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Abstract The effect of fluctuating coagulation on 
particle distribution in multiphase turbulence of nano-
particles was studied based on the Reynolds averaged 
equation of turbulence flow and the general dynamic 
equation of particles. A one-order closed model was 
proposed to relate the fluctuating coagulation term to 
the average particle size distribution function for clos-
ing the particle equation. The proposed model and 
equations were applied to a turbulent jet flow using 
the k-ε turbulent model and the Taylor-series expan-
sion moment method. The results showed that there is 
a difference in the values of particle number density 
M0, geometric average diameter dpg and geometric 
standard deviation σg of particle diameter with and 
without considering fluctuating coagulation. Larger 
Damkohler number leads to smaller M0, higher par-
ticle polydispersity M2, larger dpg and σg. Along the x 
direction of the flow, M0 decreases, while M2, dpg and 
σg increase. From the centerline to the outer edge of 

the jet, M0, M2 and dpg decrease, while σg increases 
first and then decreases. Finally, the further research 
that can be carried out has been proposed.
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Introduction

The motion of fluids containing nanoparticles is com-
mon in nature and engineering processes, e.g., syn-
thesis of nanostructured materials, drag reduction, 
improving heat conduction, atmospheric processes 
and so on. The spatial and temporal evolution of 
particle number density (PND) and size distribution 
(PSD) in the flow is governed by the general dynamic 
equation (GDE) which includes the processes of par-
ticle convection and diffusion as well as nucleation, 
evaporation, condensation, coagulation, breakage and 
so on [1]. In the GDE, the above processes determine 
the change in the size distribution function with time 
and position. By solving the GDE for different initial 
and boundary conditions, the size distribution func-
tion can be calculated for geometries and flow condi-
tions of practical interest.

Among the above process, one of the most typi-
cal and common phenomena is particle coagula-
tion which is a process whereby particles collide 
with one another and adhere to form large particles, 
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resulting in the particle size increased and number 
density decreased [1]. The particle number density 
in multiphase flow of nanoparticles is usually high, 
e.g., cloud formation and synthesis of nanoparticle 
material structure, which makes particle coagula-
tion the main controlling factor of the GDE. In addi-
tion to coagulation, nanoparticles  (10–9 ~  10−7m) 
undergo Brownian motion due to the collision of 
gas molecules, and also exhibit convection and dif-
fusion under the effect of fluid velocity and velocity 
gradient. Therefore, the main aim of this study is to 
study the evolution of particle distribution under the 
combined effect of particle convection, diffusion and 
coagulation.

In most applications, the flow of fluids contain-
ing nanoparticles is in turbulent state. In this case, 
turbulence not only affects particle convection and 
diffusion, but also affects particle coagulation. The 
nonlinear interaction between turbulence and particle 
coagulation makes the problem very complex. One of 
the factors leading to particle coagulation is particle 
collision which is affected by the turbulence. Some 
investigations have been performed to explore the 
effect of turbulence on the particle collision. Saffman 
& Turner [2] presented expressions for the turbulent 
coagulation kernel and applied the expressions to 
show how the size distribution of particle will change 
by numerical integration. Delichatsios & Probstein 
[3] derived coagulation rate relations for particle sizes 
less than and larger than the Kolmogorov microscale 
of turbulence, and indicated that the coagulation effi-
ciency did not depend on the particle transport mode. 
Sundaram & Collins [4] indicated that collision rates 
of particles that rebound elastically were controlled 
by the statistics of radial distribution of particles and 
the relative velocity probability density function. 
Wang et  al. [5] argued through numerical experi-
ments that the expressions presented by Saffman 
& Turner [2] were correct only when the particles 
were kept in the system after collision and allowed 
to overlap in space.  Reade & Collins [6] found that 
the formula derived by Sundaram & Collins [4] was 
equally valid in a coagulating system, and indicated 
that coagulation altered the numerical values of sta-
tistics from the values they attained for the elastic 
rebound case. Guichard et al. [7] revealed the neces-
sity to consider the Brownian motion and turbulence 
effects together in the coagulation kernel. Finke et al. 
[8] found the elevation of droplet collision frequency 

when applying the multiple orifices to reduce the 
droplet coagulation due to the establishment of a tur-
bulent mixing zone. Chen and Cheng [9] showed that 
the Nusselt number was increased with increasing 
nanoparticle concentrations because the probability 
of collision of particles was increased in the cooling 
stave of blast furnace. Karsch and Kronenburg [10] 
incorporated an interpolation scheme to extend the 
expression of coagulation kernel which was originally 
developed for the ballistic and diffusive agglomera-
tion to the more general transition regime. In addi-
tion, the surface properties of particles also have an 
impact on particle collisions, e.g., like-charged  con-
ducting particles almost always attract each other at 
small separations [11]; the enhancement factor of col-
lision rate was dependent only on the Stokes number, 
the electrostatic energy to shear energy ratio, and the 
ratio of colliding  particle  radii for particles of con-
stant surface charge density [12].

The effect of turbulence on particle coagulation 
after collision is another important research topic 
and is also the focus of this article. For obtaining 
the PSD and PND by solving the GDE, the effect of 
turbulence on particle coagulation is specifically the 
effect of turbulence fluctuation on the PSD and PND. 
There have been some studies in this topic. Levin & 
Sedunov [13] studied the gravitational coagulation of 
charged cloud drops in turbulent flow with respect to 
the electrostatic forces. Soos et al. [14] built a micro-
mixing model by assuming a probability density 
function (PDF) to represent the interaction between 
fluctuations and particle coagulation in turbulent 
jets. Guichard et  al. [7] indicated that it was neces-
sary to consider the Brownian and turbulence effects 
together in the coagulation kernel. Cifuentes et  al. 
[15] studied the effect of turbulence on particle-form-
ing flames and captured a number of the Batchelor 
scales pertaining to the smaller  nanoparticle  struc-
tures. The physical mechanisms that contribute to 
particle growth were not negligible on the particle 
concentrations. Anand and Mayya [16] showed that 
the spatial inhomogeneity in the particle number con-
centration initiated differential coagulation rates lead-
ing to a distribution with larger size modes in regions 
with higher concentration, and sharper the occurrence 
of spatial heterogeneity, more pronounced was the 
bimodal effect. Papini et  al. [17] obtained a precise 
link between mean intensity of the turbulent veloc-
ity field and  coagulation  enhancement, and proved 
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a formula for the mean velocity difference, in agree-
ment with the gas-kinetic model by a new method. 
Zhao et al. [18] found that the coagulation of parti-
cles less than 130  nm was dominated by Brownian 
motion, while turbulent  coagulation  significantly 
affected the  coagulation  of particles with diameters 
of 600–950 nm in vehicle plumes. Zatevakhin et al. 
[19] considered Brownian  coagulation  under turbu-
lent mixing conditions, and demonstrated that the 
use of Reynolds-averaged equations could lead to 
a significant underestimation of  coagulation  rates. 
Chan et  al. [20] investigated nanoparticle forma-
tion, coagulation and condensation processes in 
turbulent flows, and showed that the large coherent 
structures strongly affected the particle number and 
mass concentration distributions as well as particle 
polydispersity.

The particle coagulation term in the GDE for tur-
bulent flow can also be solved using direct numerical 
simulation (DNS), large eddy simulation (LES), and 
Reynolds averaged method (RAM). In terms of solv-
ing the GDE by the DNS and LES, Settumba & Gar-
rick [21] defined a Damköhler number to represent 
the ratio of the convection to coagulation time scales, 
and obtained the evolution of the particle field using 
a moment method to approximate the GDE. Miller 
& Garrick [22] performed the DNS of nanoparticle 
coagulation in a planar jet using a sectional method 
to approximate the GDE without a priori assumptions 
regarding the particle size distribution. Garrick et al. 
[23] conducted the DNS of a coagulating aerosol in 
a 2-D iso-thermal shear layer utilizing a nodal model 
to approximate the GDE with no a priori assumptions 
of the particle size distribution at Re = 200. Garrick 
[24] used the data of direct numerical simulation to 
isolate the impact of small or subgrid-scale parti-
cle–particle interactions on particle coagulation, and 
showed that small-scale interactions acted to both 
promote and suppress particle coagulation. Ma et al. 
[25] implemented a coupling of the DNS and the 
GDE to explore the impact of turbulence on  nano-
particle  dynamics in homogenous isotropic turbu-
lence using the Taylor-series expansion method of 
moments, and indicated that the  coagulation  had a 
significant effect on the particle dynamics. Cifuentes 
et al. [26] introduced a new DNS database to obtain 
insights into the statistics of nanoparticle formation in 
reactive flows using the sectional method to solve the 
GDE. Schwarzer et  al. [27] applied the DNS with a 

Lagrangian particle tracking strategy in combination 
with the coupled population balance-micromixing 
approach, and found that the approach was capable of 
predicting not only the mean sizes but the full PSD. 
Das & Garrick [28] calculated instantaneous, filtered 
and spanwise averaged data of the particle field in a 
planar turbulent jet via DNS for examining the turbu-
lent fluctuations on particle growth, and indicated that 
turbulence or subgrid scale models were needed for 
accurately simulating particle dynamics.

The DNS does not require establishing a model 
for turbulence and directly solving the Navier–Stokes 
equation numerically, which can avoid modeling 
errors. However, turbulence is a multi-scale irregular 
flow. To obtain flow information at all scales, there 
is a high demand for spatial and temporal resolution. 
Using the DNS requires a large amount of computa-
tion, and is highly dependent on computer memory. 
Therefore, the RAM, i.e., decomposing the particle 
concentration field into time-averaged and fluctua-
tions has become an alternative method. Rigopoulos 
[29] applied Reynolds averaging (i.e., decompos-
ing fluid velocity and particle size distribution func-
tion into time-averaged and fluctuations) to the GDE 
and obtained Reynolds averaged GDE (RA-GDE). In 
the RA-GDE, the coagulation birth and death terms 
include second-order correlation of two fluctuating 
particle size distribution function, the correlation 
is the contribution to coagulation resulting from the 
fluctuating concentrations hence it is called fluctuat-
ing coagulation term (FCT). The presence of the FCT 
makes the RA-GDE unclosed, so the FCT is usu-
ally assumed to be negligible (e.g., [30–32]) or other 
methods are used to avoid the closed problem of the 
equation. For example, Rigopoulos [29] proposed a 
new probability density function (PDF) method based 
on the transport of the joint PDF of reactive scalars 
and the PND at different sizes to overcome the closure 
problems, and indicated that the interaction of turbu-
lence with particle formation mechanisms accounted 
for significant deviations in the PSD in some cases 
and could not be neglected. Tsagkaridis et  al. [33] 
used sectional method for the GDE coupled with the 
DNS for the flow equation to investigate turbulence-
coagulation interaction in a 3-D turbulent planar jet, 
and the FCT was simulated via the DNS. The results 
showed that the FCT made a significant contribution 
to the time-averaged coagulation term, up to 20% on 
the jet centreline and 40% close to the edges.
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The FCT cannot be ignored in some cases beads on 
the preceding review. There have been similar views 
in the past [1, 34]. In addition to the above methods 
for handling the FCT to avoid the problem of equation 
closure, the method of directly modeling the FCT to 
close the equation is an alternative method. Inspired 
by the fact that Reynolds stress (second-order cor-
relations of two fluctuating velocity) is expressed as 
the product of eddy viscosity coefficient and average 
velocity, the FCT (second-order correlations of two 
fluctuating particle size distribution function) can be 
expressed as the product of a coefficient of turbulent 
fluctuation and average particle size distribution func-
tion, thus closing the equation. Similar to turbulence 
model, if a differential equation needs to be solved 
when determining the coefficient of turbulent fluc-
tuation, this mode is called a one-order closed mode. 
Previous studies have directly used kinetic energy and 
turbulent kinetic energy to represent the coefficient 
of turbulent fluctuation, while the innovation of this 
article is to obtain this coefficient through a more 
accurate method of solving the equation of fluctuating 
particle concentration. Therefore, This paper aims to 
develop a one-order closed model in which the equa-
tion of fluctuating particle concentration is involved, 
and apply the model to solve RA-GDE in a turbu-
lent jet flow to demonstrate the necessity of retain-
ing the FCT (i.e., involving turbulence– coagulation 
interaction).

The rest of this paper is structured as follows. 
Section II presents the basic equations including 
the closed process of the RA-GDE. In Section III, 
the moment equation of particles and Taylor-series 
expansion moment method are introduced. Subse-
quently, the model, equations are applied to a turbu-
lent jet flow in Section IV where details on the flow 
configuration, numerical parameters and method, 
verification and discussion of numerical result are 
presented. Finally, the conclusions are presented in 
section V.

Basic equations

In the present study the following assumptions are 
made: (1) The concentration of particles is not high 
enough to change the constitutive relationship of the 
fluid, and the fluid remains a Newtonian fluid. In 
addition, the particles do not affect the fluid density 

and viscosity, and in gas-particle two-phase flow, 
if the volume concentration of particles is less than 
 10–6 (the concentration in this paper is 1.79 ×  10–7 
as shown in IV B), the particle phase is called dilute 
phase and the one-coupling model (the particles have 
no impact on the fluid motion) can be used. (2) The 
ratio of the response time scale of the particles to the 
characteristic time scale of flow (i.e., Stokes number) 
is much smaller than unity so that the particles follow 
the fluid. (3) The particles are spherical before coagu-
lation, and coagulated particles are modelled by a 
spherical particle with the equivalent volume. Above 
assumptions can be found in realistic applications.

Flow field

The flow is considered as incompressible and isother-
mal. The instantaneous velocity and pressure can be 
written as the sum of average and fluctuating compo-
nents based on the method of Reynolds average:

Substituting Eq.  1 into the continuity and Navier 
Stokes equation and averaging with respect to time, 
we have

in which ui and p are the average fluid velocity and 
pressure, ρ and μ are the fluid density and viscos-
ity, respectively; −�u�iu�j is the Reynolds stress and 
related to the gradient of average velocity based on 
the turbulent viscosity hypothesis:

where μt is the eddy viscosity; Cμ is a constant and 
taken as 0.09 here; k and ε are the turbulent kinetic 
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energy and turbulent dissipation rate, respectively, 
and can be described as:

where the constants are taken as C1 = 1.44, C2 = 1.92, 
σk = 1.0 and σε = 1.3.

Particle field

The instantaneous particle size distribution function 
n(v, t) (v is particle volume) also can be decomposed 
into average and fluctuating components:

The motion of particle is related to the particle 
drag. In this paper, a dual fluid model is used, and the 
drag exerted by the fluid on the particles is reflected in 
the particle convection and diffusion terms of Eq. 9. 
Substituting Eqs.8 and 1 into the general dynamic 
equation (GDE) for nanoparticles and averaging with 
respect to time yields:

on the left-hand side, the first, second, third, fourth 
term are the unsteady, convection, diffusion and 
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turbulent diffusion term, respectively. On the right-
hand side, the first and third terms are the birth, and 
the second and fourth terms are the death of particles 
due to coagulation, respectively;u and u′ are the aver-
age and fluctuating velocity vector; Dp is the particle 
diffusion coefficient. For nanoparticles, Dp needs to 
be corrected based on the Cunningham slip correc-
tion coefficient Cc [1]:

in which kb is the Boltzmann constant; T is the tem-
perature; dp is the particle diameter; Kn = 2λ/dp is the 
Knudsen number with λ being the mean free path 
of gas molecules. Interpolation formula 10 is often 
used to cover the entire range of values of the Knud-
sen number from the continuum to the free molecule 
regimes.

In Eq.  9 β(v, v1) is the coagulation kernel for two 
particles with volume of v and v1, and describes the fre-
quency of collisions leading to coagulation. The parti-
cle coagulation is mainly induced by Brownian motion, 
laminar and turbulent shear. When the particle size is 
less than 1  µm and the particle concentration is less 
than the critical value corresponding to turbulent coag-
ulation, the particle coagulation is mainly dominated by 
the Brownian motion, so the Brownian coagulation ker-
nel in the free molecular region is:

where ρp is the particle density. The initial diameter 
of the particles is on the nanoscale, and the ratio of 
the diameter after coagulation to the initial diameter 
is less than 7 times as shown in Fig.  10. Therefore, 
the diameter of the particles after coagulation is 
still less than or equal to the molecular free path, so 
Eq. 11 can still be used.

The last term on the left-hand side of Eq. 9 repre-
sents the change in n resulting from turbulent diffusion. 
The term can be treated in a manner similar to passive 
scalar advection based on the assumption that particles 
are small and of zero inertia [1]:

where μt is the eddy diffusivity as shown in Eq. 5.
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The closure of the GDE and the transport equation of 
particle concentration fluctuation

The third and fourth term on the right-hand side of 
Eq.  9, called fluctuating coagulation term (FCT), 
make the GDE unclosed. The FCT is the contribution 
to coagulation resulting from the fluctuating concen-
tration. As described in the introduction, the FCT has 
been neglected in many previous studies, while the 
FCT holds a certain weight in some practical situ-
ations. In the present study, the FCT is treated in a 
manner similar to Reynolds stress and expressed as 
the product of a coefficient of turbulent fluctuation ςt 
and average particle size distribution function:

Next we define ςt as:

where the instantaneous particle concentration Cm is 
decomposed into average component Cm and fluctu-
ating component C′

m
 , then 

−

(C�
m
)
2 is the average value 
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of the square of the fluctuating component C′
m
 . In 

Eq.  15 
−
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m
)
2 should be calculated through solving 

the equation of particle fluctuating concentration, so 
the model based on Eq. 15 is called one-order closed 
model.

In a manner similar to turbulent generation and 
dissipation, during transportation of particles, the 
generation and dissipation terms of 

−

(C�
m
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2 are:

where l is the Kolmogorov scale and proportional to 
k3/2/ε based on the turbulent k ~ ε model. The equation 
of particle fluctuating concentration suitable to the 
turbulent k ~ ε model is [35, 36]:

in which Pr is the Prandtl number of 
−
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2 ; Cg1 and 

Cg2 are the coefficient and taken as 0.41 and 1.4 [37], 
respectively.

Closed GDE

Substituting Eqs.12, 13, 15 into Eq. 9, we have:
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where D and β are shown in Eqs. 10 and 11, respec-
tively. Equation  18 is the closed general dynamic 
equation (GDE).

Moment equation and moment method

Moment equation

The numerical method should be used to solve the 
closed GDE because of the complexity of the equa-
tion. In the numerical methods including the DNS, 

moment method, sectional method and stochastic par-
ticle method, the moment method has been widely uti-
lized due to its relative simplicity of the calculation and 
the need for relatively few computing resources. In the 
moment method, the moment of average particle size 
distribution function is defined by:

(19)mk =

∞

∫
0

vkn(v)dv,
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where k is the order of the moment; the zero-order 
moment m0 represents the total number density of par-
ticles at given point and time; the first-order moment 
m1 is the total volume concentration of particles; the 
second-order moment m2 is proportional to the parti-
cle polydispersity; and the higher-order moments with 
k > 2 represent different physical meanings.

Before using the moment method, it is necessary 
to transform the GDE into a moment equation. Based 
on Eq. 19, the GDE is transformed into the moment 
equation after multiplying Eq. 18 by vk and then inte-
grating over the entire size distribution:

Equation 20 is the moment equation for nanoparti-
cles in turbulent flow.

Taylor-series expansion moment method

The moment equation has been solved using different 
moment methods in the past, e.g., pre-assuming the 
shape of particle size distribution [38], approximat-
ing the integral moment through an n-point Gaussian 
quadrature [39], approximating moments to pth-order 
polynomials [40], closuring equation with inter-
polative method [41], and closuring equation with 
the Taylor-series expansion [42]. The last moment 
method, called the Taylor-series expansion moment 
method (TEMOM), has been effectively applied in 
the past [43–46] and hence adopted in the present 
study. The TEMOM is expanding the coagulation 
kernel of particles with particle volume as a small 
parameter using Taylor series to make it an integra-
ble function and make the moment equation solvable 
in a closed form. For a  detailed  introduction  to the 
TEMOM is referred to [42].

Substituting Eq. 11 into Eq. 20 with k = 0, 1, 2, we 
have:
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where integer and fractional order moments are 
included. For closing Eq. 21, the TEMOM is used to 
expand vk at point v = w and remain the first three term 
of Taylor series. Thus vk can be transformed into:

Combining Eq. 22 with Eq. 19 yields:

Substituting Eq. 23 into Eq. 21, we have:

(21b)
�m1

�t
+ u ⋅ ∇m1 − ∇ ⋅ [(Dp +

�t

�
)∇m1] = 0,

(21c)

�m2

�t
+ u ⋅ ∇m2 − ∇ ⋅ [(Dp +

�t

�
)∇m2]

= (
3

4�
)
1∕6

(
6kbT

�p
)
1∕2

(1 +

−

(Cm�)
2

−

(Cm�)
2 +Cm

2

)

(m1m2 + 3m4∕3m5∕3),

(22)

v
k = (

w
k−2k2

2
−

w
k−2k

2
)v2

+ (−wk−1
k
2 + 2w

k−1
k)v + w

k

+
wkk2

2
−

3wkk

2
.

(23)
m

k
= (

vk−2k2

2
−

vk−2k

2
)m2 + (−vk−1k2

+ 2v
k−1

k)m1 + (vk +
vkk2

2
−

3vkk

2
)m0.

(24a)

�m0

�t
+ u ⋅ ∇m0 − ∇ ⋅ [(Dp +

�t

�
)∇m0]

= −

√
2

5184
(
3

4�
)
1∕6

(
6kbT

�p
)
1∕2

(1 +

−

(Cm�)
2

−

(Cm�)
2 +Cm

2

)

m
11∕6

0
(−65m2

0
m2

2
+ 1210m0m

2

1
m2 + 9223m4

1
)

m
23∕6

1

(24b)
�m1

�t
+ u ⋅ ∇m1 − ∇ ⋅ [(Dp +

�t

�
)∇m1] = 0,

(24c)

�m2

�t
+ u ⋅ ∇m2 − ∇ ⋅ [(Dp +

�t

�
)∇m2]

=

√
2

2592
(
3

4�
)
1∕6

(
6kbT

�p
)
1∕2

(1 +

−

(Cm�)
2

−

(Cm�)
2 +Cm

2

)

(
−70m2

0
m2

2
+ 4210m0m

2

1
m2 + 6859m4

1

m
1∕6

0
m

11∕6

1

).
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Equations  3, 6, 7, 17, 24  form a group of closed 
equations, and by solving this group of equations, infor-
mation on flow motion and particle distribution can be 
obtained.

Application to a turbulent jet flow

In order to validate the availability of the model and 
equations, we apply Eqs. 3, 6, 7, 17, 24 to a turbulent 
jet flow.

Flow field

The motion of fluids containing nanoparticles in a 
turbulent jet is shown in Fig. 1 where the width of the 
slot is D, the computational domain with 60D × 41D 
is discretized into a structured grid.

Boundary condition and initial condition

The top-hat profile of average velocity Uin at the jet 
inlet is [47]:

where UJ and U∞ are the the maximum velocity at the 
jet inlet and velocity of background flow, respectively. 
The velocity of background flow is a small non-zero 
value U∞ = 0.2Uj. θm = D/20 is the momentum thick-
ness of shear layer [48].

The moments m0, m1 and m2 at the jet inlet also 
follow the distribution of top-hat profile. At the exit 

(25)Uin =
UJ + U∞

2
+

UJ − U∞

2
tanh(

−|y| + D∕2

2�m
),

of the jet, the velocity and moments satisfy the non 
reflective boundary conditions.

The initial maximum vales of m0, m1 and m2 
are m00max = 2.73 ×  1018, m10max = 1.79 ×  10–7, 
m20max = 1.17 ×  10–32, respectively, to make the Dam-
kohler number as shown in expression 26 be unity, 
thus the effect of convective and coagulation are well 
coupled [38]. The second subscript 0 of m represents 
the initial value. The units of m00max, m10max and 
m20max are  m−3, 1 and  m3, respectively. The particle 
is monodisperse at the inlet, thus the polydispersity 
index m00m20/m10

2 = 1 [38].

Parameters

The Reynolds number of the flow is defined as 
Re = UJDρ/μ, and the Damkohler number is the ratio 
of the convective time scale τcon to the coagulation 
time scale τcoa:

where N0 is the initial total number density of parti-
cles; v0 is the initial average volume of particles; A 
is the coagulation coefficient induced by Brownian 
motion, A = (3/4π)1/6(6kbT/ρp) 1/2. Da = 0 indicates 
that particles do not coagulate because the coagula-
tion time scale is infinity, while Da → infinity implies 
that coagulation occurs instantaneously because the 
coagulation time scale is zero and all particles are 
instantaneously converted to the largest particle. The 
main aim of this articles is to illustrate the effect of 
fluctuating coagulation on particle distribution, so 
Da = 1 and 1/3 are selected in this paper to clarify the 
effect of fluctuating coagulation on particle distribu-
tion when the convection and coagulation effects are 
equivalent (Da = 1) and when convection effect is 
predominant (Da = 1/3) because the larger convection 
effect leads to a stronger turbulent fluctuating of the 
flow.

Some parameters are: ρ = 1.205  kg/m3, ρp = 
2200 kg/m3, μ = 1.81 ×  10−5 Pa∙s, T = 295.15 K, kb = 
1.38 ×  10−23 J/K. The Reynolds number based on the 
width of the slot D is 3 ×  104.

(26)Da =
�con

�coa
=

D∕UJ

(AN0v0
1∕6)

−1
=

DAN0v0
1∕6

UJ

,

Fig. 1  Jet flow and the coordinate system
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Numerical method

Equations 3, 6, 7, 17, 24 are solved numerically with 
the finite volume method in OpenFOAM-5, and the 
term of velocity–pressure coupling and the con-
vection term are dealt with OpenFOAM SIMPLE 
algorithm.

A two-dimensional numerical simulation is imple-
mented. Extensive tests and refinements of the inde-
pendence and suitability of the grid size for the con-
vergence results are performed. The deviations of 
first three moments M0, M1 and M2 are within 0.01% 
for the cases of coarse meshes (560 × 412 = 230720 
cells) and fine meshes (810 × 640 = 518400 cells), and 
hence 230720 cells are used in the simulation.

Verification

Rationality of computational domain selection

The distribution of average velocity Ux in the 
x-direction of the flow is shown in Fig.  2 where 
only the upper half of the flow is given due to the 
symmetry of the flow and D = 0.01m. Figure  3 

shows the distribution of average relative volume 
concentration (M1 = m1/m10, m10 = 1.79 ×  10–7) of 
particles, and m10 is the initial value of m1. From 
Figs.  2 and 3 it can be seen that both Ux and M1 
continuously decay along the x and y directions. 
At x/D = 60, the values of Ux and M1 are 0.912 
and 0, respectively, from y/D = 7.5 to 20, indicat-
ing that the width of the computational domain is 
sufficient.

Self similarity

The average velocity profile exhibits self similarity 
along the x direction, which is shown in Fig. 4 where 
Uc is the velocity on the centerline, and yh is the half 
width of the jet, i.e., the y-coordinate corresponding 
to a point where the flow velocity is half of the cen-
terline velocity at the same x. It can be seen that the 
velocity profiles at different x positions overlap (self 
similarity), and numerical results are in good agree-
ment with the experimental results of Gutmark & 
Wygnanski [49] and Ramaprian & Chandrasekhara 
[50].

Similar to velocity distribution, a scalar should 
also satisfy self similarity distribution along the 

Fig. 2  Average velocity 
distribution of flow

Fig. 3  Distribution of 
average relative volume 
concentration of particles
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x direction. The variations of m1/m1c with y/yh are 
shown in Fig. 5 where m1c is the value of m1 on the 
centerline, and yh is the y-coordinate corresponding 
to a point where the value of m1 is half of the m1 

on the centerline at the same x. It also can be seen 
that the values of m1/m1c at different x satisfy self 
similarity distribution, and numerical results are 
basically consistent with the experimental results 

Fig. 4  Self similarity 
curves of velocity profile on 
different cross-section

Fig. 5  Distribution of 
average relative volume 
concentration of particles
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(temperature as a scalar) of Davies et  al. [51] and 
Jenkins & Goldschm [52].

Distribution of x‑component of turbulent kinetic 
energy along the y direction

The distributions of x-component of turbulent kinetic 
energy along the y direction at different downstream 
position are shown in Fig.  6 where the experimen-
tal result [53] is also given, which shows that both 
numerical and experimental results are basically 
consistent.

Result and discussion

Particle number density

The relative number density of particles is 
expressed as M0 = m0/m00 (m00 is the initial value of 
m0). m0 is described by Eq.  24a where the source 
term on the right-hand side indicates that particle 
coagulation will reduce particle number density and 
therefore take a negative sign. Figure  7 shows the 
distribution of relative number density of particles 

at Da = 1 and 1/3. We can see that the values of M0 
gradually decrease along the x and y directions. The 
reason is that, on the one hand, the mixing effect 
of the jet flow reduces the particle number density 
M0, and more importantly, the coagulation effect of 
the particles greatly reduces M0. From Eq.  26, the 
larger the value of Da, the shorter the time scale of 
particle coagulation, the faster the particle coagu-
lates, and leading to a smaller value for M0 in the 
same region, which can be illustrated by comparing 
Fig. 7(a) and (b) where the values of M0 are small 
at Da = 1 (a) than that at Da = 1/3 (b) in the same 
region.

Distribution of relative number density M0 for 
Da = 1 and 1/3 along the x direction is shown in 
Fig.  8 where the results with considering the fluc-
tuating coagulation (ςt is represented by Eq.  15) 
and without considering the fluctuating coagulation 
(ςt = 0) are compared. The values of M0 decrease 
continuously downstream due to particle coagula-
tion. The larger the value of Da, the faster the par-
ticle coagulates, and the smaller values of M0. The 
value of M0 for Da = 1/3 is 2.77 times that for Da = 1 
at x/D = 25, but 3.67 times at x/D = 60. It can be seen 
that the further downstream, the greater the differ-
ence in values of M0 between for Da = 1/3 and for 
Da = 1. In the area near the jet inlet (x/D < 10), the 

Fig. 6  Distribution of 
x-component of turbulent 
kinetic energy along the y 
direction
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values of M0 with considering and without con-
sidering the fluctuating coagulation are almost the 
same because the effect of particle coagulation is 

insignificant in this area, however, the differences 
in the values of M0 between both cases gradually 
increases along the downstream. The maximum rela-
tive errors (at x/D = 60) reach 10.7% for Da = 1/3and 
17.5% for Da = 1, respectively.

Particle coagulation will change the particle 
number density, but it will not change the parti-
cle volume concentration m1, as shown in Eq. 24b 
describing m1, this equation is not related to coag-
ulation. Figure  8 also shows the distribution of 
relative volume concentration M1 on the center-
line along the x direction. The values of M1 on the 
centerline decrease slightly along the downstream, 
indicating that particles on the centerline gradu-
ally diffuse towards both sides. The value of M1 is 
much greater than that of M0 because the particle 
coagulation does not affect the value of M1. How-
ever, particle coagulation will change the volume 
of the coagulated particle and further affect the 
particle volume distribution in computational cells. 

(a) Da=1

(b) Da=1/3

Fig. 7  Distribution of relative number density of particles. (a) Da = 1. (b) Da = 1/3

Fig. 8  Distribution of relative number density M0 and volume 
concentration M1 along the x direction
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Therefore, the values of M1 decrease slightly along 
the downstream.

Particle polydispersity

The second-order moment m2 is proportional to 
the particle polydispersity. The larger the value of 
m2, the wider the particle size distribution. Parti-
cle coagulation makes initially monodisperse parti-
cles become polydisperse, which can be illustrated 
by Eq.  24c where the source term on the right-
hand side indicates that particle coagulation will 
increase particle polydispersity and therefore take 
a positive sign. The relative particle polydispersity 
is expressed as M2 = m2/m20 (m20 is the initial value 
of m2). The distribution of relative particle poly-
dispersity M2 is shown in Fig.  9 where the values 
of M2 increase along the x direction because the 

further downstream, the more frequent the par-
ticles coagulate, resulting in higher polydisper-
sity. However, the values of M2 are reduced along 
the y direction due to the small number of parti-
cles along the y direction and even the fact that 
particles are less likely to coagulate. Comparing 
Fig. 9(a) and (b), the maximum M2 for Da = 1 and 
Da = 1/3 are 250 and 70, respectively, and values 
of M2 are larger at Da = 1 (a) than that at Da = 1/3 
(b) in the same region, which indicates that larger 
Da corresponds to larger value of M2, i.e., higher 
polydispersity.

Geometric average diameter of particles

Particle coagulation makes particles change their 
sizes and results in the difference in particle size 

(a) Da=1

(b) Da=1/3

Fig. 9  Distribution of relative particle polydispersity. (a) Da = 1. (b) Da = 1/3
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Fig. 10  Distribution of 
relative geometric average 
diameter of particles. (a) 
along the x direction. (b) 
along the y direction

(a) along the x direction

(b) along the y direction
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which will gradually reach a lognormal distribution 
and attain self similarity. The relationship between 

the relative geometric average volume vg of particles 
and the first three relative moments is as follows:

Fig. 11  Distribution of 
relative geometric aver-
age diameter of particles. 
(a) along the x direction. 
(b) along the y direction 
(Da = 1)

(a) along the x direction

(b) along the y direction (Da=1)



 J Nanopart Res (2024) 26:111

1 3

111 Page 16 of 19

Vol:. (1234567890)

and the relative value between the geometric aver-
age diameter of particles and their initial diameter is 
defined as:

Figure  10 shows the distribution of relative geo-
metric average diameter dpg of particles along the 
x and y directions. In Fig.  10(a), the values of dpg 
increase along the x direction because the further 
downstream, the longer the time of particle coagula-
tion, and the more large particles are formed. At the 
x/D = 60, the value of dpg for Da = 1 is 6 times the ini-
tial value of dpg, the kernel function of particle coagu-
lation is still applicable because most of the particle 
sizes still belong to the free molecular region. The 
growth rate of dpg decreases along the downstream 
because the low number density of particles down-
stream leads to the decrease of the coagulation fre-
quency. The larger the value of Da, the faster the par-
ticle coagulates, and leading to a larger value of dpg at 
the same x/D, which can be illustrated by comparing 
the values of dpg for Da = 1 with that for Da = 1/3. In 
the area near the jet inlet (x/D < 10), the values of dpg 
with considering and without considering the fluctu-
ating coagulation are almost the same, but the differ-
ence in the value of dpg between both cases gradually 
increases along the downstream. The maximum rela-
tive errors (at x/D = 60) reach 5.1% for Da = 1/3 and 
5.7% for Da = 1, respectively.

(27)vg =
M2

1

M
3∕2

0
M

1∕2

2

,

(28)dpg = v1∕3
g

.

In Fig.  10(b), the values of dpg decrease from 
the near-center region to the outer edge of the jet at 
x/D = 15 and 30. This is because the particle number 
density in the near-center region is high, and the par-
ticles coagulate frequently, while the situation at the 
outer edge of the jet is opposite. In the case of the 
same Da, the curve shapes at x/D = 15 and x/D = 30 
are very similar, but the values of dpg at x/D = 30 are 
much larger than that at x/D = 15. Similarly, in the 
case of the same x/D, the values of dpg for Da = 1 
are much larger than that at Da = 1/3. The reason has 
been explained above.

In addition, there is difference in the value of 
dpg when considering and not considering the fluc-
tuating coagulation. The maximum relative errors 
(at x/D = 30) reach 5.3% for Da = 1/3 and 6.4% for 
Da = 1, respectively.

Geometric standard deviation of particle diameter

According to the logarithmic normal distribution 
function, the relationship between the geometric 
standard deviation σg of particle diameter and the first 
three moments is:

For the initial monodisperse particles in the free 
molecular region, after Brownian coagulation, the 
particle diameter will reach lognormal distribution 
of self similarity, and the values of σg will gradu-
ally reach an asymptotic value σg∞ = 1.355 [54, 
55]. The distribution of σg along the x and y direc-
tions is shown in Fig. 11 where the difference in the 
value of σg when considering and not considering 
the fluctuating coagulation can be seen. The high 
number density of particles in the area near the jet 
inlet causes strong coagulation of monodisperse 
particles, leading to self similarity distribution of 
particle size in a short period of time. For the case 
of Da = 1 in Fig. 11(a), along the centerline of the 
jet, the value of σg is equal to 1 at x/D = 0, and then 
sharply rises to 1.3 within the range of 0 < x/D < 5, 
finally slowly approaches 1.35 (slightly less than 
the asymptotic value σg∞ = 1.355). For the case of 
Da = 1/3, the growth rate of σg decreases and its 
asymptotic value is reduced compared with the 
case of Da = 1. The reason is that small Da means 

(29)ln2�g =
1

9
ln(

M0M2

M2
1

).

Fig. 12  Locally enlarged view of Fig. 11(a) (Da = 1/3)
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that the diffusion effect of the flow is stronger 
compared to the coagulation effect, making diam-
eter distribution deviate more from the asymptotic 
value of the self similar distribution.

In Fig.  11(b), the values of σg are very close to 
1.35 in the area near the centerline of the jet, but 
gradually increase in the y direction until the posi-
tion of the green line. The reason is that, as the 
distance from the centerline increases, on the one 
hand, the decrease in particle number density leads 
to a weakened coagulation effect, which leads to a 
decrease inσg; and on the other hand, the decrease 
in flow velocity leads to longer time for particles to 
coagulate, which leads to a increase inσg, the com-
bined effect of both leads to an increase in σg. In the 
area where the value of y/D exceeds the green line, 
the value of σg sharply decreases, which is caused 
by the scarcity of particles in the area. The curve 
shapes of σg at x/D = 15 and x/D = 30 are similar, 
but the span and maximum value of σg at x/D = 30 
are much larger than that at x/D = 15. The maximum 
relative errors reach 2.5% at x/D = 15 and 2.9% at 
x/D = 30, respectively.

In order to have a clearer understanding of the dif-
ference in the value of σg when considering and not 
considering fluctuating coagulation, Fig. 12 shows a 
locally enlarged view of Fig. 11 at Da = 1/3. The dif-
ference between the two results can be seen.

Conclusion

To illustrate the effect of fluctuating coagulation on 
particle distribution in multiphase turbulence of nan-
oparticles, a one-order closed model is proposed to 
relate the term to the average particle size distribu-
tion function. The proposed model and equations are 
applied to a turbulent jet flow. The main conclusions 
are summarized as follows.

(1) Numerical results of average velocity and particle 
volume concentration satisfy self similarity dis-
tribution, and numerical results of average veloc-
ity, x-component of turbulent kinetic energy, and 
particle volume concentration are in good agree-
ment with the experimental results, indicating 
that the presented model, method and program 
are reliable.

(2) There is a difference in the values of particle 
number density, geometric average diameter and 
geometric standard deviation of particle diameter 
with and without considering fluctuating coagu-
lation, indicating that the fluctuating coagulation 
cannot be ignored under the flow and parameters 
in this article.

(3) The larger the value of Da, the faster the par-
ticle coagulates, which leads to smaller par-
ticle number density, higher particle polydis-
persity, larger geometric average diameter and 
geometric standard deviation of particle diam-
eter.

(4) Along the x direction of the flow, particle num-
ber density decreases, while particle polydis-
persity, geometric average diameter, and geo-
metric standard deviation of particle diameter 
increase because the particles develop down-
stream, they coagulate more fully. From the 
centerline to the outer edge of the jet, particle 
number density, polydispersity and geomet-
ric average diameter decrease, while geomet-
ric standard deviation of particle diameter 
increases first and then decreases. The reason 
is that the decrease in particle number density 
leads to a weakened coagulation effect, at the 
same time, the decrease in flow velocity leads 
to longer time for particles to coagulate, the 
combined effect of both leads to an increase in 
geometric standard deviation.
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