(CSCs), demonstrating efficient cellular uptake and 
high cytotoxicity in vitro and in vivo [177]. Evalua-
tion of LinTT1, a tumor-penetrating peptide target-
ing cell surface p32 protein, demonstrated enhanced 
tumor homing of systemically administered NPs in 
various GBM models, suggesting its potential for 
improving imaging and therapy in GBM [178]. IL-13 
receptor alpha 2 (IL-13Rα2)–targeted PEGylated-
polycaprolactone (PCL) NPs loaded with docetaxel 
exhibit increased anticancer activity in glioma-bear-
ing murine models by enhancing cellular uptake and 
glioma localization. Also, angiopep-2-conjugated 
PEG-PCL NPs exhibited enhanced glioma targeting 
and BBB penetration, leading to improved survival 
and safety profile in glioma-challenged mice com-
pared to conventional therapies [179].

Challenges with biomimetic NPs

Notwithstanding advancements in BNDDS, there are 
constraints and safety concerns such as biocompatibil-
ity, targeting specificity, stability, biological interac-
tions, and ethical considerations [180]. Most research 
is being done in laboratory settings, but because spe-
cies variations between humans and animal models 
have a big influence on biomimetic NPs, it is cru-
cial to take such differences into account. Limited 
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research exists on the impact of tumor behavior and 
function, necessitating the development of models 
reflecting tumor heterogeneity for tailored treatment 
strategies [181]. The clinical utility of biomimetic 
NPs faces challenges [182] such as limited scalability 
due to early-stage research [183], restricted charac-
terization methods [184], and safety concerns, neces-
sitating meticulous refinement for successful clinical 
translation [185]. Recent research has predominantly 
focused on the accumulation of biomimetic NPs at 
tumor sites, overlooking the impact of its physical and 
chemical properties on interactions with living organ-
isms, with limited attention to lifespan and quality of 
life. In addition, conformational changes in surface-
trapped proteins were correlated with increased tox-
icity [92]. Even though biomimetic NPs made from 
different cell sources have the potential to overcome 
problems with administering free therapeutic mol-
ecules such as low solubility, non-specific targeting 
of cancer cells, and consequent negative impacts on 
healthy cells, it is still important to address its toxic-
ity and biological impact. These nano-bio hybrid NPs 
seek to evade RES filtering and maintain extended 
circulation, which may have unanticipated negative 
effects [186]. Standardizing NP manufacturing exper-
imental protocols between laboratories is crucial to 
guarantee reproducibility and expedite their clinical 
translation. Variations in experimental techniques, 
however, may affect the characteristics of the mem-
brane, which could lead to immunological reactions 
and unfavorable outcomes because of modifications 
in the stability, composition, orientation, and glyco-
sylation of the proteins. Furthermore, the range of 
applications for membrane-coated NPs is growing, 
thanks to novel techniques like lipid insertion, trans-
membrane hybridization, biological engineering, and 
genetic manipulation [187]. Standardized procedures, 
rigorous biocompatibility assessment, and ongoing 
advancements in NP design are essential to address 
these challenges, potentially revolutionizing targeted 
drug delivery and improving patient outcomes in 
oncology and beyond.

Vaccines for GBM

With advancements in vaccination platforms and 
mechanistic investigations, cancer vaccination, a 
promising immunotherapeutic strategy against solid 

tumors, has undergone tremendous evolution. Can-
cer vaccines work to overcome tumor immunosup-
pression and improve antitumor immunity by provid-
ing tumor specific antigens (TSA) through a variety 
of modalities, including entire cells, peptides, and 
nucleic acids [180]. Preclinical research has yielded 
encouraging results, but effective phase III studies for 
GBM are still elusive [181, 182].

Peptide vaccines

TSAs produced by the many mutations in GBM trig-
ger immunological responses. Nevertheless, because 
of their high epitope expression in GBM and low 
specificity, non-mutational antigens increase the 
danger of autoimmunity, impeding peptide vac-
cine–based approaches [183]. Targeted by the CDX-
110 peptide vaccine, the most common TSA in 
GBM is the mutated EGFRvIII, which is present in 
20–30% of cases. Despite eliciting a robust immune 
response, the phase III trial (ACT IV) failed to sig-
nificantly enhance overall survival, despite show-
ing promise in preclinical models. The progress of 
EGFRvIII-targeting treatments such as ADU-623 was 
hampered by issues such as low threshold values for 
EGFRvIII detection and unsatisfactory outcomes due 
to the removal of EGFRvIII-expressing tumor cells as 
well as the natural decline of these cells [184, 185]. 
TSAs that show promise include mutated isoenzyme 
dehydrogenase (IDH), which are not present in nor-
mal cells. One such mutation is the R132H mutation 
in IDH1, which is commonly found in secondary low-
grade gliomas. Phase I clinical trials are currently 
being conducted on peptide vaccines that target IDH1 
R132H, which induces antigen-specific CD4 + T cells 
and humoral responses [186]. Novel antigens chosen 
by whole exon sequence comparison are the subject 
of recent experiments aimed at developing tailored 
cancer vaccines. The promise for customized vaccina-
tion approaches is highlighted by these trials, which 
produce sizable numbers of tumor-reactive T memory 
cells [187]. Heat shock proteins (HSPs) are overex-
pressed in certain malignancies, such as GBM, and 
they have roles in cellular defense. Combining HSPs 
with tumor antigens, HSP vaccines like HSPPC-96 
have shown potential in clinical trials for the treat-
ment of GBM. HSPPC-96 improved median progres-
sion-free survival (PFS) and overall survival (OS) 
compared to standard therapy in phase I/II trials, 
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demonstrating safety and efficacy. Trials are ongoing 
to learn more about HSPPC-96’s efficacy and mecha-
nism in GBM treatment [188].

Tumor cell–based vaccines

Early GBM vaccines that used inactivated or killed 
tumor cells have shown low success rates. To improve 
vaccination efficacy, gene-edited tumor cells produc-
ing immune-stimulating cytokines such as granu-
locyte macrophage colony stimulating factor (GM-
CSF) were introduced in the late 1980s. Promising 
results from phase I studies utilizing autologous and 
allogeneic tumor cells secreting GM-CSF have high-
lighted the significance of T-cell activation in anti-
tumor immunity. Furthermore, formalin-fixed GBM 
is being directly injected as an antigen; a clinical trial 
using DC vaccinations demonstrated an overall sur-
vival of 22.2 months [183, 189].

Dendritic cell–based vaccines

Dendritic cell (DC) vaccines are the subject of ongo-
ing GBM vaccination studies, which take advantage 
of DCs’ strong antigen-presenting capabilities. Using 
patient DCs loaded with tumor antigens, these vac-
cines are designed to strengthen the immune system. 
Production costs are substantial and there is inconclu-
sive evidence for phase III efficacy despite encour-
aging results. Notably, phase III trials for Northwest 
Biotherapeutics’ Diva project show advancements in 
the development of DC vaccines [183]. When Liau 
et al. used DC vaccines for the first time in the treat-
ment of GBM in 2000, a patient with recurrent brain-
stem glioma was able to live an additional 21 months 
[190]. Yu et al. achieved a median OS of 133 weeks 
for patients with recurrent GBM by loading DCs with 
peptides from autologous glioma cells in 2001 and 
2004 [188]. When Okada et al. created vaccines using 
tumor lysates in 2007, the safety profiles and immune 
responses were better. With grade 1 or 2 toxicities 
noted, more than ten phase I/II trials have shown 
the viability of DC vaccines, primarily using tumor 
lysate-pulsed DCs. A median PFS of 10.4  months 
and a median OS of 18.3  months were achieved by 
incorporating the DC vaccine into the Stupp regimen 
through the HGG-2006 study. However, with 39% of 
participants having grade 3/4/5 adverse events, HGG-
2006 adverse events were more severe than with 

other DC vaccines studies [191]. In 2013, Prins et al. 
conducted a comparison between glioma-associated 
antigen (GAA) peptide-pulsed DC vaccination and 
autologous tumor lysate (ATL)–pulsed DC vaccina-
tion. The results indicated that ATL-pulsed DC vacci-
nation produced greater activation of NK cells [188].

Gene-based vaccines

Genetic vaccines, utilizing nucleic acids like DNA or 
RNA, prompt cells to produce specific proteins, trig-
gering an immune response against tumors [182] with 
mRNA-based vaccines gaining traction due to their 
low infection risk, rapid degradation in the body, and 
potential for tailored cancer treatments through modi-
fications extending their half-life [192, 193]. Glioma 
antigens such as ANXA5, FKBP10, MSN, and PYGL 
are promising and have the potential to be developed 
into mRNA vaccines [194, 195]. The effectiveness 
of mRNA vaccines against GBM is being studied in 
clinical trials such as NCT02465268 [183, 196], with 
promising outcomes including better OS and PFS as 
compared to conventional therapy. Other trials, such 
as NCT00846456 [197], use mRNA derived from 
autologous GBM stem cells to target CSCs, and they 
demonstrate a significant improvement in PFS with-
out any major side effects. The development of DNA 
vaccines, utilizing synthetic DNA plasmids, presents 
a promising treatment avenue for GBM patients, 
offering stability, scalability, and human compat-
ibility, with safety advantages over recombinant pro-
teins and viral vectors, capable of eliciting robust 
immunological responses, including CD4 and CD8 
T-cell responses, without inducing immune reactions 
against the DNA backbone [198]. In a phase I trial for 
recurrent glioblastoma, VXM01, which encodes vas-
cular endothelial growth factor-2 (VEGFR-2), showed 
safety and tolerability. It was produced from an atten-
uated strain of Salmonella typhi. Following immu-
nization, the majority of patients showed increased 
tumor-infiltrating T cells and T-cell responses specific 
to VEGFR-2 [199].

Despite promising animal model results, GBM 
vaccination clinical trials have limited success, attrib-
uted to factors such as tumor dedifferentiation, limited 
CNS drug access, immunosuppression, tumor hetero-
geneity, and low mutational burden. Immune evasion, 
resistance to cytotoxic T lymphocyte (CTL)–medi-
ated lysis, and vaccine-associated toxicity further 
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hinder efficacy [181, 183]. Personalized vaccines 
for GBM, developed over two decades, aim to tar-
get individual tumor mutations. However, early tri-
als using tumor lysates showed increased immune 
response without significant survival improvement. 
Yet, personalized neoantigen design holds promise 
for enhancing vaccine efficacy by integrating diverse 
tumor antigens to reduce tumor load and counteract 
antigen loss risk. Combining neoantigens and TAAs 
boosts vaccine effects, extending survival in clinical 
trials. Long-length peptide vaccine designs minimize 
T-cell sequestration, reduce exhaustion, and enhance 
anti-tumor responses, while short-lived vaccines 
degrade quickly but can be supplemented with immu-
nostimulatory agents [182, 187, 200]. Vaccine adju-
vants enhance immune responses, with poly-ICLC 
(an RNA and polymer complex) and stimulator of 
interferon genes (STING) agonists showing promise. 
Prime CD4 + T cells maintain CD8 + T-cell popu-
lations and promote effective antitumor immunity, 
supporting CD8 + T-cell cytotoxicity and eliminat-
ing major histocompatibility class (MHC)–deficient 
tumor cells. Optimizing vaccine design, overcoming 
immunosuppression, and enhancing patient immunity 
are crucial challenges, with combination therapies 
like immune checkpoint blockade offering promise. 
Future research should compare vaccine platforms 
and antigen sources to determine effectiveness [201].

Conclusion

In conclusion, tailored medication delivery for a vari-
ety of disorders, most notably cancer, appears promis-
ing thanks to nanomedicine and the development of 
BNDDS. Targeted delivery and fewer adverse effects 
are provided by the biomimetic drug delivery system, 
which imitates natural particles. Among the discussed 
types of biomimetic NPs, cell membrane–coated 
NPs, as those derived from cancer, white blood, or 
red blood cells, hold great promise for improving 
the efficacy and specificity of drug delivery systems 
for the treatment of cancer due to their enhanced 
biocompatibility, prolonged in  vivo circulation, and 
precise targeting capabilities. However, clinical stud-
ies, long-term safety, and drug release mechanisms 
are among the study areas for BNDDS that require 
validation, despite the benefits in efficacy and safety. 
Prolonged circulation and targeted administration are 

made possible by BNDDS using natural CMs, differ-
ent endogenous materials, and other cellular compo-
nents. Although biomimetic membranes can encap-
sulate a variety of components, including metal NPs 
and polymers, clinical translation still presents chal-
lenges. Many vaccines have been investigated for 
GBM; to maximize BNDDS’s potential, multidisci-
plinary research, safety evaluations, and clinical trials 
should be given top priority in the future. To generate 
reproducible nanocarriers and accelerate their clinical 
translation, standardizing experimental procedures 
for creating biomimetic NPs across research sites is 
crucial. This will help to overcome possible issues 
related to variability in production processes. To 
overcome obstacles and fully utilize the potential of 
this innovative drug delivery technology, more mate-
rial science and molecular biology research is there-
fore essential.
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