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Abstract Nanocomposites of  (Mg0.9Ni0.1O)x/(CoFe2 
O4)1-x, with 0 ≤ x ≤ 1 in weight fractions, were syn-
thesized through the co-precipitation method fol-
lowed by high-speed ball milling. The investigation 
of the structural, optical, and magnetic properties 
was conducted for the synthesized samples. X-ray 
diffraction (XRD) analysis confirmed the formation 
of  CoFe2O4 and  Mg0.9Ni0.1O distinct phases in the 
nanocomposites without any detectable impurities 
or minor phases. Transmission electron microscopy 
(TEM) and high-resolution TEM (HRTEM) revealed 
the presence of spherical particles in both the indi-
vidual phases and their nanocomposites. Raman 
spectroscopy exhibited strong, well-defined modes 
for  CoFe2O4, indicating its spinel phase formation, 
while  Mg0.9Ni0.1O displayed two broad peaks (G and 
D bands). X-ray photoelectron spectroscopy (XPS) 
was utilized to analyze the elemental compositions 
and oxidation states  (Co2+,  Fe2+,  Fe3+,  Mg2+,  Ni2+, 

and  O2−). The magnetic measurements revealed the 
soft ferromagnetic behavior of pure cobalt ferrite 
and a combination of weak ferromagnetism and par-
amagnetic behavior at high magnetic fields for pure 
 Mg0.9Ni0.1O.
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Introduction

Spinel ferrites have a compact cubic lattice structure and 
are represented by the generic formula  MFe2O4, with the 
valence cation  M2+ including Co, Fe, Cu, etc. Research 
has been done on spinel ferrites due to their wide range 
of applications like permanent magnets, power electron-
ics, high-temperature environments, and various indus-
trial applications [1]. Mallesh et al. [2] studied the effect 
of Ni substitution and annealing temperature on the 
structural and magnetic properties of MnZn-Ferrites and 
found that its magnetic characteristics were enhanced 
with Ni doping. Cobalt ferrite  (CoFe2O4) is classified 
as one of the best alloys among ceramic materials [3], 
outperforming other ferrites with its high coercivity, low 
saturation magnetization, and physical and chemical sta-
bility [4]. Moreover, the major characteristics that make 
them a more promising material include their mechani-
cal hardness, controlled particle sizes, inexpensive, and 
simple synthesis techniques [4].
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One of the most intriguing classes of novel mate-
rials is ferrite/oxide nanocomposites, which combine 
the remarkable nanoscale characteristics of oxide 
materials with various ferrite components. These 
materials have received a lot of interest recently due 
to their remarkable combination of chemical, electri-
cal, and magnetic properties [2, 5–11]. This feature 
makes them highly recommended and suitable for 
many applications, such as electronics, energy stor-
age, catalysis, and medicine. Artus et al. [12] reported 
the alteration of  CoFe2O4 properties when embedded 
in a NiO matrix via the polyol method. The results 
showed an enhancement in the magnetic proper-
ties in the considered nanocomposites when com-
pared to  CoFe2O4 nanoparticles. Mısırlıoğlu et  al. 
[13] reported adjustable dielectric parameters when 
adding MgO nanoparticles in cobalt ferrite-based 
nanocomposites. This may prove beneficial for dif-
ferent applications in the low-frequency domain and 
upcoming biological uses. Mohan et al. [14] reported 
a way to overcome the superparamagnetic behavior of 
nanoscale materials in  CoFe2O4/NiO nanocomposites 
via exchange bias. The core–shell geometric magnetic 
nanocomposite systems’ interfacial exchange anisot-
ropy was used to explain this. Furthermore, it has 
been discovered that the auto-combustion approach of 
mixing cobalt ferrite with CoO nanoparticles changes 
its magnetic behavior [15]. Another study was done 
by Mallesh et al. [16] on thermal stability and mag-
netic properties of  MgFe2O4@ZnO nanoparticles. In 
this study, it was found that an optimum amount of 
ZnO-coated MgFO NPs for samples annealed in the 
temperature range 500  °C-1000 °C can lead to an 
improvement in magnetic behavior compared to that 
of MgFO samples.

Characterized by its stability and safety, magne-
sium oxide (MgO) is a metal oxide used in a variety 
of applications [17, 18]. MgO has important char-
acteristics at the nanoscale regime, including low 
electrical conductivity, catalytic activity, and ther-
mal stability [19, 20]. Furthermore, transition metals 
doped MgO have gained a lot of attention since these 
dopants can influence MgO’s electrical conductiv-
ity, catalytic activity, and magnetic behavior, opening 
doors to a wide array of applications. For instance, 
Co/Ni-doped MgO is used in novel emitters to con-
trol the emissivity of MgO host lattice into selective 
and concentrated wavelengths [21]. Additionally, the 
direct band gaps of NiO and MgO are 3.7 eV [22] and 

7.8 eV [23], respectively, and this allows  MgxNi1-xO 
to have an absorption edge that may be extended 
from 160 to 335 nm. Therefore,  MgxNi1-xO in high-
efficiency solar-blind UV detectors seems promis-
ing. Also, magnetization can be improved by doping 
unpaired 3d (or 4f) electrons of Fe, Co, and Ni that 
can cause two times more powerful magnetization 
than pure MgO to occur in these types of compounds 
[24]. Furthermore, Almontasser et al. [25] studied the 
effect of Ni, Co, and Fe dopants in the MgO crystal 
lattice, resulting in drastic changes in the properties 
of MgO nanoparticles like an increase in the mag-
netic properties and enhancement in the antibacterial 
activity. For that reason, we intended to use Ni-doped 
MgO as it holds significant importance over pure 
MgO due to its tailored and enhanced properties.

In this work, a unique method of adding  Mg0.9Ni0.1O 
to a nanocomposite matrix to improve the character-
istics of  CoFe2O4 nanoparticles was introduced. The 
main aim is to investigate the synergistic effects and 
customize the physical and chemical properties of the 
resultant nanocomposite by adjusting the composi-
tion ratio (x) of  Mg0.9Ni0.1O and  CoFe2O4, denoted as 
 (Mg0.9Ni0.1O)x/(CoFe2O4)1-x. This approach presents 
prospects for controlling structural, electrical, and 
magnetic properties, opening doors for applications in 
a range of domains including environmental cleanup, 
biological imaging, catalysis, and magnetic storage. 
This research advances the knowledge of the interac-
tions between nanoparticles in composite materials and 
creates new avenues for the development of functional 
nanocomposites with adjustable features. The structure, 
morphology, and elemental compositions were tested. 
Moreover, the effect of adding  Mg0.9Ni0.1O nanopar-
ticles on the magnetic behavior of soft ferromagnetic 
 CoFe2O4 was also investigated and discussed.

Experimental technique

The wet chemical co-precipitation method was used 
to prepare pure  CoFe2O4 and  Mg0.9Ni0.1O nanoparti-
cles. For the synthesis of  CoFe2O4 nanoparticles, 1 M 
iron (III) chloride hexahydrate  (FeCl3.6H2O, ≥ 98%, 
Sigma-Aldrich) and 1 M of cobalt chloride hexahy-
drate  (CoCl2∙2H2O, ≥ 98%, Sigma-Aldrich) solutions 
were prepared by using deionized water as dispers-
ing solvent. Both solutions were mixed and subjected 
to continuous magnetic stirring at room temperature. 
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To adjust the solution at a highly basic condition 
(pH = 13), a solution of 4 M NaOH was added drop-
wise to the solution. Afterwards, the reaction was 
stirred for 2 h at 80 °C. The resultant precipitate was 
subjected to a continuous washing process with deion-
ized water to remove the residues until the pH was 7 
and then dried at 100°C for 16 h in air. For the syn-
thesis of  Mg0.9Ni0.1O nanoparticles, 1 M of mag-
nesium chloride hexahydrate  (MgCl2.6H2O, ≥ 99%, 
Sigma-Aldrich) and 1 M nickel chloride hexahydrate 
 (NiCl2∙6H2O, Sigma-Aldrich, ≥ 98) solutions were 
prepared, mixed, and subjected to continuous mag-
netic stirring at room temperature. Afterward, the pH 
was increased to 12 by dropping a 4 M NaOH solu-
tion, followed by a stirring process for 6 h at room 
temperature until a precipitate was formed. The result-
ant product was washed with 50% deionized water and 
50% ethanol until the pH became neutral. The powder 
obtained was dried at 80 °C for 12 h in air.

For the synthesis of nanocomposites  (Mg0.9Ni0.1O)x/
(CoFe2O4)1-x, the resultant powders of both nanopar-
ticles were mixed via high-speed ball milling method, 
with x = 0.1, 0.2, 0.4 and 0.8 named as CM10, CM20, 
CM40, and CM80, respectively. Different percentages 
of  CoFe2O4 and  Mg0.9Ni0.1O were weighed and then 
ball milled via PM 100 Planetary Ball Milling machine. 
The ball-to-powder weight ratio used was 5:1 at a speed 
of 300 rpm for 10 min. Finally, the six samples were 
calcined at 700°C for 4 h.

X-ray diffraction (XRD) patterns were acquired 
using a Bruker D8 Advance powered diffractom-
eter, utilizing Cu-kα radiation (λ = 1.5406 Å). The 
scanning speed employed was 3°/min within the 
20° ≤ 2θ ≤ 80° range. The shape and the size of the 
prepared nanoparticles, as well as HRTEM images, 
were obtained using the JEM 100 CX Transmission 
Electron microscope (TEM). The images provided 
magnification from 100 × to 250,000 × with a resolu-
tion of 1 Å, operating at a voltage of 80 kV. Raman 
spectra were gathered using a Raman spectrometer 
(Model: SENTERRA, BRUKER OPTICS). The uti-
lized wavelength was λ = 659 nm, with an output 
power of 20W. The parameters consisted of a con-
tinuous mode time of 10 s, a snapshot time of 7 s, 
30 accumulations, and a 100 × microscope objective 
lens. X-ray photoelectron spectroscopy (XPS) data 
were collected on a kα instrument (ThermoFisher Sci-
entific, USA) utilizing monochromatic X-ray Al-kα 
radiation, covering an energy range of 10 to 1350 eV. 

The spot size was 400 μm, and the measurement was 
performed at a pressure of  10–9 mbar. For full survey 
XPS spectra, the pass energy was set at 200 eV, while 
high-resolution XPS spectra used a pass energy of 50 
eV. The binding energy scale was calibrated using 
standard silver (Ag) and gold (Au) sheets. Magnetic 
hysteresis loops were examined using a Lakeshore 
7410 VSM. The magnetic field varied from -20,000 G 
to + 20,000 G, and the measurements were conducted 
at room temperature.

Results and discussion

Figure  1 shows the experimental and the refined 
XRD patterns of  CoFe2O4,  Mg0.9Ni0.1O, and their 
nanocomposites CM10, CM20, CM40 and CM80. 
The peaks of  CoFe2O4 match the (111), (220), (311), 
(222), (400), (422), (511), (440), (620), and (533) 
reflections of the cubic spinel structure with space 
group Fd3 m [26], as revealed by MAUD refine-
ment. For the  Mg0.9Ni0.1O phase, the peaks (111), 
(200), (220), (311), and (222) are all related to MgO, 
confirming the incorporation of Ni ions in the cubic 
structure of MgO with space group Fm3 m [27]. This 
verifies the purity of both nanoparticles without the 
formation of any impurity. As for the nanocompos-
ites, all the peaks shown are related to  CoFe2O4 and 
 Mg0.9Ni0.1O without the formation of any secondary 
phases with crystal structures different than the two 
main phases. It is well known, for the  CoFe2O4 pat-
tern, that the ratio of the intensities of the two peaks 
(220) and (222)  (I220/I222) depends on the cation dis-
tribution in the crystal structure [28–30]. For that 
reason, the ratio  I220/I222 was calculated for x = 0, 
0.1, 0.2, 0.4, and 0.8, and plotted as a function of x in 
Fig. 2. The drastic change in this ratio could be a sign 
of the redistribution of cations between tetrahedral 
and octahedral sites [31].

The lattice parameter ‘a’ for the two phases, the 
microstrain and the crystallite size were extracted 
from MAUD and tabulated in Table  1. For pure 
 CoFe2O4 and pure  Mg0.9Ni0.1O, a is 8.373 Å and 
4.204 Å, respectively. The two values are consist-
ent with the literature [25, 32]. However, the lattice 
parameters of the two phases, in the four nanocom-
posites, changed oppositely with the microstrain as 
reported by Qin et al. [33]. The crystallite sizes for 
 CoFe2O4 and  Mg0.9Ni0.1O were calculated using 
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Fig. 1  Stack plot of the XRD patterns of  (Mg0.9Ni0.1O)x/(CoFe2O4)1-x (x = 0, 0.1, 0.2, 0.4, 0.8 and 1) showing the experimental pat-
tern with the refined pattern for each of  CoFe2O4 and  Mg0.9Ni0.1O phases in the six samples
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Debye–Scherrer’s equation and found to be 14.61 
nm and 19.22 nm respectively [34, 35]. For the 
nanocomposites, the crystallite size of the  CoFe2O4 
phase decreased from x = 0 till x = 0.2, then 
increased from x = 0.2 till x = 0.8 as seen in Table 1. 
The effects of incorporating MgO into  CoFe2O4 
suggested that adding non-magnetic MgO with 
low concentration changes the degree of magnetic 
 CoFe2O4 aggregation which reduces the crystallite 
size of  CoFe2O4 and increases that of MgO [36].

Figure 3 displays TEM images along with HRTEM 
micrographs for  CoFe2O4, CM40, and  Mg0.9Ni0.1O. 
The  CoFe2O4 nanoparticles show a rounded morphol-
ogy with an average particle size of 14.7 nm [37]. The 
HRTEM image affirms the good crystallinity of these 
nanoparticles, characterized by the preferred orienta-
tion of (311) planes [38]. Similarly,  Mg0.9Ni0.1O nan-
oparticles also exhibit nearly spherical shapes, with 

an average particle size of 40.9 nm. The HRTEM 
micrograph shows the presence of preferred (200) 
planes in these nanoparticles [39]. As for the four 
nanocomposites, they all exhibit spherical shapes 
with wider size distribution than the pure phases and 
average particle sizes of 25.4 nm, 31.3 nm, 33.2 nm, 
33.2 nm, and 56.6 nm for CM10, CM20, CM40, and 
CM80, respectively. The HRTEM micrograph of 
CM40 nanocomposite, in Fig. 3b, revealed the coex-
istence of the two phases with an identified plane for 
each of  CoFe2O4 and  Mg0.9Ni0.1O phases [36].

An analytical method for determining the vibra-
tional energy modes of nanoparticles to characterize 
materials is Raman spectroscopy. When molecules 
interact with electromagnetic radiation, the Raman 
spectrum is produced. Room temperature Raman spec-
tra of  CoFe2O4,  Mg0.9Ni0.1O, and CM40 nanocom-
posite are shown in Fig. 4 in the range of 250—2500 
 cm−1. According to the group theory,  CoFe2O4 spinel 
ferrite has five Raman active modes:  A1g,  Eg, and  3T2g, 
which are attributed to the oxygen of A-site and B-site 
ions in the spinel structure [40].  A1g modes (> 600 
 cm−1) are associated with the symmetric stretching 
of oxygen anions with tetrahedral cations, whereas  Eg 
and  T2g modes (< 600  cm−1) are due to symmetric and 
antisymmetric bending of oxygen anions with octahe-
dral cations [41]. In our study,  CoFe2O4 showed four 
distinct peaks at 475, 568, 617, and 686  cm−1 that 
can be assigned to  T2g(2),  T2g(1),  A1g(2), and  A1g(1), 
respectively [42]. The splitting of the  A1g band into 
 A1g(2) and  A1g(1) peaks is a typical feature for inverse 
and mixed spinel ferrites [43]. This result is similar to 
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Fig. 2  The ratio  I(220)/I(222) of  CoFe2O4 phase as a function 
of x

Table 1  Lattice parameters 
and crystallite size of 
 CoFe2O4 and  Mg0.9Ni0.1O

x Phase  a (Å) Error ×  10–4 Microstrain ×   
10–4

Error ×  10–5 Crystallite 
size (nm)

0 CoFe2O4 8.373 16.7 15.7 3.6 14.61
Mg0.9Ni0.1O ----- ----- ----- ----- -----

0.1 CoFe2O4 8.360 13.8 17.4 7.1 14.26
Mg0.9Ni0.1O 4.208 5.5 8.21 14.2 ----

0.2 CoFe2O4 8.357 12.7 17.8 7.0 12.46
Mg0.9Ni0.1O 4.208 5.5 9.2 15.2 13.25

0.4 CoFe2O4 8.364 11.6 15.3 8.1 13.75
Mg0.9Ni0.1O 4.206 6.7 19.2 14.9 14.18

0.8 CoFe2O4 8.370 18.2 14.4 7.5 14.56
Mg0.9Ni0.1O 4.205 6.4 20.0 6.6 18.09

1 CoFe2O4 ----- ----- ----- ----- ----
Mg0.9Ni0.1O 4.204 4.4 18.3 3.4 19.22
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the study reported by Kumar et  al. [42] for  CoFe2O4 
nanoparticles synthesized by the thermal decom-
position approach. The Raman spectrum for pure 
 Mg0.9Ni0.1O showed a peak with high intensity around 
1374  cm−1 and another lower peak at 1904  cm−1. This 
result is comparable to the one reported by Weible 
et al. [44]. Also, Athar et al. [45] reported that the peak 
below 1500  cm−1 is associated with D-band, whereas, 
the peak above 1500  cm−1 is for the G-band of MgO 
nanoparticles. As for the CM40 nanocomposite, all the 
peaks corresponding to  CoFe2O4 are observed with a 
significant shift for  A1g modes and a change in peak 
intensities as seen in Fig.  4. Also, the peak at 1374 
 cm−1 of  Mg0.9Ni0.1O still exists with lower intensity. 
To go deeper into results, the spectra of  CoFe2O4 and 
CM40 were deconvoluted into Gaussian peaks and 
shown in Fig. 5. Accordingly, the  T2g(2) peak in CM40 
nanocomposite is split into two different peaks posi-
tioned at 469  cm−1 and 497  cm−1. As reported by Ortiz 
et  al. [46], the cation redistribution between tetrahe-
dral and octahedral sites can alter the symmetry of the 

crystal structure leading to the formation of new vibra-
tional modes, and this redistribution is confirmed in the 
XRD analysis. According to a study done by Suthar 
et  al. [47] on Mg-doped  CoFe2O4 thin films, a blue 
shift is observed in  A1g(1) peak when  Mg2+ ions were 
incorporated in  CoFe2O4, as  Mg2+ prefers to sit in tet-
rahedral sites. Another study was done by Tong et al. 
[48] on Ni-doped  CoFe2O4. They found that all the 
peaks were red-shifted upon the incorporation of  Ni2+ 
ions in  CoFe2O4. As a result, the change in the peak 
positions of Ag modes might be due to the incorpora-
tion of  Ni2+ and  Mg2+ ions in  CoFe2O4. Moreover, it 
is reported by many researchers that  T2g(2) and  A1g(1) 
peaks are almost due to the  Co2+ ions at octahedral and 
tetrahedral sites, respectively [40, 49]. Figure 6 shows 
the spectra of  CoFe2O4 and CM40 drawn on the same 
scale. It is seen that the area of the  T2g(2) peak rela-
tive to  A1g(1) decreased significantly from  CoFe2O4 to 
CM40. This is another evidence for the migration of 
 Co2+ cations from the octahedral to tetrahedral sites 
[37].

(311)
2.55 Å

(a) (c)(b)

(311)
2.53 Å

(200)
2.16 Å

(200)
2.14 Å

Fig. 3  TEM image and HRTEM micrograph for (a)  CoFe2O4, (b) CM40 nanocomposite and (c)  Mg0.9Ni0.1O
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The chemical states and elemental compositions 
were identified by XPS full scan spectra of  CoFe2O4, 
 Mg0.9Ni0.1O, and the CM40 nanocomposite as shown 
in Fig. 7. The survey spectrum for the pure  CoFe2O4 
phase confirms the existence of Co, Fe, and O, 
whereas  Mg0.9Ni0.1O spectrum revealed the existence 
of Mg, Ni, and O. As for the CM40 nanocomposite, 
the XPS spectrum showed the signals for all the ele-
ments without additional spectral lines, confirming 
the purity of the nanocomposite sample. In addition, 
Co2p, Fe2p, O1s, Mg1s, and Ni2s peaks are obtained 
from High-resolution HR-XPS and deconvoluted to 
determine their oxidation states as shown in Fig.  8. 
The results for the binding energies and areas are also 
recorded in Table 1. The Co2p spectrum, in  CoFe2O4 
and CM40, showed two main peaks that correspond 
to  Co2p3/2 and  Co2p1/2, respectively [50]. The energy 
difference between these two peaks is found to be 
15.3 eV, confirming the + 2 oxidation state of the Co 
ions [51]. The deconvolution of  Co2p3/2 and  Co2p1/2, 
Fig.  8a, revealed the splitting of each peak into two 
minor peaks attributed to Co ions in octahedral (A) 

and tetrahedral (B) sites. The two other peaks at 
787.9 eV and 803.4 eV in pure  CoFe2O4 are known 
as satellite peaks related to the shake-up type of 
 Co2p3/2 and  Co2p1/2 edge [52]. Figure 8b shows the 
Fe2p spectra in  CoFe2O4 and CM40 nanocompos-
ites. The two spectra revealed the two main peaks 
belonging to  Fe2p3/2 and  Fe2p1/2. The deconvolution 
of the two Fe2p spectra suggested the existence of 
 Fe2+-  2p3/2(Oh),  Fe3+-  2p3/2(Th),  Fe2+-  2p1/2(Oh) and 
 Fe3+-  2p1/2(Th) peaks [53]. Thus, Fe ions exist in both 
sites of the crystal structure in  CoFe2O4 and CM40. 
The O1s peak, in Fig. 8c, is deconvoluted into three 
common peaks among the three nanocomposites. The 
peak of lowest binding energy (~ 530 eV) is attrib-
uted to lattice oxygen, whereas the peaks around 
532 eV and 535 eV belong to C-O/C = O and the 
hydroxyl group (OH) at the surface, respectively [54]. 
The Mg1s peak was deconvoluted into two peaks at 
around 1303 eV and 1305 eV, which are attributed 
to  Mg2+ in MgO lattice and Mg(OH)2 formed on the 
surface of the nanoparticles, respectively [55]. The 
deconvolution of the Ni2p peak revealed two main 
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peaks, Ni-2P3/2 and Ni-2p1/2 that confirmed the + 2 
oxidation state of Ni as reported by Yang et al. [56].

To obtain insight into the cation distribution in 
the crystal structure of  CoFe2O4, the area of the 
corresponding peaks in Table 2 is used to estimate 
the percentages of Co and Fe ions occupying tet-
rahedral and octahedral positions. The general 
chemical formula of the mixed spinel  CoFe2O4 can 
be written as  (Co2+

δFe3+
1- δ)A(Co2+

1- δFe3+
1+ δ)BO4 

[57]. The type of spinel ferrite depends on the 
value of δ so that the inverse structure is rep-
resented by δ = 0 and the normal structure has 
δ = 1. However, for 0 < δ < 1, the structure is 
mixed spinel. The chemical distribution formulas 
obtained for  CoFe2O4 in pure  CoFe2O4 and CM40 

are  (Co2+
0.29Fe3+

0.63)A(Co2+
0.71Fe3+

1.37)BO4 and 
 (Co2+

0.40Fe3+
0.70)A(Co2+

0.60Fe3+
1.30)B, respectively. 

The δ value increases from 0.29 to 0.40 which con-
firms the redistribution of  Co2+ between octahedral 
to tetrahedral sites. This conclusion is in excellent 
agreement with the findings of Raman and XRD 
analyses, which showed that some  Co2+ions moved 
from octahedral to tetrahedral positions. According 
to Li et al. [58], this conclusion is thought to have a 
significant impact on magnetic characteristics.

To study the magnetic properties of the prepared 
samples  (Mg0.9Ni0.1O)x/(CoFe2O4)1-x, (x = 0, 0.1, 
0.2, 0.4, 0.8 and 1), M-H hysteresis loops were inves-
tigated at room temperature with varying magnetic 
field between -20,000 G and 20,000 G, as shown in 
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Fig.  9.  CoFe2O4 showed soft ferromagnetic behav-
ior as reported by many researchers [46, 57, 59]. 
This behavior can be attributed to magnetic ordering 
in  CoFe2O4 due to the presence of  Co2+ ions in the 
octahedral sites as reported by Hammad et  al. [60]. 

This is also confirmed by XPS and Raman analy-
sis. On the other hand,  Mg0.9Ni0.1O nanoparticles 
showed very weak ferromagnetism, compared to 
 CoFe2O4, with paramagnetic behavior at magnetic 
fields H > 5000 G. Similar results were observed by 

Fig. 6  Raman spectra 
of  CoFe2O4 and CM40 
nanocomposite drawn in the 
same scale
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Almontasser et al. [25], who reported that  Mg1-xNixO 
nanoparticles were transferred from paramagnetic 
in pure MgO to ferromagnetic and paramagnetic 
in 7% Ni-doped MgO. This transition was ascribed 

to the influence of Mg and O vacancies at the sur-
face of the nanoparticles. Another study was per-
formed by Narayan et al. [61] on 0.5 at% of Ni-doped 
MgO nanoparticles and found that it behaves as a 
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paramagnetic material. They suggested that doping 
impurities in a doubly ionized state  (Ni2+) can have 
partially 3d shells with unpaired spins that result in 
a magnetic moment. On the other hand, there won’t 
be a net magnetic moment and the system func-
tions like a perfect paramagnet when these ions are 
dispersed randomly in a non-interacting manner 
throughout the lattice. In this instance, particularly at 
high magnetic fields, the paramagnetic contribution 
from the Ni ions might be predominant. Therefore, 
for the MgO phase, Ni’s paramagnetic behavior can 
prevail over any other magnetic behavior. The four 

nanocomposites all exhibited ferromagnetic behav-
ior, each with a unique set of magnetic characteristics 
that will be covered in more detail below.

At high magnetic fields and below Curie tem-
perature, the magnetization may be expressed using 
Eq. (1) [62]:

where b is associated with the effective anisotropy 
constant and obtained from the slope of the M vs 1/H2 
plots. The magnetization M was plotted versus 1/H2 

(1)M =Ms × [1 -
b
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for all the samples, as shown in Fig. 10, from which 
the magnetic saturation (Ms) was estimated by extrap-
olating the plot to 1/H2 = 0. For  Mg0.9Ni0.1O, the fer-
romagnetic magnetization (Mf) was first obtained 
by subtracting the paramagnetic behavior from the 
magnetization [63] as seen in the inset of Fig. 9, and 
the linear fit is shown in Fig.  10b. The retentivity 
(Mr) and the coercivity (Hc) were obtained from the 
M-intercept and H-intercept of the M-H loops as seen 
in Fig. 11. The effective anisotropy constant  (keff) was 
estimated using the law of approach to saturation (H» 
 Hc) according to Eq. (2) [26]:

where µo is the permeability of free space. The dif-
ferent magnetic parameters Ms, Mr, Mr/Ms, Hc, and 
 Keff are plotted as a function of x in Fig.  12. For 
 CoFe2O4, Ms = 54.1 emu/g which is very close to 
the one reported by Jian et al. [59] for single domain 
nanoparticles (15.8 nm) prepared by co-precipitation 

(2)keff = �oMs

√

15b

4

method. The value of Ms is smaller than that of bulk 
 CoFe2O4 due to the surface disorder or spin cant-
ing at the surface of the nanoparticles as reported 
by Ansari et  al. [43]. As for  Mg0.9Ni0.1O nanopar-
ticles, Ms = 0.0231emu/g is similar to the result 
obtained by Ali et  al. [64]. As estimated, the four 
nanocomposites’ saturation magnetization showed a 
downward trend as the amount of the non-magnetic 
 Mg0.9Ni0.1O increased. Numerous researchers have 
observed similar outcomes for soft magnetic and 
nonmagnetic nanocomposites like  CoFe2O4/ZnO 
[65],  CuFe2O4/MgO [64], and MgO/MgFe2O4 [66]. 
Assuming that the saturation magnetization for the 
nanocomposites is only due to the  CoFe2O4 phase, 
their saturation magnetization in this assumption is 
represented by Ms’ = (1-x)Ms(x = 0) and is plotted 
in Fig. 12. The values of Ms are lower than Ms’ for 
CM10, CM20 and CM40 nanocomposites. Many 
factors can affect the saturation magnetization of 
nanoparticles like the particle size [67] and cation 
distribution [57]. According to our study, XPS and 
Raman analysis revealed the migration of  Co2+ ions 

Table 2  The binding 
energy (BE) and the area 
of the de-convoluted core 
energy levels of Co, Fe, 
O, Mg and Ni in  CoFe2O4, 
CM40 and  Mg0.9Ni0.1O

CoFe2O4 CM40 Mg0.9Ni0.1O

Core energy levels Assignment Eb (eV) Area Eb (eV) Area Eb (eV) Area

Co-2p Co-2p3/2 Co2+(Oh) 780.3 8917.2 779.9 3065.0 ---- ----
Co3+(Th) 783.6 4331.3 782.3 2471.5 ---- ----
Satellite 787.9 6779.9 786.5 2933.8 ---- ----

Co-2p1/2 Co2+(Oh) 796.1 2981.6 795.3 1214.9 ---- ----
Co3+(Th) 798.7 596.1 797.3 420.8 ---- ----
Satellite 803.4 1536.6 803.2 631.4 ---- ----

Fe-2p Fe-2p3/2 Fe2+(Oh) 710.7 14648.1 710.6 5218.1 ---- ----
Fe3+(Th) 713.0 6192.4 713.0 2164.9 ---- ----
Satellite 715.5 4053.7 715.6 2262.5 ---- ----
Satellite 719.9 7588.2 718.5 2683.8 ---- ----

Fe-2p1/2 Fe2+(Oh) 723.9 6005.4 723.4 3497.8 ---- ----
Fe3+(Th) 726.6 3307.2 726.1 1580.8 ---- ----
Satellite 731.3 2888.1 730.9 2227.1 ---- ----

O-1s Lattice O 530.8 6078.6 530.1 18464.2 529.9 20305.3
C-O/C = O 532.9 9415.2 532.4 24075.7 532.3 25281.7
OH 535.2 1136.8 534.6 5386.6 534.6 9654.8

Mg-1s Mg(OH)2 ---- ---- 1302.8 15249.1 1303.1 20316.6
MgO ---- ---- 1305.2 25650.8 1305.3 38622.8

Ni-2p Ni-2p3/2 Ni2+ ---- ---- 852.9 4473.7 852.3 7846.8
Satellite ---- ---- 858.8 2397.9 858.7 5386.4

Ni-2p1/2 Ni2+ ---- ---- 870.9 1485.0 870.4 2948.6
Satellite ---- ---- 876.9 1580.8 876.2 6596.4
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from B sites to A sites in CM40, which could be the 
reason behind the further reduction in the saturation 
magnetization as reported by Manh et  al. [31]. The 
coercivity for  CoFe2O4 was found to be Hc = 912 Oe, 
which is similar to the value obtained by Liu et  al. 
[68] for 12 nm particle size. As expected, for rela-
tively low  Mg0.9Ni0.1O content, Hc decreases from 
x = 0 till x = 0.2 as a result of the decrease in the 
effective anisotropy as reported by many researchers 
[67, 69]. However, Hc increases significantly from 
x = 0.2 till x = 0.8 for relatively high  Mg0.9Ni0.1O 

content, which is opposite to the trend observed for 
 Keff. It is reported by many researchers that coer-
civity depends on many factors like magnetic ani-
sotropy, magnetic phase composition, particle size, 
and particle shape [70]. Based on a study performed 
by Zhao et al. [71] on  CoFe2O4/MgO nanocompos-
ites, it is found that the coercivity of the nanocom-
posite is much larger than that of pure  CoFe2O4. 
This was explained by the pinning effect that takes 
place at the interface of the two phases. The stability 
and magnetic behavior of composite materials are 
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impacted by this phenomenon. By adding another 
energy barrier, it modifies the motion of magnetic 
domain walls, increasing the material’s coercivity 
in the process. Another study was performed by Xi 
et al. [36] on the influence of MgO on the magnetic 
properties of  CoFe2O4 and observed a decrease (low 
MgO content) and then an increase (higher MgO 
content) in the coercivity of the  CoFe2O4/MgO nano-
composites which is similar to our case. Addition-
ally, Manh et  al. [31] suggested that the significant 
change in coercivity can be associated with  Co2+ 
distribution between A and B sites, and this is also 
confirmed in XRD, Raman, and XPS analysis. The 
remanence ratio  Mr/Ms serves as the distinctive 
parameter for magnetic materials, offering insights 
into how the magnetization direction realigns with 
the nearest easy axis direction after switching off the 
magnetic field [72]. The  Mr/Ms ratio of  CoFe2O4,  

CM10, CM20, CM40, and CM80 shows a simi-
lar trend as the coercivity, as seen in Fig.  12. This 
is because a greater demagnetizing field is needed 
to reduce the magnetization to zero when the  Mr/
Ms ratio is higher [42]. All the values are less than 
0.5 which is an indication of the anisotropic nature 
of the nanoparticles as reported by Yadav et al. [41]. 
The lowest ratio was for CM20 (0.071) confirming 
that these nanoparticles can be used for magnetic 
fluids [73]. CM80, however, had the greatest ratio of 
all four nanocomposites; this could be because the 
dipolar interaction between the embedded CoFe2O4 
nanoparticles and Mg0.9Ni0.1O nanoparticles is  
enhanced.

For deeper magnetic investigation, the evalua-
tion of the interphase exchange coupling between 
the two phases can be accomplished by examining 
the demagnetization curves (dH/dM vs. H). These 
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curves were generated at room temperature and 
depicted in Fig. 13. All the curves show one peak on 
each side of H = 0, and this is evidence of exchange 
coupling between the  CoFe2O4 and  Mg0.9Ni0.1O 
phases [74]. It is well known that the better the 
exchange coupling the narrower the peak is and vice 
versa [75]. The width of the peaks seems to decrease 
from x = 0 to x = 0.2 and then increases from x = 0.2 
to x = 0.8. As a result, the maximum and minimum 
exchange coupling, in the four nanocomposites, are 
for CM20 and CM80, respectively. It can be seen 
that the two peaks observed in each plot are almost 

symmetrical around H = 0 and separated by a mag-
netic field  2Hm, where  Hm represents the inflection 
point in the M-H loop, and it is almost very close 
to the coercivity  (Hc) of the material [76]. The val-
ues of  Hm and  Hc are plotted as a function of x in 
Fig. 14.  Hm values are all greater than the coerciv-
ity  (Hc) except for the CM20 nanocomposite. The 
larger values of  Hm than  Hc indicate the switch field 
distribution due to disordered shell contributions 
in pseudo-single domain or multi-domain grains 
[77]. However, smaller values for  Hm are due to the 
absence of switch field distribution [78].

Fig. 14  Hc and  Hm as a 
function of x for x = 0, 0.1, 
0.2, 0.4 qnd 0.8

0.0 0.2 0.4 0.80.1
0

200

400

600

800

1000

1200

H
 (G

)

x

 Hc from M-H curves
 Hm from dM/dH curves

Fig. 15  Loop width versus 
magnetization for x = 0, 0.1, 
0.2, 0.4 qnd 0.8

-40 -20 0 20 40
0

500

1000

1500

2000

∆H
 (G

)

M (emu/g)



J Nanopart Res (2024) 26:96 

1 3

Page 17 of 21 96

Vol.: (0123456789)

The width of the loops (ΔH) has been plot-
ted against the magnetization in Fig.  15 to provide 
a clear picture of the magnetic interactions in the 
nanocomposites. The loop width is obtained by 
the subtraction of –ve from + ve applied magnetic 
field. Interestingly, the shape of the ΔH vs. M plots 
changes with the increase in the weight percentage 
of the  Mg0.9Ni0.1O phase. For  CoFe2O4, it is a bell 
shape, and then it changes to a bell shape with a 
dip inside for CM10, CM20, and CM40 nanocom-
posites. That is to say, the maximum value for ΔH 
is not at zero magnetization. Surprisingly, the dip 
disappears in CM80, and it becomes like that of 
 CoFe2O4 but with a narrower width. Many research-
ers reported that the appearance of the dip is attrib-
uted to exchange bias between different magnetic 
materials in the nanocomposites [79–81]. Pandey 
et al. [80] have related the biasing between different 
magnetic phases in nanocomposites to occur mostly 
in the ball milling method rather than the solid-state 
method. The reason is that during ball milling, used 
in this work, the different phases come closer to each 
other so that the magnetic interaction can be more 
noticed. Based on ΔH vs. M plots, one can conclude 
that the magnetic interaction is minimum in CM80 
and maximum in CM20. This is also confirmed 
in the dM/dH curves analysis. Interestingly, it is 
observed that the highest is the dip, the largest is the 
coercivity, and vice versa. This could be explained 
as follows: The domain walls of the  Mg0.9Ni0.1O 
phase move towards the interface between the two 
phases due to the high magnetic interaction for the 
relatively small weight fraction of  Mg0.9Ni0.1O phase 
(CM10 and CM20). This phenomenon is associated 
with the magnetization reversal of  CoFe2O4, which 
results in a decrease in the sample’s coercivity when 
compared to the pure phase [82]. However, for a 
high weight % of  Mg0.9Ni0.1O (CM40 and CM80), 
the magnetic interaction between the two phases is 
weak, and the coercivity increases again [83]. MgO 
doped with nickel demonstrates strong adsorption 
capabilities [57], making it a promising choice for 
adsorption applications when combined with mag-
netic  CoFe2O4 in a nanocomposite like CM80. This 
composite offers very efficient adsorption since it is 
easily removed from water using a simple magnetic 
method. A table summarizing various research find-
ings on  CoFe2O4/oxide nanocomposites can be seen 
below (Table 3). Ta
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Conclusion

The co-precipitation technique followed by a high-
speed ball milling procedure has succeeded in the co-
synthesis of pure  CoFe2O4 and  Mg0.9Ni0.1O phases 
with their four nanocomposites. The XRD analysis 
showed high crystallinity and purity for the synthe-
sized samples without the formation of any second-
ary phases. The TEM micrographs showed spherical 
nanoparticles for all samples with maximum particle 
size for x = 0.8. The d-spacing obtained from HRTEM 
micrographs confirmed the formation of the two pure 
phases as well as their nanocomposites. The Raman 
spectra showed sharp peaks for  CoFe2O4 and CM40 
samples with cation redistribution between these two 
phases.  Mg0.9Ni0.1O Raman spectrum had a very clear 
high-intensity peak in the pure sample, and it appeared 
much smaller in the nanocomposites. Moreover, in 
XPS, the chemical states of the elements of both pure 
samples and CM40 nanocomposite were analyzed, 
demonstrating the composition elements  (Co2+,  Fe2+, 
 Fe3+

,  Mg2+,  O2− and  Ni2+). Finally, the magnetic study 
of the different samples revealed the soft ferromag-
netic behavior for the pure  CoFe2O4 phase and the 
very weak ferromagnetism in pure  Mg0.9Ni0.1O. The 
nanocomposites followed a clear decreasing trend in 
the saturation magnetization with the addition of the 
 Mg0.9Ni0.1O phase. The coercivity and  Mr/Ms attained 
maximum values for pure  CoFe2O4 and CM80 nano-
composite. However, the lowest values were recorded 
for CM20 nanocomposite. As a result, the  Mg0.9Ni0.1O 
phase had a significant effect on the structural and 
magnetic properties of  CoFe2O4 nanoparticles.
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