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Abstract Cancer is considered the world’s deadli-
est disease, and its underlying pathology is intricate. 
Though cancer patients have had access to chemo-
therapeutics since aeons, the traditional treatments 
sometimes cause discomfort, have unwanted side 
effects, and are not site-specific. In this regard, sev-
eral nanomaterials have lately been developed and 
explored specifically for use in cancer treatment 
ascribable to their unique optically active, magnetic, 
and electrical properties owing to nano-sized (1 to 
100 nm) particles. Targeting, improved bioavailabil-
ity, and low toxicity are vital reasons for nanomedi-
cines becoming increasingly popular. Nanoparticles 
actively and passively target the cancer cells and kill 
them. Various ligands, including aptamers, biomol-
ecules, peptides and/or antibodies have been in use 
for active targeting of cancer, while the cell charac-
teristics, like leaky vasculature, angiogenesis etc., of 
cancer cells facilitate passive targeting. Focusing on 
nano oncology research investigations and clinical 
applications, this review traces the development and 
current state of targeted cancer therapy using nano-
materials. Also, this article furnishes account of chal-
lenges hindering the reach of these materials to clini-
cal applications.
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Introduction

Cancers manifest as anomalous aggregations of cellu-
lar material, frequently observed as a prevalent indi-
cation of inflammatory processes. It is a pathological 
condition characterised by the presence of a fluid-
filled cavity, which may or may not originate from the 
proliferation of abnormally enlarged neoplastic cells. 
Cancer is a phenomenon characterised by the emer-
gence of a novel growth that possesses the capacity 
to impact neighbouring tissues, propagate throughout 
the body and, in the absence of intervention, culmi-
nate in the demise of the afflicted individual [1, 2]. 
Conventional treatment options available do not 
address to the needs of patients. These suffer from 
limitations of poor bioavailability, non-site-specific 
delivery, toxicity and associated adverse reactions. 
Thus, the prime goal of delivery of drugs to cancer-
ous tissues lies in achieving targeted drug delivery 
to a specific anatomical region, thereby maximising 
therapeutic efficacy while minimising the potential 
for adverse effects or tissue injury resulting from dif-
fusion to non-targeted regions [3–5].

The key purpose of drug delivery research is to 
advance the field by formulating therapeutic inter-
ventions that possess practical clinical applications, 
ultimately benefiting patients. In the last one decade, 
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significant progress has been made in the domain of 
drug delivery technology, leading to the emergence 
of nanoparticulate-based drug delivery that optimises 
patient compliance and convenience [6]. With the 
advent of modern technologies, it is now feasible to 
administer drugs over extended periods of time, span-
ning weeks to months, while precisely controlling 
their release kinetics, along with improved biophar-
maceutical performance. Nano-guided cancer treat-
ment is burgeoning as a revolutionary offshoot of 
multidisciplinary research which is likely to surpass 
conventional cancer diagnosis and treatment methods 
[7–9]. Nanotechnology has been a boon for the many 
horrendous diseases including cancer. Delivering of 
the administered doses of therapeutic factors (drugs/
plant bioactives/RNA etc.) into tumour cells while 
bypassing normal cells with the use of nanosized 
biomaterials is known as nanoparticulate targeted 
cancer delivery. This strategy tends to overcome the 
challenges associated with traditional chemothera-
pies. Moreover, nanocarriers owing to their higher 
surface-to-volume ratio enable improved bioavail-
ability of poorly bioavailable drugs following their 
administration. Despite notable advancements, there 
remain certain domains that necessitate further efforts 
prior to the attainment of clinical relevance. An area 
of significant interest lies within the realm of targeted 
delivery to cancer [10–13]. The use of nanoparticle-
based drug carriers in cancer not only improves the 
efficacy of therapy and reduces associated toxicity, 
but also provides a shield to normal cells. Nanoparti-
cles should direct anticancer drugs to tumour tissues, 
while circumventing the all-phagocytic barriers with 
minimal systemic activity. After intracellular admin-
istration, the active medicine should exclusively 
affects malignant cells.

Thus, through current article, the authors would 
furnish an account on the use of nanotechnology for 
targeted cancer treatment, challenges associated with 
nano-oncology and regulatory perspective on the use 
of nanotechnology.

Nanotechnology‑enabled carrier systems 
for cancer treatment

Nanotechnology brings a whole buffet of technolo-
gies to the table, from nanochips and nanoscale 
probes to liposomes and polymeric micelles for the 

diagnosis and treatment of carcinomas [12]. The mar-
vellous nanoparticles and tiny wonders can assume 
an impressive array of forms and sizes, owing to the 
availability of numerous manufacturing technologies. 
Nanoparticles can be employed as drug carriers like 
liposomes [14, 15], polymer-drug conjugates [16, 17] 
and immunoconjugates [18, 19] due to their ability 
to change form and size during production. Lipid-
based delivery systems, including solid lipid and 
nanostructured lipidic carriers, liposomes, self-emul-
sifying delivery systems [20] [21], polymer-based 
nanovectors [22, 23], dendrimers [24, 25] and inor-
ganic nanoparticles [26, 27], form different classes of 
nano biomaterials employed for cancer theranostics. 
Lipid-based systems comprise the maximum share 
of all nanocarriers that have been explored owing to 
their biocompatibility and potential to scale up [28]. 
The nanoformulations have advantages over the tra-
ditional approaches as these make use of either pas-
sive targeting (non-ligand-mediated nanoparticles) or 
active targeting (ligand-coupled nanoformulations) 
to localise the actives to affected tissue only. Hence, 
normal tissues are not affected, and there are hardly 
any off-site-related complications. The various deliv-
ery carriers have been explained in the following sec-
tion, while underscoring their role in cancer treatment 
and how these are helping to target the cancer cells.

Lipidic nanocarrier systems

Liposomes

Liposomal nanosystems represent vesicular deliv-
ery carriers that encapsulate the drug within the 
vesicles, facilitating its targeted transportation to 
the desired region of action. The limitations associ-
ated with conventional chemotherapy can be effec-
tively addressed through the implementation of such 
strategies that enhance drug delivery specifically to 
the tumour tissue while minimising drug reaching 
the normal tissues [29]. The utilisation of liposomal 
drug delivery systems for chemotherapeutic agents 
presents notable benefits, as these carriers effec-
tively shield the drug from degradation, prolong 
their presence within the bloodstream and enhance 
their pharmacokinetic characteristics. Upon suc-
cessful permeation into the tumour, the preferential 
accumulation of nanocarriers within the tumour 
microenvironment is facilitated by the compromised 
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lymphatic drainage in the tissue. The lymphatic 
function within tumours exhibits a notable defi-
ciency, leading to a limited uptake of the interstitial 
fluid. Hence, the nanocarriers that have successfully 
traversed the perivascular region exhibit suboptimal 
clearance rates and tend to accumulate within the 
tumour interstitium. The phenomenon of sponta-
neous accumulation or “passive” targeting is com-
monly referred to as the enhanced permeability and 
retention (EPR) effect in the scientific community. 
The exploitation of the enhanced permeability and 
retention (EPR) effect is thus a highly efficacious 
approach for the precise localization of nanoprepa-
rations, specifically liposomes, to the tumour site, 
which has been extensively elucidated in scientific 
literature. Unaltered liposomes exhibit a swift elimi-
nation from the bloodstream due to the phagocytic 
activity of the reticuloendothelial system (RES), 
with the liver and spleen serving as the primary 
sites of clearance [30]. The surface grafting of poly-
ethylene glycol (PEG) leads to the emergence of 
“stealth” or stabilised liposomes, thereby enhanc-
ing their in  vivo stability and prolonging their cir-
culation time, typically ranging from 24 to 48 h. 
These liposomes are commonly referred to as long-
circulating liposomes. The performance of PEG as 
a stabiliser is contingent upon several key factors, 
namely the length of the polymer chain, the optimal 
surface density and the ideal configuration of the 
polymer chains [31].

Solid lipid nanoparticles (SLNs)

This is a novel colloidal drug delivery system that 
effectively combines the characteristics of liposomes 
and polymeric nanoparticles. SLNs can provide both 
the stability of the solid core and the biocompatibil-
ity of lipid nanocarriers, averting the limitations of 
liposomes and polymeric nanoparticles such as long-
term stability, toxicity, sterilisation and scalability 
[32]. It has been discovered that SLNs improve the 
solubility, bioavailability and therapeutic efficacy of 
water-insoluble pharmaceuticals. However, these are 
susceptible to non-specific uptake, which limits their 
effectiveness in the treatment of certain cancers, like 
prostate cancer. In this regard, surface modification 
of SLNs in order to circumvent absorption via RES 
improves tumour selectivity [33].

Nanostructured lipidic carriers

These are the advanced SLNs, and these carrier sys-
tems have demonstrated the potential to enhance 
the therapeutic effectiveness of encapsulated cargo 
by employing either an active or passive targeting 
strategy against various cancer types. The utilisa-
tion of targeted nanomedicine holds great promise 
in facilitating the precise delivery of drug carriers to 
the designated tumour-targeted tissue/cells, thereby 
minimising any potential impact on the surrounding 
healthy tissue/cells. The utilisation of active target-
ing involves the exploitation of the binding affinity 
between a cancer-specific ligand and the surface of 
the NLCs. This strategic approach enhances the ther-
apeutic effectiveness and safety profile of the cancer 
therapeutics [34].

Self‑emulsifying drug delivery carriers

Nanomedicines have been proposed researched for 
targeted anticancer therapy. The number of nanomed-
icines utilised in clinical settings is less than the num-
ber of nanotechnology-based cancer therapy studies 
undertaken. This may be attributable to technology 
transfer problems from the laboratory to the bedside. 
In this regard, SEDDS, the isotropic mixtures of oil, 
surfactant and cosolvent, are an emerging system for 
systemic drug delivery owing to ease of formulation, 
thermodynamic stability and capability of encapsulat-
ing lipophilic pharmaceuticals [35].

These mixtures spontaneously form an oil-in-water 
nanoemulsion on encountering the physiological 
media. The research efforts have been undertaken to 
actively target such systems in different cancers. In 
this regard, Giarra et al. (2019) had optimised the for-
mulation of SEDDS coated with enoxaparin (Enox), 
which showed enhanced cellular uptake compared 
to uncoated SEDDS in cancer cells. Low molecular 
weight heparins (LMWH), viz., enoxaparin (Enox), 
are natural glycosaminoglycans employed as the gold 
standard for the treatment of thrombosis. Owing to 
their negative charge, these are able to bind a large 
amount of intracellular and extracellular matrix com-
ponents, which are also involved in tumour progres-
sion and influence their activity. It has been demon-
strated that LMWH has the ability to bind to several 
drug transporters of the ABC and non-ABC families, 
directly inhibit ATPase activity and reduce the efflux 
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of chemotherapeutic agents, thus enhancing their cyto-
toxicity. Furthermore, heparin and derivatives have 
also been reported to interact with lung resistance pro-
tein (LRP), the main non-ABC transport protein and 
with vascular endothelial, fibroblast and angiogenetic 
growth factor receptors, which are strictly involved in 
tumoural angiogenetic processes. Based on these data, 
LMWH may be useful as ligands on delivery systems 
for targeting chemo-resistant cells [36].

Polymeric nanoparticles

Polymeric nanomaterials are often used to carry 
drugs as they are biocompatible, biodegradable, and 
can have many different shapes. Polymers could self-
assemble into polymeric nanoparticles that could hold 
healing drugs or imaging agents at the same time. 
Coated with PEG, these can stay in the blood longer, 
escape being quickly recognised and thrown out 
by the immune system, and slowly release drugs in 
tumours while also making it easier to target tumours. 
Polymers can still build up in diseased tissues where 
they are supposed to, either passively through the 
increased EPR effect or actively through cell surface 
ligands or receptors [37].

Inorganic nanoparticles

In recent years, the advent of nanoparticles has pre-
sented a promising platform for the advancement of 
this therapeutic approach. In the realm of nanoparti-
cles, it is the inorganic nanoparticles that emerge as 
the most fitting materials owing to their distinctive 
optical, electrical, thermal and magnetic properties, 
as well as their remarkable proficiency in facilitating 
drug delivery. These have been meticulously catego-
rised into distinct classes, namely metal, carbon, sili-
con, magnetic and composite inorganic nanoparticles. 
The utilisation of these agents in cancer therapy has 
been extensive as well [38]. The modification of sur-
face with ligands, like CD47, on platelet membranes 
facilitates the evasion of nanoparticle clearance by 
the immune system. Moreover, it is noteworthy to 
highlight that the existence of numerous receptors 
on the platelet membrane surface allows for direct 
interactions with distinct constituents present at the 
tumour location, thereby facilitating precise and tar-
geted outcomes [39].

Table  1 summarises various carrier systems and 
the targeting ligands employed to improve their 
potential to target cancer.

Targeted nano drug delivery in cancer: 
mechanisms

The use of nanoparticle-based drug carriers in cancer 
improves the efficacy of therapy, reduces associated 
toxicity and provides a shield to normal cells. Nano-
particles should direct anticancer drugs to tumour 
tissues, while circumventing the all-phagocytic barri-
ers with minimal systemic activity, thereby reducing 
exposure to normal cells [4, 40, 41].

For cancer therapy to be effective, controlled drug 
release mechanisms for nanomaterial-based cancer-
targeted delivery systems are essential [42]. The con-
trolled release is achieved through stimuli-responsive 
nanomaterials. Stimulus-responsive nanocarriers that 
take advantage of the distinct tumour microenviron-
ment are frequently used in these systems. Nanoma-
terials can experience structural changes that result 
in regulated drug release when they are stimulated 
by a variety of factors, including pH, temperature, 
enzymes or external fields. While thermosensitive 
materials react to temperature variations characteris-
tic of malignant locations, pH-sensitive nanocarriers 
take advantage of the acidic environment of tumour 
tissues for drug release. Specific enzymes that are 
prevalent in the tumour microenvironment are nec-
essary for enzyme-triggered release because they 
enable drug liberation upon enzymatic breakdown. 
Furthermore, on-demand drug release is made pos-
sible by external stimuli such as light, ultrasound or 
magnetic fields, which improves treatment accuracy. 
These mechanisms provide promising opportunities 
for enhanced cancer therapy by ensuring targeted 
medication delivery to cancer cells while limiting 
systemic toxicity through nanomaterial-based deliv-
ery systems [43].

Utilising the increased permeability and retention 
effect of tumours, passive targeting targets therapeutic 
drugs specifically to malignant tissues while limiting 
exposure to healthy cells. Active targeting increases 
the uptake of medications at the tumour site by using 
ligands or antibodies to bind selectively to recep-
tors that are overexpressed on cancer cells. When 
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combined, these tactics improve cancer therapy’s 
therapeutic outcomes by increasing treatment speci-
ficity and lowering off-target side effects. Hence, in 
a nutshell, passive targeting uses non-ligand-mediated 
nanoparticles, while active targeting uses ligand-
coupled nanoformulations for targeting the cancerous 
cells [44, 45].

Passive targeting

It is widely recognised that under certain conditions, 
such as inflammation or hypoxia, frequently observed 
in tumours, the endothelium of blood vessels demon-
strates heightened permeability in comparison to its 

normal state [46]. In such conditions, neoplasms that 
demonstrate accelerated growth exhibit angiogenesis, 
wherein they actively initiate developing new blood 
vessels or encompass pre-existing vasculature in 
proximity. The newly devised permeable vessels ena-
ble the selective and enhanced transportation of mac-
romolecules with molecular size greater than 40 kD 
and nanovector systems into the stroma of the tumour 
[47].

Furthermore, the conventional lymphatic drain-
age is lacking within the tumour milieu and serves 
as a contributing element to the accumulation of 
nanoparticles (NPs) [48]. The aforementioned 
characteristics, however, are not pertinent to small 

Table 1  Literature instances of various delivery carriers and the ligands employed for active targeting of different cancers

Drug Carrier Targeting moiety Cancer Outcomes References

Cystatin Polymeric nanoparticles Cytokeratin specific mAB Breast cancer Improved efficacy of therapy 
in patients vis-a-vis 
individual therapy with 
protease inhibitors

[79]

Paclitaxel Graphene oxide-methyl 
acrylate (GO-g-MA) modi-
fied nanocarrier

Folic acid Breast cancer Nanovectors reduce the 
levels of mitochondrial 
citric acids enzymes to 
normal as compared to 
naive carriers

[80]

Sunitinib NLCs Biotin Lung cancer Exhibited higher uptake in 
cell lines than non-targeted 
NLCs

[81]

Doxorubicin Polymeric nanoparticle Anti-EpCAM Breast cancer Improved efficacy was 
observed with polymeric 
nanocarriers

[82]

Doxorubicin Liposome Anti-Epcam aptamer (Syl3c) Colon cancer Superior results for the 
effective treatment of 
colon cancer

[83]

Tamoxifen SLNs Transferrin Breast cancer Improved therapeutic 
response in breast cancer 
treatment

[84]

doxorubicin Silica nanoparticles PNA-ATP aptamer Breast cancer Resulted in a novel 
therapeutic platform with 
huge promises for cancer 
therapy

[85]

Doxorubicin Nanoparticles Anti-PD-L1 peptide Breast cancer Potent in vivo anticancer 
efficacy and immune 
responses with negligible 
side effects were observed

[86]

- Silver nanoparticles and 
nano-selenium

RGD Glioma Promising results in combat-
ing human glioma by 
activating mitochondrial 
dysfunction

[87]

Paclitaxel Polymeric nanoparticles Hyaluronic acid Lung cancer Superior therapeutic efficacy 
was obtained

[88]
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molecule pharmaceuticals, as these demonstrate 
a significantly short duration within the systemic 
circulation system and quickly disperse from the 
tumour site. Thus, the phenomenon of encapsulating 
molecular pharmaceutical entities within nanoscale 
drug carrier systems improves their pharmacoki-
netic characteristics, resulting in prolonged sys-
temic circulation duration [48, 49]. Moreover, this 
methodology provides a certain level of precision 
targeting towards neoplastic tissues while simulta-
neously minimising undesired side effects. The phe-
nomenon of tumour targeting, commonly known as 
“passive” targeting, is contingent upon the intrinsic 
attributes of the carrier, encompassing its dimen-
sions and duration of circulation, alongside the dis-
tinctive properties exhibited by the tumour, notably 
its vascularity and permeability [49–51]. Figure  1 
portrays the active and passive targeting approaches 
of cancer targeting.

Active targeting through surface tuning

“Active targeting” describes explicit interactions 
amidst a drug or drug carrier and the target cells, 
which are generally mediated by definite ligand-
receptor interactions [52, 53]. It is only possible for 
ligand-receptor interactions to occur when the two 
components are close to one another. When you 

hear the term “active targeting,” you might imag-
ine employing a cruise missile to point a drug or 
drug carrier in a certain direction. However, present 
medication delivery techniques are unable to focus 
on a specific target. They arrive at the desired area 
by blood flow and extravasation, which is followed 
by intratumoural retention and dispersion. Simply 
put, “active targeting” refers to a certain “ligand-
receptor type interaction” for intracellular locali-
sation. In order to improve delivery to the tumour 
location, it is believed that increasing the EPR 
effect and/or lengthening blood circulation dura-
tion through PEGylation (i.e., changing the exterior 
plane of nanovectors with polyethylene glycol) will 
be effective [54]. Instead of enhancing tumour accu-
mulation per se, active pharmaceutical targeting is 
often employed to improve target cell recognition 
and uptake. Antibodies, ligands, proteins/peptides 
and other biomolecules are employed for active tar-
geting in cancers [54].

Immunoglobulins

Antibodies possess a recognised ability to identify 
cancerous cells, particularly those that exhibit a high 
expression of receptors or surface antigens. Since the 
inception of the initial monoclonal antibody (mAb) 
targeting tumour antigens in 1975, several mAbs have 
obtained clearance from the FDA for the purpose of 

Fig. 1  Depiction of active (ligand-based) and passive (cell characteristics) targeting approaches for cancer treatment using nanoma-
terials
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cancer therapy [55, 56]. Nevertheless, certain mAbs 
are presently undergoing evaluation in clinical stud-
ies[57]. Indeed, antibody-based immunotherapy has 
been employed for the treatment of cancer. Addition-
ally, the precise targeting capabilities and strong bind-
ing affinities of antibodies towards their intended 
targets have been harnessed to facilitate drug admin-
istration through carriers, such as lipid-based vectors 
[58]. The utilisation of monoclonal antibody (mAb)-
conjugated drug carriers for targeted therapy is widely 
recognised as a significant and potentially curative 
approach [59]. However, it is important to note that 
prolonged administration of these therapies may lead 
to the development of immunological memory towards 
the antibodies. The utilisation of antibody fragments or 
chimeric antibodies has the potential to significantly 
mitigate the immunogenicity associated with full anti-
bodies [60]. An instance of a successful use of cetuxi-
mab, a recombinant monoclonal antibody consisting 
of a variable (murine) and a constant region (human), 
involves its utilisation in cancer treatment through the 
specific targeting of the epidermal growth factor recep-
tor [61]. The employment of twofold targeting antibod-
ies is a developing approach that enhances the efficacy 
of tumour targeting, as antibodies possess dual epitope 
binding sites with ability to interact with either one or 
double target sites [62].

DNA/RNA aptamers

Short, single-stranded DNA or RNA aptamers pos-
sess intricate 3-D conformations. The application 
of Systemic Evolution of Ligands by Exponential 
Enrichment (SELEX) has resulted in the generation of 
nucleotide ligands with the ability to bind to specific 
sites on cancer cells [63]. The utilisation of cell-based 
SELEX exhibits significant promise due to its ability 
to selectively target cancer cells without requiring an 
extensive understanding of the protein expressions on 
their cell surfaces. This approach enables the devel-
opment of distinct aptamers that can effectively tar-
get various types of cancers. Aptamers exhibit greater 
stability in  vivo compared to antibodies and can be 
synthesised through chemical means using in  vitro 
selection, whereas the production of antibodies target-
ing specific antigens necessitates the involvement of 
biological systems [64]. In vitro production of aptam-
ers necessitates the availability of many targets. The 
targeting of membrane antigen specific to prostate 

and nucleolin is achieved by exploring aptamer-con-
jugated lipid-based drug delivery systems. Aptamers, 
although very nascent in their development and not as 
widely recognised as antibodies, are currently being 
discussed with novel cancer-targeting lipid-based 
drug carriers [65]. The combination of nucleotide 
aptamers and lipid-based vectors has been identified 
as a highly effective approach for antibody-guided 
applications in  vivo, mostly attributed to their low 
immunogenicity [66]. The limited affinity of aptam-
ers in comparison to antibodies poses a constraint 
on their utility. Aptamers possessing a single epitope 
binding site exhibit diminished binding affinities. 
The enhancement of aptamer binding affinity can be 
achieved through a number of approaches, while the 
utilisation of multivalent designs that incorporate a 
flexible linker is most advantageous [67, 68].

Other ligands

Transferrin, biotin, hyaluronic acid, folic acid and 
natural or synthetic proteins/peptides with short var-
ied amino acid sequences may recognise target cancer 
cells [43, 69]. Small peptides or ligands target cancer 
cell receptors with remarkable specificity. Transferrin, a 
serum glycoprotein, interacts to cell surface transferrin 
receptors to internalise iron. Due to iron needs, malig-
nant cancer cells like the bladder, brain, breast, lung and 
lymphoma upregulate transferrin receptors. Transfer-
rin-conjugated drug delivery methods allow receptor-
mediated endocytosis of pharmaceuticals [70]. Hya-
luronic acid, another such ligand molecule, targets the 
CD44 receptor. This linear glycosaminoglycan binds 
to malignancies with CD44-overexpression, including 
head and neck, stomach, colon, liver and breast cancers. 
However, cellular absorption and drug carrier efficacy 
are highly dependent upon the molecular weight of HA 
used [71, 72]. Folic acid, vitamin B9, interacts with the 
folate receptor to help cells internalise. Folate receptor 
targeting is a beneficial strategy since it is not highly 
expressed in normal tissues, but it is strongly expressed 
in many malignancies, notably female cancers includ-
ing cervical, breast and ovarian [73, 74]]. Natural 
ligands improve tumour access and treatment.

Cell targeting peptides (CtPs) are synthesised 
from libraries of peptides and employed as target-
ing ligands. CtPs are more stable than antibodies and 
have ten amino acids. CtP amino acid sequences iden-
tify targets, and appropriate sequences for interactions 
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with specific cancer cell surface receptors are essen-
tial [75]. The arginylglycylaspartic acid (RGD) pep-
tide, which binds to integrin receptors overexpressed 
on multiple cancer cell types, is the most thoroughly 
researched CtP [75, 76].

Site‑specific delivery using extravascular vesicles

The concept of site-specific targeting refers to the 
ability to selectively deliver a substance or agent to 
a specific location within a biological system. In this 
approach, extracellular vesicles (EVs), nanovesi-
cles enclosed by a lipid bilayer, are actively released 
by various cellular entities. This diverse population 
encompasses microvesicles, exosomes and apoptotic 
bodies. Extracellular vesicles (EVs) are lipid-based 
vesicles that exist within the confines of a cell, typi-
cally exhibiting a diameter ranging from 50 to 2000 
nm. These vesicles have been widely explored and are 
recognised for their association with intercellular com-
munication processes [77]. The utilisation of electric 
vehicles for drug delivery has been proposed in recent 
times, owing to their inherent ability to transport ther-
apeutic agents and various advantages they possess 
in comparison to liposomes. Hence, it is conceivable 
that the incorporation of diverse therapeutic agents, 

such as miRNA, siRNA or chemical drugs, alongside 
a synergistic approach involving the administration of 
anticancer drugs and oncolytic adenovirus enclosed 
within extracellular vesicles (EVs), presents a viable 
strategy for the delivery of pharmaceutical compounds 
for cancer therapeutics [78].

Table  1 delineates various literature instances for 
targeted drug delivery in cancer using antibodies, 
aptamers, ligands and /or peptides.

Challenges in nano‑targeted delivery in cancer

Currently, the volume of research and knowledge 
dedicated to nanotechnology has profoundly flour-
ished. However, only a few of them have actually 
advanced to clinical trials. Hence, the clinical trans-
lation of each nanoformulation is characterised by 
unique challenges including clinical EPR effect, 
tumor heterogenity, drug resistance, extravasation and 
lack of regulations (Fig. 2).

Clinical EPR effect

The EPR effect, while present, exhibits a relatively 
modest level of tumour specificity, resulting in a mere 

Fig. 2  Major challenges associated with cancer-targeted therapy using nanocarriers
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20–30% increase in delivery vis-a-vis normal tissues. 
The manifestation of the EPR effect is contingent 
upon the inherent biological characteristics of the 
tumour [89], specifically: (1) the extent of angio- and 
lymph-genesis, (2) the extent of perivascular tumour 
expansion and the density of the stromal reaction, and 
(3) the intratumoural pressure [90]. The collective 
influence of these various factors, in conjunction with 
the physicochemical attributes of nanocarriers, shall 
ultimately dictate their efficacy in delivering drugs.

The permeability of recently developed tumour 
blood vessels impacts the penetration of nanomedi-
cine, while also leading to increased interstitial pres-
sure. Interestingly, this elevated pressure hinders the 
accumulation of drug carriers within the tumour. Fur-
thermore, as a consequence of the disparity between 
pro- and anti-angiogenic signalling inside distinct 
regions of the tumour, the vasculature exhibits anom-
alous characteristics such as dilation, tortuosity and 
the presence of saccular channels. Additionally, the 
interconnections and branching within the vessels 
appear quite disorganised [91, 92].

As a consequence of the disparate blood supply, 
neoplastic cells exhibit irregular growth patterns, 
wherein those in close proximity to vascular struc-
tures undergo more rapid proliferation compared to 
those situated within the central region of the tumour, 
which experience limited access to essential nutri-
ents and oxygen [92]. This elucidates the presence of 
hypoxic/necrotic regions within the central regions 
of sizable tumours, specifically those measuring 1–2 
cm in diameter in murine models. Furthermore, it fre-
quently poses a challenge for nanomedicines to effec-
tively penetrate and access the blood vessels located 
within the central region of the tumours exhibiting a 
relatively lower degree of leakage compared to what 
might be anticipated, primarily owing to the elevated 
interstitial pressure. The said phenomenon has been 
observed in a diverse array of murine and human 
tumours. The presence of elevated interstitial pres-
sure exerts a dual effect on drug delivery, impeding 
the process of convection and concurrently exerting 
compressive forces on nascent blood capillaries. This 
leads to the flow of blood to get redirected from the 
tumour’s core to its periphery [93, 94].

Nevertheless, it is also conceivable to chemically 
or mechanically modulate the EPR effect in order to 
attain vascular normalisation, thereby resulting in an 
augmented accumulation of nanocarriers. Within the 

realm of chemical EPR enhancers, it is possible to 
identify various substances such as bradykinin (also 
known as kinin), nitric oxide, peroxynitrite, prosta-
glandins, vascular permeability factor (VPF)/vascular 
endothelial growth factor (VEGF) and a multitude of 
other cytokines. These particular molecules have the 
capacity to induce hypertension or promote vascular 
normalisation, thereby potentially leading to a tem-
porary enhancement of tumour perfusion. Alterna-
tive methodologies employ ultrasound [94], radiation, 
hyperthermia or photo-immunotherapy techniques to 
manipulate the vasculature of tumours and enhance 
the permeation of nanosystems. However, it is impor-
tant to acknowledge that all of the aforementioned 
methodologies possess inherent limitations and con-
traindications, necessitating meticulous deliberation 
[95]. Quantitative evaluation of the EPR effect for 
individual dose is essential to comprehend the effect 
of dose and potential effects of successive multi-
doses on bioefficacy.

Tumour extravasation and infiltration

A drug carrier possesses the capability to selectively 
identify and locate its intended target cell within a 
solid tumour, even amidst the presence of various 
cell types. This is achieved by traversing the intri-
cate network of blood vessels within the tumour and 
adopting the structure of either a soluble macromol-
ecule or a nanoparticle. The carrier system, however, 
needs to transverse through blood vessel openings in 
order to penetrate the tumour tissue and disseminate 
there. The transportation of molecules from the blood 
compartment to the tumour tissue is controlled by the 
synergistic influence of convection and diffusion. The 
occurrence of convective motion is a direct result of 
the existence of a pressure gradient. Unfortunately, 
a significant proportion of solid neoplasms demon-
strate elevated interstitial fluid pressure (IFP), with a 
range of values between 5 and 40 mm Hg depending 
on the size of the tumour. In contrast, it is generally 
observed that healthy tissue tends to sustain an inter-
stitial fluid pressure (IFP) of 3 mm Hg. The extrava-
sation of drug carriers through convective fluid flow 
depends on the difference in colloid osmotic pres-
sures in the compartments, as well as the disparity 
between the interstitial fluid pressure (IFP) within the 
tumour and the hydrostatic pressure within the capil-
laries (ranging from 10 to 30 mm Hg). Drug carriers 
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possess the capability to infiltrate compartments of 
cancerous tissue through the utilisation of stochastic 
Brownian motion. This motion allows them to navi-
gate through intercellular gaps, commonly referred 
to as fenestrae, which possess dimensions that are 
adequately spacious to accommodate a wide array 
of nanoparticles [96, 97]. The biological character-
istics of the vasculature, including its distribution, 
density and sizes of fenestrae, as well as nanoparti-
cles characteristics, such as surface properties, shape, 
size and amount localised to the tumour blood ves-
sel, can affect the speed of diffusional extravasation. 
According to a study, the amount of a test particle 
that can penetrate a solid tumour depends on the size 
of the particle, again placing severe restrictions on the 
test particle’s ability to travel a significant distance. 
Accordingly, there is little chance that any nanopar-
ticle will actually come in contact with bulk of target 
cells within the tumour. The intratumoural distribu-
tion of nanoparticles that can interact with extracellu-
lar matrix (ECM) components and non-target cells in 
a tumour becomes much worse when the mobility of 
the particles is further reduced [98]. Another poten-
tial obstacle for applications employing nanoparticles 
is the possibility that they may be large enough to 
physically block tumour vascular fenestrae, suppres-
sion of self-entry and subsequent entry of chemical 
substances until they are expelled from the aforemen-
tioned sites. Intratumoural distribution is a crucial 
factor when developing clinically applicable targeted 
carrier systems, even if intracellular trafficking and 
systemic biodistribution are of considerable interest 
to the majority of drug delivery studies [98].

Tumour heterogeneity

Histology and genomic profiling are two clinical 
methods used to classify tumours into one of many 
potential subtypes. For example, one of the 120 sub-
types of tumours of the CNS can be categorised [99]. 
In particular, this single classification fails to capture 
the variety of intratumour cancer cells, which is cru-
cial for initiatives involving the delivery of tailored 
medications to treat human disease. As a result of 
their propensity for mutation, cancer cells are known 
to change with a tumour both spatially and over time. 
The same tumour can therefore give rise to many 
human cell lines. The intratumoural heterogeneity 
induced by genetic variation and epigenetic change 

is supported by both cancer stem cell and clonal 
evolution hypotheses [100]. Haematopoietic stem 
cell-derived blood cells exhibit organisational vari-
ability, as predicted by the cancer stem cell theory. 
Somatic stem cells are more prone to acquire onco-
genic genetic alterations than less persistent non-stem 
cells. Furthermore, it is established that cancer stem 
cells are responsible for metastasis, recurrence and 
resistance to chemotherapy and radiation. In fact, 
there is a theory that says cancer is a sort of stem cell 
malfunction. Henceforth, the ongoing discourse per-
sists regarding the categorisation of cancer as a mal-
ady originating from stem cells. A tumour does not 
exhibit characteristics of a monoculture or a concen-
trated population of a single cell type. Cell popula-
tion heterogeneity exists in even cultivated cell lines, 
with cancer stem-like cells displaying a unique set of 
surface markers from other bulk cells that can toler-
ate traditional cytotoxic treatments. Surface markers 
that identify a population of cancer stem-like cells 
from that tumour may not be the same as isolated cell 
lines from that tumour, suggesting that cancer stem 
cells may have a different origin. The epithelial-mes-
enchymal switch is a renowned transition of differ-
entiated cells towards a more oncogenic phenotype, 
which includes cancer stem-like cells in metastasis. 
Multiple cell subpopulations in various phases of 
transition between these diverse cell phenotypes may 
exist simultaneously in a tumour in a state of dynamic 
equilibrium. Together, these cells have the capacity to 
produce a tumour microenvironment that is incredibly 
complicated. Together, these cells have the capacity 
to produce a tumour microenvironment that is incred-
ibly complicated. All things considered, selecting a 
single population amongst diverse, shifting and mov-
ing populations to target with a single surface marker 
is equivalent to selecting cancer cells. Due to the 
given surface marker’s shared features with normal 
cells within the tumour, recognition and classification 
of a specific cancer cell variety by just one surface 
marker can end up in an incorrect estimation of can-
cers. Therefore, single surface marker techniques are 
frequently considered to be obsolete. One approach to 
identifying and locating cancer cells is the multiple 
surface marker method [101].

Likewise, “active targeting” might not always 
be ensured by the simple existence of a particulate 
ligand on the exterior of nanoparticles. Cancer cell 
lines that are cultured and maintained in vitro through 



J Nanopart Res (2024) 26:127 

1 3

Page 11 of 15 127

Vol.: (0123456789)

tissue culture techniques may not accurately reflect 
the inherent characteristics of the original cancer cells 
identified within a patient’s tumour, thereby limiting 
their suitability for identifying potential receptors 
for “active targeting”. Additionally, it is just unclear 
how frequently and in what amounts each cancer cell 
expresses a certain receptor in tumour cells. Because 
of this, promising findings from early in vitro studies 
may not be directly comparable to those from xeno-
graft model investigations using these well-estab-
lished cancerous cell lines in rats or, more critically, 
to those from spontaneous human tumours [102]. Due 
to these challenges in determining an effective ligand-
receptor interaction, the efficacy of “active targeting” 
is questioned in this instance.

Drug resistance

Also, cancer cells can become resistant to nanopar-
ticles either due to target’s own mutations or dif-
ficulty in building medications that target some of 
the identified targets with complex structure. The 
mutations may cause the targeted therapy to no 
longer interact well with the target, and the tumour 
may find a whole new growth path that is unrelated 
to the target [103].

Lack of regulatory controls

While there is much anticipation for the future of 
nanomedicine, the area still lacks comprehensive 
regulatory guidelines [104]. Regardless, many 
nanomaterials and nanotechnologies have been 
authorised by regulators and used in clinical set-
tings for a wide variety of drugs, including the 
liposomal preparations,  Doxil® and  AmBisome®, 
albumin-drug nanoparticles such as  Abraxane® and 
polymeric micelles such as  Eligard® to name a few 
[104]. Moreover, numerous new nanomedicines 
perform through interaction with genetic materi-
als or biomolecules essential for regular genome 
function and cellular division, thereby potentially 
inducing genotoxicity and mutagenicity [105]. 
Also, clinical trials for cancer therapies encounter 
many clinical and regulatory challenges, which is a 
matter of concern [106]. Therefore, a solid regula-
tory framework is required to manage these crucial 
features of nanotechnology-based cancer-targeting 
techniques.

Issues of biocompatibility, stability and clearance of 
nanomaterials

The critical aspects related to nanoparticles are their 
biocompatibility, stability and clearance from the 
body. Biocompatibility can be encountered using 
biocompatible lipids/polymers for the fabrication of 
nanomaterials [34]. However, stability is a vital con-
cern, as nanomaterials are prone to agglomeration, 
degradation or changes in their physical and chemi-
cal properties over time. Hence, the application of apt 
stabilisation strategy like surface functionalization, 
coating with biocompatible materials or encapsula-
tion can help enhance their stability and performance 
[68]. Also, clearance of nanomaterials is vital for 
ensuring that nanomaterials are safely removed from 
the body after use. Designing nanomaterials with 
appropriate size, shape and surface properties can 
influence their clearance rates and minimise potential 
accumulation in organs or tissues [105].

In a nutshell, addressing these issues requires a 
multidisciplinary approach involving materials scien-
tists, biologists, pharmacologists and regulatory agen-
cies to develop safe and effective nanomaterials for 
various biomedical applications.

Conclusions

The most effective method of cancer therapy medica-
tion administration is one that delivers the drug only to 
the targeted tumour. Furthermore, in order to address 
the potential limitation of incomplete tumour removal 
through single-target approaches, it may be imperative 
to concurrently direct efforts towards multiple targets. 
It may be advantageous to develop “magic shotgun” 
strategies to deliver the medicine to diverse targets or 
deliver many drugs (101, 103). Advancements in nano-
technology have the potential to revolutionise health-
care by improving diagnosis, treatment and patient care 
on the whole. This would allow for early detection and 
strategizing interventions for the delivery of precision 
medicine and improved treatment outcomes.

Numerous strategies and procedures have been 
investigated over time for medication targeting to 
tumours. But most of them have been unsuccess-
ful in either early-stage or late-stage clinical test-
ing. This may be the result of a number of factors, 
chief amongst them the overinterpretation and/or 
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misinterpretation of some of the mechanistics under-
lying tumour-targeted drug delivery, as well as the 
fact that some of the formulations tested fell short of 
expectations in monotherapy regimens or were too 
complex for the market to scale up. The advancement 
of targeted drug delivery utilising nanomaterials in 
cancer treatment relies heavily on interdisciplinary 
collaboration amongst researchers from a spectrum of 
domains. In order to tackle associated challenges with 
cancer targeting, a diverse group of experts, including 
biomedical engineers, chemists, material scientists, 
pharmacologists, computer scientists and oncologists, 
need to come together. Collaboration would promote 
advancements in imaging technologies, which will 
pave the way for non-invasive real-time tracking of 
drug distribution and therapeutic response. Potentially 
improving cancer treatment efficacy while decreas-
ing off-target effects and optimising patient outcomes, 
interdisciplinary collaborations would speed up the 
translation of tailored nanomedicines from bench to 
bedside by combining knowledge from different fields.
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