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Abstract The objective of this study was to conduct 
a physicochemical characterization and in vivo assess-
ment of the bioactivity of amorphous 3D-nanofibrous 
alumina scaffolds, manufactured using the Solution 
Blow Spinning (SBS) technique, for the purpose of 
bone regeneration. The nanofibers utilized in this 
research were derived from a solution containing alu-
minum nitrate, polyvinylpyrrolidone (PVP), ethanol, 
and distilled water, and were subsequently spun using 
SBS. The resulting scaffolds underwent calcination at 
500 °C. Physicochemical analysis of the scaffolds was 
carried out, and their biological effects were evalu-
ated in the femurs of Wistar rats. The scaffolds exhib-
ited an amorphous structure consisting of nanofibers 

with an average diameter of 290 nm. They presented 
a cotton-wool-like 3D configuration after calcination 
process. Histomorphometric analysis revealed a sig-
nificantly higher degree of bone neoformation within 
the alumina groups compared to the control group 
during both experimental periods (p < 0.05). Addi-
tionally, the percentage of remaining alumina graft 
particles was consistent at 14 and 28 days. In conclu-
sion, the assessed 3D nanofibrous alumina scaffolds 
facilitated bone deposition and supported the filling 
of bone defects with new bone tissue.
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Introduction

Tissue engineering faces a crucial hurdle: designing 
functional materials that foster cell-material inter-
actions and enhance tissue repair. Currently, dense 
alpha alumina (corundum) finds application in ortho-
pedic prostheses [1] and dental implants [2] due to 
their biocompatibility, chemical inertness, oxidation 
resistance, and exceptional mechanical properties 
[3–6]. Nevertheless, the bioinert nature of dense alu-
mina severely restricts its clinical use, stemming from 
its lack of active bonding with human bone tissue and 
the absence of interaction with neighboring cells [7].

The demand for bone scaffolds that facilitate new 
tissue growth is soaring. Recent years have unveiled 
the bioactivity of nano-porous amorphous alumina 
nanofilms, showing high protein adsorption (e.g., 
fibronectin) and osteoblast proliferation [4, 5, 8–10]. 
In 1999, the first in vitro study spotlighting the influ-
ence of nanoscale ceramic grain size on osteoblast 
adhesion revealed that nanophase alumina exhibited 
significantly higher osteoblast adhesion compared to 
conventional micron-sized alumina substrates [11].

Other similar studies demonstrated the ability to 
impact cellular attachment and mineralization in oste-
oblasts [4, 12, 13] and mesenchymal stem cells [5, 
14] by manipulating the pore size of nanostructured 
amorphous alumina membranes in vitro. Most of 
these studies tweaked anodization processing param-
eters [4, 12, 14] to produce amorphous nanostruc-
tured alumina into thin membranes [4, 5, 12–14] with 
promising results.

However, the existing literature still lacks investi-
gations into the production of three-dimensional (3D) 
amorphous alumina nanofibrous scaffolds possessing 
both bioactivity potential and customized shapes tai-
lored to specific bone damage scenarios. Addition-
ally, the current trend acknowledges the capability 
of nanofibrous structures to emulate the extracellular 
matrix due to their high porosity, substantial surface 
area, and nanostructured fiber surfaces that promote 
cell adhesion and proliferation [15–17].

Conversely, Solution Blow Spinning (SBS), a 
nanofiber fabrication technique devised in the early 

twenty-first century [18], presents a straightforward 
and swift solution. This method easily yields 3D 
nanofibrous structures with ample open porosity and 
nanostructured fibers, promoting cell infiltration, 
enhanced adhesion, and proliferation. SBS has been 
successfully adapted to create ceramic nanofibers 
[19–21]. A recent development demonstrated SBS’s 
potential for crafting 3D-nanofibrillar scaffolds from 
bioactive glasses, exhibiting strong osteogenesis 
capability [22]. Thus, this study aimed to conduct a 
physicochemical evaluation and in vivo assessment 
of the bioactivity of amorphous 3D-nanofibrous alu-
mina scaffolds produced through the SBS technique 
for bone regeneration.

Materials and Methods

Materials

Aluminum nitrate nonahydrate (Sigma- Aldrich®, Brazil) 
and polyvinylpyrrolidone (PVP, Mw ~ 1,300,000  g/mol, 
amorphous) were employed as the inorganic and organic 
precursors, respectively, to create hybrid fibers. Ethanol 
(EtOH, 99.5%, Synth®, Brazil) and distilled water were 
used as solvents for the preparation of the solutions.

Solutions and scaffold production

Solutions were prepared by dissolving aluminum 
nitrate nonahydrate (2.206  g) in a 2:1 ethanol/water 
mixture (10 ml) under vigorous magnetic stirring for 
1 h at room temperature. Further, 10wt% of PVP was 
slowly added to the solution and stirred for 1 h.

The fibers were spun immediately after preparing 
the precursor solutions using an SBS apparatus. This 
system, described previously [20], is composed of a 
compressed air source (with pressure regulator), a 
syringe pump (to control the injection rate of solu-
tions), a spray assembly consisting of an internal and 
an external nozzle, and a collector. The final solution 
was transferred to a syringe and injected with a rate 
of 6.6 mL/h into the inner channel of the SBS noz-
zle. Compressed air flowed through the external noz-
zle. The high velocity air after decompression, when 
released from the external nozzle, acts as a driving 
force for the spinning process. The solution pumped 
through the inner nozzle produces a droplet at the tip 
of the nozzle, which is stretched by the high-speed 
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air from the outer nozzle and jets of solutions erupt 
from the tip. These jets dry as they move towards the 
collector along the working distance, producing fib-
ers. The spinning air pressure was set at 0.34 MPa. 
Fibers were spun across a tubular furnace (working 
distance) with a temperature of 60 °C to help solvent 
evaporation. The fibers were collected on a static 
collector placed in a chamber at 80  °C. The spin-
ning apparatus and processing parameters is detailed 
in previous works [20, 22, 23]. The as-spun fibers 
formed a 3D cotton-wool-like scaffold (nanostruc-
tured in the form of fibers), which were then calcined 
at 500 °C for 2 h.

Physicochemical characterization of the scaffold

X-ray diffraction analysis (XRD) was conducted 
using the XRD-6000 instrument from Shimadzu, 
Japan. CuKα radiation (λ = 1.5418 Å) was employed 
at 40  kV and 30  mA, operating in fixed time mode 
with a step size of 0.02°. To assess scaffold morphol-
ogy, scanning electron microscopy (SEM) and atomic 
force microscopy (AFM) were employed, utilizing 
the SSX-550 SEM and SPM 9600 AFM models from 
Shimadzu, Japan, respectively. Fiber diameter meas-
urements were carried out using the ImageJ software 
developed by the National Institute of Health, USA, 
with a minimum of 300 individual fiber diameters 
recorded.

For determining specific surface area through 
Brunauer–Emmett–Teller (BET) analysis, and pore 
size and volume through Barrett-Joyner-Halenda 
(BJH) analysis, the nitrogen adsorption–desorption 
isotherm technique was adopted. This analysis was 
performed using the Autosorb-iQ instrument from 
Quantachrome, USA. Nitrogen adsorption was exe-
cuted post degassing at 200 °C for a duration of 2 h.

Zeta potential was measured utilizing the Zetasizer 
nano ZS90 instrument from Malvern, UK.

Animals

Twenty male Wistar rats (Rattus norvegicus) with an 
average weight of 300 ± 20 g and aged 10 weeks were 
housed under standard conditions. These conditions 
included a 12-h light/dark cycle, a temperature of 
22 ± 1 °C, and a relative humidity range of 50–60%. 
The rats had access to food (with the following com-
position: humidity, crude protein, ethereal extract, 

mineral, crude fiber, calcium, and phosphorus) and 
water ad libitum.

Ethical considerations were followed for all exper-
imental procedures involving animals. The proto-
cols were approved by the Committee on the Ethics 
of Animal Use and Care at the Federal University of 
Uberlândia, with permit number 088/17. Moreover, 
all activities were carried out strictly in line with the 
recommendations outlined in the Guide for the Care 
and Use of Laboratory Animals published by the 
National Institutes of Health (NIH Publications No. 
8023, revised 1978).

Surgical procedure

Following a week of acclimatization, the animals 
underwent anesthesia via an intraperitoneal injection 
containing 100 mg/kg of 10% ketamine and 7 mg/kg 
of 2% xylazine hydrochloride. After trichotomy and 
proper antisepsis procedures, bone defects were intro-
duced into both femurs, adhering to the technique out-
lined by Batista et al. [24].). In brief, with the animal 
placed in right lateral decubitus, a 2 cm longitudinal 
incision exposed the outer surface of the right femur. 
Subsequently, a complete-thickness cortical bone 
osteotomy, utilizing a round bur under saline irriga-
tion, led to the formation of a 2.3 mm bone defect. In 
the Control Group, the defects were randomly packed 
with coagulous, while in the Test Group, 3D-nanofi-
brous alumina scaffolds were employed. The defects 
were then categorized into four groups (n = 5) for 
each designated sacrifice period: Control (14  days), 
Control (28  days), Alumina (14  days), and Alumina 
(28  days). The wound was effectively sutured using 
Nylon 4.0 thread.

Euthanasia and Sample Collection

All animals were euthanized either 14- or 28-days 
post-surgery through intraperitoneal injection of 
sodium thiopental and lidocaine. This process was 
carried out in accordance with the tenets of the Uni-
versal Declaration on Animal Welfare. Following 
euthanasia, cervical dislocation was performed. The 
diaphysis containing the bone defect was promptly 
immersed in a PBS-buffered formalin solution (4%, 
pH 7.4) for 48 h at room temperature. After the fixa-
tion process, a thorough wash was administered, and 
the bone underwent decalcification in a 10% ethylene 



 J Nanopart Res (2024) 26:26

1 3

26 Page 4 of 12

Vol:. (1234567890)

diamine tetra acetic acid solution (pH 7.2). Finally, 
the prepared bone samples were embedded in paraffin 
for further analysis.

Histomorphometry Analysis

Semi-serial sections measuring 5 µm were extracted 
from the center of the bone defects. These sections 
were subsequently subjected to Hematoxylin and 
Eosin (HE) staining, as well as Mallory Trichrome 
(MT) staining. Histological assessments were con-
ducted using an optical microscope (Olympus BX50, 
Olympus Imaging America Inc., Shinjuku-ku, Tokyo, 
Japan).

To determine the percentage of newly formed bone 
and remaining graft particles in relation to the total 
area of the bone defect, three sections stained with 
Mallory Trichrome were employed for each defect. 
This methodology was adopted in line with the 
approach outlined by Batista et al. (2014) [24]. Essen-
tially, the bone defect, or the region of interest (ROI), 
was demarcated by four straight lines spanning from 
the edges of the affected cortical area to the opposite 
cortical side. The quantification of the newly formed 
bone and graft particle remnants within this defined 
region was achieved using the measuring tool within 
Image J 1.53 (developed by Wayne Rasband, National 
Institutes of Health, USA).

Statistical Analysis

The data were subjected to analysis using GraphPad 
Prism (GraphPad Prism® version 5.0 for Windows, 
San Diego, CA, USA). Initially, the acquired values 
underwent the Kolmogorov–Smirnov normality test. 
Subsequently, the parameters were assessed employ-
ing unpaired t-tests, and statistical significance was 
attributed to differences with a p-value of less than 
0.05.

Results and discussion

Scaffold production

The current study is the first using the innovative 
amorphous 3D-nanofibrous alumina scaffolds, con-
structed in the form of fibers through thermal treat-
ment of SBS scaffolds. This approach seeks to attain 

a suitable open structure conducive to bone regener-
ation. The method presented here diverges from the 
commonly encountered techniques in the literature 
for fabricating alumina-based biomaterials.

Nanostructured alumina materials are com-
monly synthesized through anodization processing 
[4, 12, 14]. While this approach shows promise, it 
has limitations in creating 3D-scaffolds in the form 
of nanoscale fibers. Anodized alumina is typically 
derived from aluminum, which imposes restric-
tions on the overall volume that can undergo ano-
dization. Consequently, most studies employing this 
method have focused on nanostructured alumina in 
the form of thin membranes [4, 5, 12–14]. In con-
trast, electrospinning (ES) stands as the foremost 
top-down technique for producing ceramic nanofib-
ers [25–27]. Investigations using this approach have 
yielded: (1) α-alumina (α-Al2O3) fibers with diam-
eters ranging from 20 to 500  nm post calcination 
between 900 and 1300ºC [28]; (2) α-Al2O3 fibers 
with diameters spanning 150 to 500  nm after cal-
cination at 1200  °C [25]; (3) α-Al2O3 fibers with 
diameters between 100 and 500  nm following fir-
ing at 1000  °C [26]; and (4) α-Al2O3 fibers with 
diameters from 102 to 378 nm after firing at 1200ºC 
Additionally, ES has been employed for generating 
γ-phase alumina (γ-Al2O3) fibers, ranging from 114 
to 390  nm in diameter after calcination at 800ºC 
[27]. However, it is crucial to acknowledge that 
electrospinning comes with the drawbacks of being 
time-intensive and challenging to assemble fibers 
into large-scale 3D structures, which in turn results 
in suboptimal porous architectures [29].

In comparison to the afore-mentioned tech-
niques, Solution Blow Spinning (SBS) holds a dis-
tinct appeal due to its ability to tailor the morpho-
logical attributes of the resulting scaffolds [18, 22] 
more precisely, catering to the specific demands of 
bone repair. This technique also provides a means 
of effectively controlling material properties, such 
as pore size and membrane thickness, in a consist-
ent and reproducible manner [18, 29]. Notably, the 
fibers are swiftly processed and collected, form-
ing diverse architectures including cotton-wool-
like structures. This inherent characteristic of SBS 
enables the potential creation of 3D-nano scaf-
folds, taking the form of fibers with exceptional 
nanoscale porosity [19, 20]. Hence, SBS emerges as 
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a high-yielding and promising methodology in the 
realm of developing 3D-nanofibrous systems.

Scaffold characterization

The XRD pattern of the 3D-nanofibrillar alumina 
scaffolds is presented in Fig. 1. The pattern lacks dif-
fraction reflections, which is indicative of an amor-
phous material. It is worth noting that anodic alumina 
(or anodic aluminum oxide, AAO) also features a 
similar amorphous structure. AAO, known for its bio-
compatibility, exhibits a microstructure characterized 
by nanopores that promote the adhesion and prolifera-
tion of osteoblasts [30, 31]. Consequently, the manu-
factured alumina exhibits a structure that holds the 
potential to support the osteogenesis process.

The scaffolds generated consist of nanofibers 
with an approximately circular cross-section, along-
side a limited occurrence of bead-shaped structures 
(Fig.  2A-B). These beads can be attributed to insta-
bilities arising during the spinning process, a phe-
nomenon observed in other studies involving the SBS 
of oxide ceramic nanofibers [19, 21]. Figure 2C pre-
sents the distribution of fiber diameters. The fibers 
possess an average diameter of 287 nm, exhibiting a 
wide diameter range, with most fibers falling within 
the 100 to 500 nm interval.

The clinical efficacy of novel ceramic materials 
predominantly lies on processes happening at the 
tissue-material interface [32]. When a graft is intro-
duced into a bone defect, regions within distinct 
particles become encompassed by a blood clot. This 

clot serves as a source of vital proteins and growth 
factors, initiating the sequence of events with cell 
adhesion and culminating in bone repair [32]. Con-
sequently, given that biomaterial surfaces form the 
initial point of interaction with the host, attributes 
like roughness, attachment sites, macro morphology 
like the extracellular matrix (ECM), and surface 
charge hold paramount significance in orchestrating 
the subsequent biological cascade that drives bone 
healing. In an ideal scenario, a bioactive graft mate-
rial should engage with surrounding cells, favoring 
bone formation while also ensuring secure biodeg-
radation [7].

Considering these observations, the distinctive fea-
tures of nanofibrous alumina open up promising ave-
nues for diverse approaches in tissue engineering [12, 
33]. Presently, 3D nanofibrous scaffolds have gained 
attention due to their capability to mimic the extra-
cellular matrix (ECM), thereby enhancing cell adhe-
sion, proliferation, and the growth of new tissues. The 
produced scaffolds exhibit such a morphology, com-
prised of non-oriented interwoven fibers with a high 
porosity of interconnected pores, like a cotton wool.

Recently, several studies have employed Solution 
Blow Spinning (SBS) to create amorphous γ-Al2O3 
and α-Al2O3 microfibers [34, 35] with mean diam-
eters of 4 μm (ranging from 3.0 μm to 5.5 μm) [34] 
and spanning a range of 1.5 to 47 μm [35]. However, 
these investigations did not explore nanofiber diam-
eters or achieve 3D cotton-like structures as accom-
plished in the present study. This novel 3D archi-
tecture and nanofibrous attributes of the material 

Fig. 1  XRD patterns of the 
produced 3D-nanofibrous 
alumina scaffolds
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generated in our study are innovative, rendering it 
suitable for numerous potential applications.

Surface roughness is important for protein attach-
ment, cell spreading and proliferation [36–38]. Fig-
ure  3 shows an AFM image of a fiber along with 
the nano roughness profile in its length. These fibers 
exhibit an arithmetic mean deviation of roughness 

(Ra) measuring 5.2 nm, a root mean square deviation 
of roughness (Rq) at 6.5 nm, and a maximum height 
of profiles (Rz) at 35.1 nm. These values depict fibers 
characterized by nano-featured surface topography.

Research has observed that surfaces characterized 
by nano-featured topography and nano roughness 
exhibit better efficacy in fostering bone cell adhesion, 

Fig. 2  A-B Scanning Electron Microscope (SEM) images in different magnification; C Graphical representation of fiber diameter 
distribution for the produced 3d-nanofibrous alumina scaffolds. (Magnification level indicated in the images)

Fig. 3  Atomic force 
microscopy (AFM) images 
and nano roughness profile 
along an alumina fiber
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proliferation, and differentiation, when compared to 
surfaces with coarser topographies (micro or submi-
cron scale roughness) [39, 40]. Nano roughness has 
the potential to elevate surface hydrophilicity, pos-
sibly even transitioning toward super hydrophilic 
behavior. Additionally, it can enhance the adhesion of 
peptides and proteins, which in turn encourages cell 
spreading [36, 41, 42].

Refining the surface of alumina films and supports 
to a nano scale, encompassing nano roughness and 
nanometer-sized pores (ranging from 20 to 80  nm), 
has been shown to enhance the adhesion of osteo-
blasts and promote the osteogenic differentiation and 
proliferation of mesenchymal stem cells [5, 10, 36, 
42]. Furthermore, studies have indicated that utilizing 
alumina nanoparticles (ranging from 24 to 167 nm) to 
generate cell supports introduces a nano roughness to 
the surface, leading to a 50% improvement in osteo-
blast adhesion [10, 11, 43].

Figure 4 presents the nitrogen adsorption–desorp-
tion isotherm alongside the BJH pore diameter distri-
bution curve. These fibers exhibit a BET surface area 
measuring 22  m2/g, a pore volume (BJH) of 0.119 
 cm3/g, and a pore size distribution spanning from 2 to 
60 nm. Notably, the modes for pore sizes are observed 
around 2 nm and 6 nm. It’s important to note that the 
observed pore sizes of the fibers are lower than those 
reported in the literature for alumina surfaces with 

nano roughness employed for cell adhesion and pro-
liferation, as these typically fall within the range of 
meso and microporosity (20 to 80 nm).

The produced scaffolds exhibit an interwoven fiber 
morphology, with the fibers featuring micropores and 
surface nano roughness. However, these attributes 
alone aren’t solely responsible for robust cell growth; 
surface charge also plays a pivotal role in ensuring 
effective cellular adherence. The fibers demonstrate 
an average zeta potential of + 6.4 mV at a pH of 7.3.

In water, alumina nanoparticles have a positive 
surface charge (Al-OH2

+) (at acidic pH, protona-
tion creates a positively charged alumina surfaces) in 
a wide range of pH, up to the point of zero charge, 
which range from 7.6 to 9 [39, 44, 45]. At alkaline pH 
the surface is negative (Al-O−) due to the amphoteric 
nature of the Al–OH groups. However, according to 
Kosmulski [46], the point of zero charge (PZC) of 
aluminas can range at a larger pH interval, from 6.5 to 
10.0. Thus, the zeta potential of + 6.4 mV at a pH of 
7.3 obtained is coherent with literature values.

Researchers [39] have observed an isoelectric 
point (IEP) at a pH of 6.7 for AAO, resulting in a 
negative charge at physiological pH levels ranging 
from 7.4 to 8.0. The fibers generated in this study, 
despite having a similar amorphous structure, exhibit 
a higher IEP (> 7.3). This discrepancy could be from 
distinct hydrolysis and/or protonation behaviors 

Fig. 4  Nitrogen adsorp-
tion–desorption isotherm 
and insert with BJH pore 
diameter distribution curve
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between the produced alumina and AAO. Stud-
ies [39, 47] depicted that hydroxyl groups [Al–OH] 
are formed on the AAO surface when the alumina is 
immersed in water and that IEP of aluminas varies 
with surface topology, notably the surface curvature. 
Small pores (high curvature radius) favour the forma-
tion of hydroxyl groups (such as  Al2-OH,  Al3-OH or 
 Al2-OH2, with coordination of oxygen to two of three 
aluminium atoms) with higher affinity to deprotona-
tion [39, 47], which would decrease IEP values.

On the other hand, AAO porous materials have a 
honeycomb-like structure with cylindrical nanopo-
res, but the  N2 adsorption–desorption graph (Fig. 4) 
of the produced fibers is a s type IV isotherm with 
H4 hysteresis loop, which indicates the presence of 
a mesoporous structure but with slit-type pores [44]. 
Thus, the difference in surface charge behaviour of 
the produced material and AAO can be associated 
with pores morphology and their curvature radius, 
which generates hydroxyl groups on the surface with 
different affinity to protonation and consequently dif-
ferent IEP.

The surface charge of the material holds strong 
influence over the interaction between the scaffold 
and inorganic and bioorganic constituents present 
within the cell growth medium. A negative surface is 
particularly interesting because it facilitates calcium 
fixation, thereby accelerating apatite nucleation and 
promoting cell growth. On the other hand, the adsorp-
tion of organic compounds is a more complex pro-
cess, exerting influence over the success of cell adhe-
sion and migration [11, 39].

Initially, researchers presumed that positively 
charged scaffolds would induce robust cell prolifera-
tion. This line of thinking stemmed from the fact that 
proteins in the extracellular matrix (ECM) bear a neg-
ative charge within physiological mediums/pH lev-
els, implying that they would readily adsorb onto the 
support, consequently augmenting cell adhesion [48]. 
However, investigations have demonstrated that the 
adsorption of proteins like osteopontin and fibronec-
tin depends on a multitude of factors beyond the 
polarity of the support’s charge [49, 50]. Additionally, 
surface charge plays a role in determining the migra-
tory morphology of cells [49, 50], and a charged sup-
port enhances adhesion of osteoblast-like cells inde-
pendently of charge polarity [49]. Thus, the presence 
of a positive charge on the surface of the generated 
fibers is important for enhancing cell attachment.

Biological effect—Histological observations and 
histomorphometry analysis

In the Control Group, bone tissue exhibited a typi-
cal morphological appearance, forming trabeculae 
that enclosed small cavities that partially filled the 
defect. In the Alumina Group, primary bone tissue 
predominantly occupied the defect, with large num-
ber of osteocytes embedded within the bone matrix, 
accompanied by numerous remaining graft particles. 
Areas of secondary bone tissue were infrequent, even 
after 28  days. Cubic osteoblasts with cytoplasmic 
basophilia were evident along the bone matrix, indic-
ative of protein synthesis activity. Notably, the rem-
nant graft particles were incorporated into the bone 
matrix, with signs of remodeling frequently seen 
(Fig. 5).

Histomorphometric analysis revealed a greater 
amount of newly formed bone in the Alumina groups 
in comparison to the Control group during both 
experimental time periods (p < 0.05). Interestingly, 
the percentage of remnant graft in the Alumina group 
remained similar at both 14 and 28 days (Fig. 6).

In the present study, 3D-nanofibrous amorphous 
alumina scaffolds were employed in an animal model 
to assess their efficacy in promoting bone regenera-
tion. The results revealed greater bone neoformation 
within the alumina groups as compared to the control 
group, with a rate of biomaterial degradation like the 
rate of bone formation. This equilibrium is particu-
larly significant for bone substitutes, as the biomate-
rial’s resorption must not be faster than bone depo-
sition. This dynamic ensures effective filling of the 
defect with new bone while preserving its original 
architecture [7]. The progression of bone remodeling 
was evident in both control and experimental groups, 
demonstrating the biocompatibility and bioactivity of 
the tested scaffolds, and their osteoinductive and oste-
oconductive properties.

These favorable events observed in vivo are greatly 
influenced by material porosity [33, 51, 52] and 
chemistry [33, 51], and involves recruitment and infil-
tration of cells from the surrounding bone tissue, as 
well as vascularization. The penetration of blood ves-
sels is facilitated, in part, by the material’s porosity. 
This is an important issue for oxygen supply, nutri-
ents transport and waste exist from the cells involved 
in bone repair Additionally, it is well-established in 
the literature that scaffold pore size and porosity 
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mediates the behavior of mesenchymal cells [5, 53], 
increasing osteogenic differentiation and proliferation 
[4, 12]. This is mandatory for the clinical success of 
biomaterials.

Although the specific behavior of bone cells was 
not evaluated in vitro, the present in vivo study effec-
tively demonstrated the successful use of 3D-alumina 
scaffolds, characterized by pores ranging from 100 to 
500 nm, for bone repair and regeneration.

The interaction between cells and the surface of 
amorphous 3D-nanofibrous alumina scaffolds can 

also be attributed to their hydrophilicity. It has been 
documented that nanophase alumina exhibits greater 
hydrophilicity compared to conventional alumina 
[11]. Notably, improved adhesion of human osteo-
blasts are found on the more hydrophilic materials 
that presented a higher protein adsorption [54]. As 
a consequence, shortly after the implantation of the 
scaffold, vital interactions occur between proteins and 
the surfaces of the biomaterial [55] creating a stable 
and highly textured nanoscale surface. This environ-
ment becomes conducive to bone deposition.

Fig. 5  New bone formation in Control and Alumina Groups. 
Observe the emergence of new bone in both the Control and 
Alumina Groups. Notably, new bone growth is observed 

around the remaining graft particles within the Alumina 
Group. NB: new bone; GP: graft particles. HE (magnification 
level indicated in the image)

Fig. 6  Histomorphometric Analysis of New Bone Formation (A) and Graft Particles (B) in Control and Alumina Groups after 14 
and 28 Days of Implantation (*p < 0.05)
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The amorphous or crystalline phases of ceramic 
scaffolds can influence the osteogenic induction pro-
cess [51]. Prior in vitro investigations have demon-
strated the osteoinductive potential of nanostructured 
amorphous alumina membranes [4]. These findings 
suggest that the nanofibers produced in this study may 
elicit similar responses in vivo, even with the dispari-
ties in spinning techniques and material structures. 
The alumina utilized in this experiment was sub-
jected to calcination at 500  °C, yielding amorphous 
3D-nanofibrous alumina scaffolds, as confirmed 
through fiber characterization. It’s worth noting that 
amorphous materials tend to degrade more faster than 
crystalline ones due to the less ordered arrangement 
of their molecular chains, leading to lower mate-
rial density [6]. Even so, the reabsorption rate of the 
tested 3D-alumina scaffolds allowed bone deposition 
and facilitated effective filling of the bone defect with 
new bone. This observation underscores the capacity 
of these scaffolds to harmoniously balance degrada-
tion and new bone formation.

Conclusion

The synthesis method employed allowed the creation 
of controlled, cost-effective, and reproducible cotton-
wool-like 3D-nanofibrous alumina scaffolds. These 
scaffolds displayed amorphous nanofibers, approxi-
mately 290  nm in diameter, which promoted bone. 
These discoveries highlight the necessity for addi-
tional exploration in this domain. Further research 
varying crystallinity of the scaffolds to control the 
imbalance between degradation and new bone forma-
tion and in vivo analysis in critical size bone defects 
are necessary to validate and confirm the results pre-
sented here.
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