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Abstract  This review highlights the potential ben-
efits and drawbacks of using nanocarriers as drug 
delivery systems. Nanocarriers have been widely 
utilized to enhance drug efficiency, overcome drug 
resistance, and reduce adverse effects. However, 
the interaction between nanocarriers and biological 
systems can lead to toxic responses. Therefore, it is 
crucial to carefully select optimized nanocarriers to 
minimize toxicity and maximize efficiency. Every 
type of nanocarrier has its own advantages and disad-
vantages. Hybrid nanocarriers have been engineered 
to address the limitations of existing nanocarriers 
and are considered more suitable for developing new 
formulations. The article discusses various aspects 
of nanocarriers, including their applicability, poten-
tial toxicity, and strategies for utilizing appropriate 
nanocarriers in nanoformulations. To mitigate the 
toxicity of nanocarriers, several approaches can be 
employed, such as PEGylation, coating, charge coat-
ing, and injections of free PEG; moreover, by modi-
fying the preparation method or utilizing hybrid 

nanocarriers, the efficiency of drug delivery systems 
can be improved. Overall, the article emphasizes the 
importance of selecting appropriate nanocarriers and 
employing strategies to reduce toxicity while enhanc-
ing drug delivery efficiency.
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Abbreviation 
PLA	� Poly-(lactic acid)
PLGA	� Poly-(lactic-co-glycolic acid)
PEG	� Polyethylene glycol
NP	� Nanoparticle
SLNs	� Solid lipid nanoparticle
NLCs	� Nanostructured lipid carriers
FDA	� Food and drug administration
APCs	� Antigen-presenting cells
EPR	� Enhanced permeability and retention
RBC	� Red blood cells
DOPC	� 1,2-Dioleoyl-sn-glycero-3-phosphocholine
SM	� Sphingomyelin
DOPS	� 1,2-Dioleoyl-snglycero-3-phospho-L-

serine (DOPS)
DOPE	� 1,2-Dioleoyl-snglycero-3-phosphoethanol-

amin
TPGS	� D-α-Tocopheryl polyethylene glycol 1000 

succinate
DLPC	� 1,2-Dilauroylphosphatidylcholine
EE%	� Encapsulation efficiency
HPMC	� Hydroxypropyl methylcellulose
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CF	� Carboxyfluorescein
PC	� Soya phosphatidylcholine
DPPC	� Dipalmitoylphosphatidylcholine
5FU	� 5-Fluorouracil
DOPG	� Dioleoylphosphatidylglycerol
ABC	� Accelerated blood clearance
PEI	� Polyethylene imines
ROS	� Reactive oxygen species
TEMPO	� ,2,6,6-Tetramethylpiperidine-1-oxyl
ACE2	� Angiotensin-converting enzyme 2
CMC	� Carboxymethyl cellulose

Introduction

Numerous medications have been developed for the 
treatment of different pathologies; however, they 
may exhibit severe adverse effects on normal tissues. 
Therefore, it is very important to direct the drug to 
the target tissues while bypassing normal cells. In 
addition to side effect reduction, this approach can 
also increase the efficiency of the drug. One of the 
important issues in pharmaceutical technology is 
the delivery of drugs into the operation site. In this 
regard, use of pharmaceutical carriers has long been 
considered. Targeted formulations are designed to 
improve effectiveness and reduce toxicity of existing 
drugs. This improvement, although it may be called 
“old wine in new bottles,” can modify the efficiency 
of a medication in a way as if a new medication has 
been introduced. This becomes even more important 
when we consider that the introduction of new drugs 
is a very time-consuming and expensive process, gen-
erally taking 10 to 15 years [1].

Nanotechnology plays a significant role in improv-
ing pharmaceutical formulation [2]. Encapsulation 
of drugs in nanocarriers may overcome those men-
tioned concerns. Many structures have been designed 
as nanocarrier to improve the kinetic of drugs, reduce 
their side effects, and prevent drug resistance. Nano-
materials are defined as a material in the range of 1 
and 100 nm [2] and employed as powerful agents for 
the treatment of diseases, imaging, and diagnosis [3]. 
Liposomes, as the first nano-drug delivery systems, 
were discovered by Alec D Bangham in the 1960s [4] 
which are composed of lipid bilayers with an aque-
ous core [5]. Following the introduction of liposomes, 
improving them and introducing other nanocarri-
ers have widely been studied in the past years. For 

some different nanocarriers, their development has 
occurred simultaneously. For example, poly-(lactic 
acid) (PLA) together with the copolymer poly-(lactic-
co-glycolic acid) (PLGA) was developed as surgical 
sutures in the 1960s as well [6]. Dendrimers were 
produced during 1970–1990 by Buhleier et  al. and 
Tomalia et  al. [7]. Subsequently, the first polymer 
drug conjugate was approved by the Food and Drug 
Administration (FDA) in 1990 [8]. At the same year, 
polyethylene glycol (PEG) was discovered to enhance 
the blood circulation times for liposomes [9], and a 
few years later, PEGylated PLGA nanocarriers also 
found to have longer circulation times (1994) [8]. 
In 1995, the FDA approved Doxil (liposomal doxo-
rubicin) for the treatment of AIDS-related ovarian 
cancer and Kaposi sarcoma. [10]. Polymersome was 
described in the 1999 [8]. Abraxane (an albumin-
based nanoparticle (NP), protein-bound paclitaxel) 
and NanoTherm (iron oxide NPs) were also approved 
in 2005 and 2012, respectively [11]. Some approved 
nanomedicines since 2015 are listed in Table 1.

In this review, we have discussed about the selec-
tion of optimal nanocarriers for application in new 
nanoformulation preparation based on their com-
parative toxicity and physico-chemical properties. 
Approaches to avoiding nanocarrier toxicity and 
escaping from immune response have been dis-
cussed as well.

Nanocarriers as drug delivery systems

Various nanocarriers including carbon nanotubes 
[15], liposomes [16], dendrimers [17], solid lipid nan-
oparticles (SLNs) [18], archaeosome [19], ethosomes, 
transferosomes [20], polymeric NPs [21], nanoemul-
sions [22], niosomes [23], and nanogels [24] were 
developed for drug delivery in recent decades.

To improve the efficiency of drugs, choosing the 
right nanocarrier for drug delivery is very decisive 
and is mostly based on the physico-chemical char-
acteristics of the drug. However, toxic biological 
responses may be induced by contact of nanocarriers 
with natural biological systems. For example, den-
drimers can induce hemolytic effects which limit their 
clinical application [25]. It was observed that SLNs 
induce inflammatory reaction in animals [26]. More 
details regarding the toxicity and adverse effects of 
nanocarriers have been provided in the next sections.
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Although a large number of nanocarriers have 
been designed during the past few decades, there is 
still a need for further strategies for improving of 
their efficacy and reduction of side effects.

Polymersomes are synthetic structures similar to 
liposomes (hydrophilic inner core and hydrophobic 
double-layer) composed of amphiphilic copolymer 
units instead of lipids (Fig. 1A) [27]. Polymersomes 
are more efficient than liposomes due to their higher 
stability, slower cargo release, longer circulation 
time, capability to encapsulate of both hydrophilic 
and hydrophobic drugs, and rapid uptaking by cells 
[27, 28]. Moreover, the chemical, physical, and bio-
logical properties of these nanocarriers can be modi-
fied by functionalization and adjusting the length of 
polymers (Table 2) [57].

SLNs (Fig. 1B) contain a lipid crystalline core that 
is enclosed with one or more emulsifiers for stabiliza-
tion [58]. Nanostructured lipid carriers (NLCs), as the 
second generation of lipid nanosystems, contain solid 
lipids in a liquid lipid matrix (Fig. 1C). In compari-
son to SLNs, NLCs confer higher drug loading due 
to their liquid oil droplets in a solid matrix [12]. NLC 
formulations are prepared by incorporating a drug 
in the mixture of different ratios of solid and liquid 
lipids. Degree of crystallinity in NLCs is lower than 
SLNs, and NLCs are more stable than SLNs at room 
temperature (Table 2) [32].

Exosomes (extracellular vesicles) are membrane-
enclosed vesicular structures with a size distribu-
tion between 30 and 200 nm which are released by 
most cell types of the body including macrophages, 
dendritic cells, B cells, and T cells. These vesicles 
are usually composed of a lipo- or glycoprotein shell 

surrounding a hydrophilic core that comprises pro-
teins and nucleic acids extracted from the parent cell 
(Fig.  1D) [44–47]. Exosomes can be extracted from 
several extracellular fluids such as amniotic fluid, 
urine, saliva, and cerebrospinal and fluid blood. 
These nanocarriers are considered as drug delivery 
system for lipid, proteins, and RNA [59] because of 
their low immunogenicity and efficient cargo delivery 
[44, 45]. Exosomes act as a kind of “invisible cloak” 
because they can escape from the endosomal pathway 
and lysosomal degradation and reduce the clearance 
of phagocytic cells, which increases drug delivery to 
target tissues [47]. Nevertheless, therapeutic applica-
tion of exosomes is restricted due to their structure 
complexity and non-efficient procedure for isolation 
and drug loading (Table 2) [44, 45].

Vesosomes (as multicompartment systems) are 
liposomes encapsulating smaller liposomes in their 
aqueous core (Fig.  1E). These nanocarriers provide 
a dual protection layer for incorporated drugs, since 
the drug loaded smaller liposomes surrounded by 
second larger bilayer liposomes [42]. Vesosomes can 
be employed for delivery of drug cocktail (such as 
antibiotics) when a synergistic effect is expected to 
achieve at a fixed ratio of combined medications. This 
formulations also may prevent pathogen resistance to 
an individual drug [60]. Furthermore, the release of 
drugs from vesosomes as multicompartment systems 
is more efficient than single-compartment systems, 
which leads to increase of permeability, specificity, 
and stability (Table 2) [42].

Virosomes are virus-like particles with altered viral 
envelopes and without genetic material of the native 
virus (Fig.  1F). Since virosomes mimic the intact 

Table 1   Some approved nanomedicines by FDA since 2015

Drug Formulation Indication Company Year Ref

Onivyde Liposomal irinotecan Pancreatic cancer Merrimack 2015 [12]
Adynovate Polymer-protein conjugate

(PEGylated factor VIII)
Hemophilia Baxalta 2015 [12]

Glatopa Glatiramer acetate (synthetic 
protein) containing polymer

Multiple sclerosis Novartis 2015 [13]

CPX-351 (Vyxeos™) Daunorubicin- and cytarabine-
containing liposome

Acute myeloid leukemia Jazz Pharma 2017 [13]

Zilretta® Triamcinolone acetonide loaded 
in PLGA hydrogel

Knee osteoarthritis Flexion Therapeutics 2017 [14]

Onpattro® Patisiran (siRNA)-containing 
liposome

Hereditary transthyretin amyloi-
dosis

Alnylam Pharmaceuticals 2018 [13]
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virus and present the viral envelope glycoprotein (the 
most important viral antigens for inducing immune 
responses), they are able to combine the antigen and an 
adjuvant within a single particle which can induce both 
cellular and humoral immune responses. Therefore, 
virosomes can provide a platform for vaccine delivery 
systems. The virosomes inter the antigen-presenting 
cells (APCs) through the receptor-mediated endocyto-
sis. Acidic pH of endosomes triggers the fusion of viro-
somes and endosomal membranes that leads to release 
of encapsulated antigen into cytosol of the APCs, pre-
senting in MHC class I and then interact with T cell 
receptor on CD8+ lymphocytes and as a result inducing 
cytotoxic T lymphocyte (CTL) responses (Table 2) [38].

Marinosomes are a type of liposomes which are 
prepared from natural phospholipids extracted from 
marine organisms that contain high amounts of pol-
yunsaturated fatty acids (PUFAs). These phospho-
lipids possess more bioavailability than triglyceride 
which result in more efficient absorption into the 
body. These lipids are not naturally produced in nor-
mal human epidermis and upon the absorption; their 
metabolism in the epidermis results in production of 
anti-inflammatory and anti-proliferative metabolites. 
Therefore, marinosomes are potentially applicable in 
the cosmetic science for treatment of dermal inflam-
matory diseases (Table 2). Marinosomes reveal good 
tolerability in skin and eye [40]. Apart from dermal 
application, curcumin was encapsulated in marino-
somes for improving of its anticancer activity. Mari-
nosome-encapsulated curcumin exhibited a potent 
antioxidant and cytotoxic activity and a sustained 
release behavior on lung cancer cells. In addition, 
these nanocarriers showed good physico-chemical 
stability following 8 weeks of storage at 4 °C [61].

The major limitations of liposomes is instability of 
phospholipids in acidic pH of stomach owing to aggre-
gation of phospholipids which causes the liposomal 
membrane to rupture and make them vulnerable to 
degradation by intestinal lipases [62]. Archaeosomes 
are a new generation of liposomes that are prepared 
from diether and/or tetraether lipids extracted from 
the Archaea (Fig. 1G and H). Compared to liposomes, 
archaeosomes exhibit distinctive structures which have 
considerable stability in alkaline or acidic pH, high 

temperatures, and oxidative conditions and are resist-
ant to the action of lipases and bile salts (Table  2) 
[52, 53]. Archaeal lipids in contrast to eukaryotic 
ester bound lipids are made from saturated isoprenoid 
chains that attached via ether bonds to sn-2, 3 carbons 
of the glycerol backbone [63]. It has been reported 
that ether links are more resistant than ester links in 
harsh condition [64]. Moreover, the crystallization and 
membrane permeability are decreased with the help of 
branching methyl groups in archaeosomes [19]. There-
fore, these nanocarriers can open up a new avenue for 
the oral delivery of peptide and protein drugs. Fur-
thermore, archaeosomes are biodegradable [53], and 
in vitro and in vivo studies indicated that archaeosomes 
are safe and do not induce toxic effects in mice. Their 
high thermo-stability made archaeosome formulations 
appropriate for sterilization by autoclaving [19].

Invasomes are liposomal vesicles composed of 
soy-phosphatidylcholine, lysophosphatidylcholine, 
ethanol, and terpenes (Fig.  1I). This soy-phosphati-
dylcholine invasomal bilayer surrounds the matrix. 
Lysophosphatidylcholine is an edge activator that 
confers appropriate flexibility to the phosphatidylcho-
line bilayers. Ethanol and terpenes are used as pen-
etration enhancers for drugs (by disrupting the tight 
lipid packing of stratum corneum) and grant higher 
fluidity and flexibility to the phospholipid bilayers as 
well [35]. These nanocarriers are suitable drug deliv-
ery systems for skin penetration of hydrophilic and 
hydrophobic agents (Table 2) [35, 36].

Vaults are ribonucleoprotein nanocapsules with a thin 
protein shell enclosing an internal cavity that are pre-
sent in most eukaryotic species from worms to humans. 
These particles can be produced in large quantities after 
the in  situ expression of several copies of a structural 
protein assembled. Biochemical analysis determined 
that these nanocarriers are composed of three protein 
species and an RNA component. One of the proteins 
is the major vault protein (MVP) which its expression 
alone is necessary and sufficient for recombinant vault 
particle formation. Two additional proteins are telomer-
ase-associated protein 1 (TEP1) and poly-(ADP-ribose) 
polymerase (PARP). The RNA component (rRNA) is 
a small untranslated RNA that associates with the vault 
through its binding to TEP1. Comparatively large num-
ber of materials can be loaded in the internal cavity due 
to its high capacity. Vaults can be applied as drug and 
vaccine delivery system. Vault therapeutic delivery sys-
tems are safe and relatively nontoxic [65–67].

Fig. 1   Structure of A polymersome, B SLN, C NLC, D exo-
some, E vesosome, F virosomes, G liposome, H archaeosome, 
and I invasome

◂
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Alginate is a hydrophilic, anionic polysaccharide 
and biodegradable polymer that is extracted from 
marine brown algae. Alginate can form nanocarriers 
by ionotropic gelation with divalent cations or cationic 
polymers; however, these nanocarriers are not stable 
at room temperature and loaded drug can be easily 
released from the nanocarriers (Table 2) [49, 50].

Micelles and liposomes have been widely consid-
ered for oral delivery of drugs due to their protection 
against degradation of loaded drugs by gastrointes-
tinal enzymes and improvement of bioavailability. 
However, along with these advantages, there are some 
problems with liposomes and micelles including 
lower stability and drug encapsulation, rapid release 
of loaded drugs and lower cellular uptake [68].

Polymeric micelles are colloidal particles that 
self-assembled by amphiphilic block copolymers 

in aqueous media, with a narrow size distribution 
and diameter of 10–100 nm. These nanocarriers 
have a hydrophobic core with hydrophilic shell that 
facilitates the encapsulation of lipophilic drugs. The 
hydrophilic shell structure of the micelles prevents 
the reticuloendothelial system to uptake them and 
permits a prolong circulation time for the drug. Pol-
ymeric micelles exhibit high drug loading and sus-
tained drug release (Table 2) [25, 48].

Lipids and polymeric nanocarriers have been fre-
quently used as nano-drug delivery system. Lipid 
nanocarriers such as liposomes are biocompatible, 
are biodegradable, and have capability to encapsulate 
hydrophilic and hydrophobic drugs [5, 29]. However, 
limitations of liposomes are their instability during 
storage, content leakage, and short blood circulation 
[69]. Polymeric nanocarriers exhibit higher structural 

Table 2   Benefits and limitations of some nanocarriers

Nanocarriers Benefits Limitations Ref

Liposomes Biocompatible and biodegradable Unstable, inefficient for intracellular drug 
delivery, sensitivity to pH, ultrasound, heat 
and light

[5, 29–31]

SLN Suitable for encapsulation of hydrophobic 
drugs

Lower loading of hydrophilic drugs

NLC Higher loading than SLN, more stable than 
SLNs

Poor incorporation of the hydrophilic drug, 
high rate of coagulation, lipid modification 
requirement and separation of the lipid 
phase

[12, 32–34]

Invasomes Suitable drug delivery for skin penetration of 
hydrophilic and hydrophobic agents

Temperature instability over normal ranges [35–37]

Virosomes Capable to combine antigen and adjuvant for 
vaccine development for inducing of both 
cellular and humoral immune response

Adverse immune reactions [38, 39]

Marinosomes More bioavailability than triglyceride, appli-
cable in the cosmetic

Efficiency is highly dependent on the lipid 
concentration and size of nanocarrier

[40, 41]

Vesosomes Dual protection layer for incorporated drugs, 
higher permeability and stability

Premature content release in physiological 
environments

[42, 43]

Exosomes Low immunogenicity, evade the endosomal 
pathway and lysosomal degradation, reduce 
clearance by phagocyte cells, enhance drug 
transport to the target tissues

Structural complexity, lack of efficient proce-
dure for isolation and drug loading

[44–47]

Polymeric micelles Prolonging the circulation time of the drug, 
high drug loading and sustained release

Low stability in biological media [25, 48]

Alginate nanocarrier Good biocompatibility, biodegradation and 
chemical versatility

Drug leakage and unstable at room tempera-
ture

[49–51]

Archaeosomes Higher stability in alkaline or acidic pH, high 
temperatures, oxidation, resistant against 
the action of lipases and bile salts

High formulation reproducibility variation [52–54]

Polymersomes Higher stability, slower cargo release, long 
circulation times and rapid uptake into cells

Low permeability to small molecule, lack of 
biocompatibility and biodegradability

[27, 28, 55, 56]
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integrity and longer clearance time [70, 71]. These 
nanocarriers can be administered through different 
routes including parenteral, nasal, intra-ocular, and 
oral [71]. Nonetheless, in contrast to liposomes, load-
ing of hydrophilic drugs in polymeric nanocarriers is 
relatively low owing to the fast leakage of the drug 
from the nanocarriers during their preparation [72]. To 
overcome the limitations of lipids and polymeric nano-
carriers, a novel combination of drug delivery systems, 
i.e., hybrid NPs, has been developed. Hybrid nanocar-
riers present characteristics of both lipid and polymeric 
nanocarriers for improving their loading and stability. 
However, the control and prediction of physico-chem-
ical properties and biological interaction of nanocarri-
ers are difficult that alongside with their reproducibility 
problems limited their applications [73].

An update on nanocarrier modification 
and targeting

NPs are capable to increase the bioavailability of an 
encapsulated drug and, in addition to giving longer 
duration of action, facilitate its cellular uptake and 
provide a controlled release profile. Improved solubil-
ity and stability and decreased side effects are among 
the other advantages [16, 74, 75].

Since NPs are identified as foreign particles in the 
body; opsonins bind to their surface which causes 
their phagocytosis. Several approaches have been 
used to extend the circulation time of NPs. Function-
alization of NPs with polymers, such as PEG, can 
prevent opsonization by avoiding protein adsorp-
tion (protein corona) to their surface [76]. Nano-
carriers adsorb various proteins and biomolecules 
to form a layer known as “protein corona” [77]. 
Conjugation of PEG to the surface of nanocarriers 
provides a hydrating layer that prevents the forma-
tion of a protein corona [78]. Attachment of CD47 
peptides at the surface of nanocarriers leads them to 
escape from macrophage identification and eradica-
tion. CD47 interacts with SIRPα (signal regulatory 
protein α) which is expressed on dendritic cells and 
macrophages. This binding leads to the phospho-
rylation of the cytoplasmic tail of SIRPα, resulting 
in binding and activation of protein phosphatases 
that prevent phagocytosis, probably via the decreas-
ing of motor protein myosin-IIA amount necessary 
for phagocytosis [78, 79]. Coating of nanocarriers 

with cell membranes obtained from red blood cells 
(RBCs) provides a biomimetic surface, making them 
undetectable by immune system, and as a result, 
a longer blood circulation time is achieved [80]. 
Recently, a pH-responsive dimethylaminoethane-
carbamoyl-functionalized liposome (DC-liposome) 
was designed for escaping of endosomal degrada-
tion. DC-liposomes, through the electrostatic inter-
action, increase the membrane fusion with anionic 
endosomal membrane and consequently provide 
conditions for endosomal escape [81].

Nanocarriers have been widely employed as 
delivery system for chemotherapeutic agents due to 
enhanced permeability and retention (EPR) effect. 
EPR effect is based on the abnormal leaky vasculature 
around tumors which facilities the penetration of NPs 
in the tumor tissue and reducing the side effects on the 
normal tissues. However, EPR effect is only presents in 
limited types of tumors since it is influenced by several 
factors including pore size of tumor vessels, amount of 
infiltration by macrophages, and tumor location [82, 
83]. For improving their clinical application, numerous 
approaches have been investigated, of which active tar-
geting is among them. In order to enhance cell-specific 
and intracellular delivery, nanocarriers can be modified 
with targeting ligands including antibodies [84], folic 
acid [85], carbohydrate [86], transferrin [87], aptamers, 
and vitamins [88]. Epithelial cell adhesion molecule 
(EpCAM, also known as CD326), is a dominant sur-
face antigen on human colon cancer cells which can be 
considered as a biomarker [89]. PEGylated EpCAM 
aptamer-functionalized dendrimers were employed 
for getting the efficacy of celastrol better for treatment 
of colon cancer. Aptamers, as chemical antibodies, 
were used for better tumor tissue penetration beside 
the PEGylation of dendrimers that was employed to 
improve the safety. The results showed that this bio-
conjugate nanocarrier induced higher apoptosis than 
free celastrol in cancer cells. In addition, in vivo find-
ings indicated that targeted NPs reduced tumor volume 
significantly in comparison with free celastrol [89].

One of the limitations of liposomes is their 
short duration of blood circulation and ineffec-
tive intracellular drug delivery. Exosome-mimick-
ing liposomes can be employed as an approach to 
assist positive feedback between these two nano-
carriers [44, 45]. Lu et al. prepared exosome-mim-
icking liposomes with 1,2-dioleoyl-sn-glycero-
3-phosphocholine (DOPC)/sphingomyelin (SM)/
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cholesterol/1,2-dioleoyl-snglycero-3-phospho-
L-serine (DOPS)/1,2-dioleoyl-snglycero-3-phos-
phoethanolamine (DOPE) for delivery of VEGF 
siRNA to A549 and HUVEC cells. Compared with 
conventional cationic liposomes, cellular uptake 
of exosome-mimicking liposomes was consider-
ably improved. Moreover, exosome-mimicking 
liposomes showed more safety, higher storage sta-
bility, and anti-serum aggregation effect. These 
findings indicated that the unique lipid composition 
highly improved the intracellular delivery efficiency 
of exosome-mimicking liposomes [44].

There are a number of chemical approaches to syn-
thesize dendrimers, for improvement of their physico-
chemical properties and biocompatibility. Various 
monomers can be utilized to produce spherical den-
drimers; however, most of them lead to the creation 
of cytotoxic components, mainly owing to their high 
charge. Moreover, they display short half-life and 
quick clearance. Functionalizing and coating of spheri-
cal dendrimers can overcome these restrictions and 
improve their specificity and targeting efficiency. Pep-
tide dendrimers are made of amino acids residues (den-
drimers with peptide bonds in their structures) [90]. 
This structure provides some peripheral functional 
groups for covalent binding of other molecules such 
as peptides and proteins. Poly-amidoamine (PAMAM) 
core is one of the most common polymeric cores for 
synthesis of peptide dendrimers [90, 91].

For alginate nanocarriers, coating with chitosan 
(cationic polysaccharide) can effectively enhance their 
stability at room temperature and prevent the leakage 
of the nanocarrier. Chitosan-alginate nanocarriers have 
been extensively explored as nanocarriers for various 
bioactive compounds [49]. When curcumin diglutaric 
acid was loaded in chitosan-alginate nanocarriers, 
the results displayed higher in vitro cellular uptake in 
Caco-2 cells and more cytotoxic activity against Caco-
2, HepG2, and MDA-MB-231 cells [49].

PEG and polyoxyethylene are frequently used for 
preparation of polymeric micelles [25]. One of the 
major limitations in the clinical application of poly-
meric micelles is their low stability in biological 
media upon their systemic administration. This hap-
pens because of dilution below the critical micelle 
concentration (CMC) or pulling out of the drug from 
micelles by plasma proteins such as lipoproteins 
and serum albumin. Cross-linking of the polymer 
core and incorporation of the drug to the micellar 

scaffolding are general approaches to overcome these 
issues. It was reported that using of platinum (II) as 
a drug to micelle core linker can modulate the drug 
retention and sustain the release. Platinum linker 
reacts with aromatic nitrogen atoms and as a result 
conjugates with drug that otherwise has not enough 
functionalities to be employed for conjugation reac-
tions [48].

A hybrid nanocarrier consisting of liposome and 
micelle can reduce the problems associated with each 
of these components including nanocarrier instabil-
ity, drug leakage, and its inadequate intracellular con-
centration. A liposome-micelle-hybrid carrier was 
designed for oral formulation of lovastatin, as a model 
of poorly soluble drug. D-α-Tocopheryl polyethylene 
glycol 1000 succinate (TPGS), as surfactant, was also 
used for enhancing of absorption. This hybrid nano-
carrier consisted of liposomes with TPGS micelles in 
their aqueous core. In this system, the release of drug 
is controlled by loaded micelles while the liposomal 
shell increased the encapsulation efficiency and pro-
tected the drug against first pass effect. These hybrid 
nanocarriers increased the uptake of lovastatin in 
Caco-2 cells and inhibited the P-gp efflux in compari-
son with free drug [68].

Main parameters for appropriate nanocarrier 
selection

Selection of nanocarriers for suitable drug delivery 
is dependent on the physico-chemical properties of 
drugs/carriers, pharmacological targets, and therapeu-
tic purposes. Liposomes can encapsulate both lipo-
philic and hydrophilic drugs. Lipophilic drugs can 
be loaded into the phospholipid double layers, while 
hydrophilic drugs can be entrapped into the aqueous 
core [92]. Micelles (hydrophobic core which is formed 
by the tails of the surfactant molecules) are suitable 
for encapsulation of lipophilic drugs considering their 
phospholipid tails which constitute a drug holding 
compartment [93]. Polymeric micelles are usually con-
sidered for the delivery of hydrophobic drugs due to 
core/shell nanostructures, stability, and long circulating 
duration, EPR effect, and active targeting [94, 95].

SLNs are composed of a solid hydrophobic core 
that is surrounded by surfactants. These nanocarriers 
are suitable for loading hydrophobic drugs. SLNs are 
more stable than liposomes and show lower toxicity 
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than polymeric nanocarriers [93]. As mentioned, SLNs 
are appropriate drug delivery system for encapsulating 
of hydrophobic drugs owing to their lipophilic nature of 
the lipid matrix. Due to the insufficient affinity between 
drug and lipid, loading of hydrophilic drugs in SLNs 
is not desirable. Hydrophilic drugs are readily incorpo-
rated into the external aqueous phase during the prepa-
ration process. However, it has been reported that by 
employing of some techniques like organic solvent-free 
double emulsion/melting dispersion, hydrophilic drugs 
can also be effectively encapsulated [96]. Integrating a 
hydrophilic polymer with SLNs in the core can lead to 
improved loading and controlling release of hydrophilic 
drugs owing to increased hydrophilic interaction with 
the drug. Poly(N-vinylcaprolactam) was incorporated in 
SLNs for controlling delivery of gemcitabine (a hydro-
philic drug). Apparently, the hydrophilic-hydrophilic 
interactions between the polymer and the drug make 
these hybrid NPs have advantages compared to SLNs, 
including reduced immediate drug release, improved 
encapsulation, and controlled release. Moreover, these 
nanocarriers significantly increased the cellular uptake 
of the drug in cancer cells [97].

Liposomes are frequently used as nanocarri-
ers for drug delivery because of their similarity 
with human cell barriers, capability to encapsulate 
hydrophilic and hydrophobic, biocompatibility, bio-
degradability, and their contribution to reduce the 
administered dose and drug toxicity [16, 98–100]. 
However, the efficiency of liposomes is limited due 
to their sensitivity to pH, ultrasound, heat, light, 
low circulation time in the blood, and low stability 
(hydrolysis of the ester bond, oxidation, and peroxi-
dation of the acyl chains) along with the possibil-
ity of drug leakage during storage [70, 88, 92, 101]. 
Compared with liposomes, polymeric nanocarri-
ers display higher structural integrity that provide 
increased stability, longer clearance time, more pro-
tection for drugs, facilitated controlling of size dis-
tribution, and prolonged drug release [70, 71].

Polymeric nanocarriers are solid colloidal par-
ticles that prepared from natural (e.g., alginate, 
chitosan), synthetic (e.g., PLGA, PCL) or semi-
synthetic (e.g., carboxymethyl cellulose; CMC) 
polymers [71, 102, 103]. Nevertheless, unlike 
liposomes, encapsulation of hydrophilic drugs in 
polymeric nanocarriers is low owing to the rapid 
leakage of the drug during high-energy emulsifi-
cation step used in their preparation. An approach 

to overcome this limitation is developing of hybrid 
nanocarriers in which a lipid layer coats a poly-
meric core. Nanocarriers with this superficial lipid 
coat are kept away from the quick leakage of hydro-
philic drugs which increases drug loading [72]. 
These liposomes containing polymeric nanocarriers 
are mainly useful for anti-biofilm designing since 
the liposomes fuse with bacterial cell membrane 
and permit controlled release of antibiotics from 
loaded polymeric nanocarriers [72]. The covering 
lipid and polymeric core are connected via hydro-
phobic interactions, electrostatic interactions, Van 
der Waals forces, and noncovalent forces [104]. 
Numerous studies indicated appropriate effective-
ness for this delivery system. Liu et al. reported that 
1,2-dilauroylphosphatidylocholine (DLPC)-coated 
paclitaxel containing PLGA NPs were more effec-
tive than Taxol® on cancer cells [105].

Lipid chitosan hybrid nanocarriers that are formed 
by the interaction of positively charged chitosan and 
negatively charged lipid in ionic gelation method 
showed the advantages of both polymeric and liposo-
mal nanocarriers. Using this approach, cisplatin-loaded 
polymer-lipid hybrid nanocarrier exhibited superior 
cellular uptake and cytotoxicity [106]. Furthermore, 
chitosan and glyceryl monostearate–based matrix lipid 
polymer hybrid NPs were designed for oral delivery of 
itraconazole. According to the obtained results, these 
hybrid NPs can be employed as a promising approach 
to increase the dissolution of itraconazole which ulti-
mately improves its bioavailability [107].

Lipid-PLGA hybrid NPs have been extensively 
considered as drug delivery systems for chemothera-
peutic agents. It has been reported that dual lipid 
(stearyl amine and soya lecithin)-coated PLGA NPs 
with human serum albumin as surfactant exhibited 
controlled release of paclitaxel with blood compat-
ibility improvement [99].

A hybrid PLGA-cationic lipid nanoparticles was 
designed for oral delivery of siRNA to the colon. 
These NPs targeted TNF-α in mice with ulcerative 
colitis and reduced the level of TNF-α without induc-
ing significant toxicity in mice [108].

Hydrophilic drugs are widely used for the treat-
ment of different conditions including inflammation, 
infectious diseases, and cancer. However, their clini-
cal applications can be limited due to short biologi-
cal half-lives, rapid clearance, low bioavailability, and 
low permeability across membrane barriers [109, 
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110]. Gemcitabine hydrochloride, a hydrophilic drug 
is widely used for the treatment of pancreatic can-
cer, ovarian cancer, bladder cancer, and non-small 
cell lung cancer [111, 112]. Yalcin et  al. prepared 
PEGylated liposomes and PLGA NPs containing 
gemcitabine to attain enhanced encapsulation effi-
ciency (EE%) and improved controlled drug release. 
In their study, prepared liposomes exhibited higher 
EE% than PLGA NPs, while PLGA NPs were more 
stable than liposomes. They concluded that using 
lipid polymer hybrid nanocarriers displayed a com-
bined beneficial characteristics of both liposome and 
polymeric nanocarriers, and this approach may offer 
new insight for increasing of EE% and stability of 
gemcitabine [113].

Conversely, coating the liposomes with poly-
meric layer increases the stability of liposomes and 
decreases the leakage of loaded drug [114]. How-
ever, coated liposomes exhibited lower encapsula-
tion efficiency in comparison to uncoated liposomes, 
because the drug escapes the liposomes during the 
coating process [114]. This issue depends on the type 
of the polymer. Refai et al. reported that higher load-
ing was obtained for hydroxypropyl methylcellulose 
(HPMC)-coated liposomes containing sildenafil cit-
rate which may be related to the higher thickness of 
the polymeric coat. While chitosan-coated liposomes 
displayed lower encapsulation efficiency for sildena-
fil citrate that may be due to electrostatic repulsion 
between the drug with positive charge and the cati-
onic chitosan [114].

Molecular property of the drug can exhibit vari-
able release profiles from nanocarriers. Huang et  al. 
reported that carboxyfluorescein (CF) as a small 
molecule, encapsulated into the aqueous core of 
liposomes, was released around Tm (transition tem-
perature). However, albumin as a larger molecule 

with slower diffusion has hydrophobic units for inter-
action with lipid bilayer, and its release was different 
from CF [115].

Selecting a suitable nanocarrier for anti-cancer 
drugs poses a significant challenge, as the efficacy and 
cell death mechanism of the drugs can be influenced 
by the chosen nanocarriers. In our previous study, 
we developed two types of liposomes encapsulating 
5-fluorouracil (5FU), one composed of soya phos-
phatidylcholine (PC) and the other using dipalmi-
toylphosphatidylcholine (DPPC), both targeted with 
folic acid. Analysis in Table 3 reveals notable varia-
tions in the IC50 values for liposomal 5FU and folate-
liposomal 5FU across different cell types for each 
type of liposome. Additionally, we observed differing 
mechanisms of cell death between PC liposomes and 
DPPC liposomes on HT-29 and HeLa cells, likely due 
to the distinct properties of the respective liposome 
types (Table 3) [85, 116].

Decreasing in tumor volume by targeted PC lipo-
some and DPPC liposome was also different (88.75 
vs. 169.00 mm3) [85, 116].

Physico-chemical properties of liposomes are 
influenced by their composition. In our previous 
work, EE% of 5FU for DPPC liposomes with particle 
size of 174 nm was 39.71%. However, EE% and par-
ticle size of liposomes prepared by PC were 60.79% 
and 104.8 nm, respectively [85, 116]. As it can be 
seen, smaller liposome size and higher EE% of the 
drug were observed for PC liposomes compared to 
DPPC liposomes. The lower EE% of DPPC liposomes 
is probably due to higher rigidity of liposomal mem-
brane associated with saturated lipid contents [113]. 
These findings were confirmed by a recent study 
which indicated that EE% of PC liposomes (23.8%) 
was more than DPPC liposomes (16.2%) contain-
ing gemcitabine, owing to lower rigidity of PC than 

Table 3   IC50 values 
(μM) and mechanism of 
cell death determined 
by applying of targeted 
formulations on different 
cell lines [85, 116]

Cells PC liposome DPPC liposome

Liposomal 5FU Folate- liposomal 
5FU (cell death)

Liposomal 5FU Folate- liposo-
mal 5FU (cell 
death)

HT-29 53.70 19.95 (apoptosis) 74.13 39.81 (necrosis)
Caco-2 - 79.43282 64.56 39.81
HeLa 97.72 15.49 (necrosis) 190.54 93.32 (apoptosis)
MCF-7 933.25 323.593 - 588.84
Fibroblast 575.44 147.91 794.32 -
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DPPC lipid [113]. It has been reported that EE% of 
liposomes depends on the rigidity of the bilayer mem-
brane and liposomes composed of saturated (e.g., 
DPPC) or unsaturated phospholipids (e.g., PC) reveal 
different membranes fluidity [117, 118]. These results 
indicated that the choice of lipid type for the prepa-
ration of liposomes profoundly affects their physico-
chemical properties.

Therapeutic purpose and route of administration 
are also important in the selection of nanocarriers. 
Liposomes can be employed as vaccine delivery sys-
tems against pathogens and tumors [119]. Further-
more, it was reported that surface-linked liposomal 
peptides were able to provide tumor eradication and 
protection against viral infections in mice. Ohno et al. 
observed that liposomes can be used as excellent adju-
vant vehicle for a synthetic peptide vaccine against 
severe acute respiratory syndrome when peptides are 
chemically coupled to the surface of liposomes [120]. 
Transdermal absorption of drugs can be increased by 
employing liposomal formulations. It was observed 
that ex vivo transport of diclofenac from liposome gel 
was enhanced compared to emulsion gel. It was sug-
gested that the components of the liposome act as a 
permeability enhancer which increase the penetration 
of diclofenac [121].

PAMAM dendrimers have been widely studied as 
absorption enhancers for oral delivery and as carriers 
for transepithelial transfer of small drugs. PAMAM 
dendrimers modulate tight junctions, intestinal epi-
thelial endocytosis, and potentiate paracellular trans-
ferring of small drug molecules [122]. PAMAM 
dendrimers (G4.5) encapsulated with curcumin can 
interfere with α-synuclein aggregation. α-Synuclein 
is a presynaptic neuronal protein associated with Par-
kinson’s disease. This dendrimer could increase the 
solubility of curcumin in aqueous media, enhance 
its cellular uptake, and thus modify its pharmacoki-
netic properties and biodistribution [123]. Moreover, 
it was reported that utilizing the functionalized G4 
PAMAM dendrimers can increase the poor phys-
ico-chemical properties and anticancer activity of 
hydrophobic drugs. Phenylboronic acid–conjugated 
PAMAM G4 dendrimers loaded with usnic acid were 
prepared as drug delivery system to gastric cancer 
cells. These nanocarriers could increase anticancer 
activity and cellular internalization of usnic acid 
loaded compared to free usnic acid nanocarriers over 
time in cancer cells [124].

NLCs improve gastrointestinal uptake of the incor-
porated drugs via the lymphatic transportation or 
Peyer’s patches [125]. Diindolylmethane, a lipophilic 
anti-cancer metabolite of indole-3-carbinol derived 
from cruciferous vegetables, has limited bioavailabil-
ity. Oral bioavailability of DIM-loaded NLC formu-
lations was increased due to enhancing drug solubil-
ity and absorption [126]. TPGS decorated gefitinib 
loaded NLCs were  TPGS decorated NLCs gefitinib 
loaded were developed as lymphatic drug delivery for 
prevention and treatment of cancer metastasis. Results 
showed that TPGS-NLC was able to increase gefitinib 
bioavailability via lymphatic system, enhance lung 
drug deposition more than free drug, and improve its 
cytotoxic activity against cancer cell line [127].

Approaches to reduce the toxicity of nanocarriers

Nanocarriers enter the blood, tissue fluid, and lymph 
through the skin and digestive and respiratory tracts 
where they attach to biological macromolecules due 
to their high surface area and nanoscale size [128].

Cationic liposomes (e.g., N-[1-(2,3-dioleyloxy) propyl]-
N,N,N-trimethylammonium chloride; DOTMA) [129] 
interact with the negatively charged surface of the cell 
membrane via electrostatic interaction and absorption to 
the cell surface which may trigger toxic reactions. Cati-
onic liposomes displayed genotoxic effects in in vitro stud-
ies [130]. It was observed that cationic liposomes caused 
lung inflammation through the production reactive oxygen 
species (ROS) [131]. Addition of targeting moieties to the 
cationic liposomes can address these concerns. By target-
ing of nanocarriers, less concentration of drug/nanocar-
riers is required and fewer side effects are seen. Selection 
of an appropriate ligand for nanocarrier targeting is also 
important. It has been reported that conjugation of whole 
antibodies to the surface of liposomes induced complement 
activation and reduced their blood circulation since the Fc 
fraction of antibodies is recognized by macrophages. It has 
been reported that Fab’ fragments of antibody exhibited 
less cytotoxicity than whole antibody; therefore, conjuga-
tion of Fab’ fragments instead of the whole antibody is sug-
gested [132, 133].

Nanocarriers with anionic charge exhibited fewer 
toxicity than nanocarriers with cationic properties 
due to their restricted interaction with the negatively 
charged surface of cell membranes [134] (Fig.  2). 
However, it has been reported that anionic liposomes 
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(e.g., dioleoylphosphatidylglycerol; DOPG) [129] can 
trigger complement activation and immune reactions. 
C1q (complement component 1q) binds to liposomes 
with anionic charge on surface. The top of the C1q 
head is basic and allows interfering with liposomes. 
Hydrogen bonding and hydrophobic interactions 
have also been suggested to further play a role in C1q 
binding to anionic liposomes [135]. Contrary to some 
previous findings which suggested that PEGylated 
liposomes prevent complement activation, it has been 
shown that PEGylated liposomes can induce PEG-
specific antibodies and trigger the complement sys-
tem in human serum [135, 136]. It is probably due 
to accelerated blood clearance (ABC) phenomenon. 
In this phenomenon, antibodies against nanocarrier 
components, such as PEG, are produced that decrease 
its efficacy and safety [137]. Anti-PEG IgM binds 
to the PEG on the liposomes, provokes the comple-
ment system, and consequently complements medi-
ated phagocytosis [137] which promotes the secre-
tion of cytokines by the immune cells [138]. Another 
immune response is complement activation-related 
pseudoallergy (CARPA). In CARPA, complement 

activation leads to the release of anaphylatoxins (C5a 
and C3a), stimulation of basophils, macrophages, 
and mast cells and consequently release of secondary 
mediators such as histamine, leukotrienes, tryptase, 
and platelet-activating factor (PAF) [137]. These reac-
tions may raise concerns about the use of PEGylated 
liposomes for clinical purposes. McSweeney et  al. 
reported that infusion with high-molecular-weight 
free PEG is a promising solution for overcoming 
this problem. They believe that infusion of free PEG 
molecules can bind and saturate circulating anti-PEG 
antibodies which reduce the formation of immune 
complexes. They observed that infusion of 40 kDa 
free PEG effectively provided the prolonged circula-
tion of PEGylated liposomes in the presence of high 
titers of pre-existing anti-PEG antibodies for at least 
48 h in mice [139] (Fig. 2).

Induction of inflammatory reactions is one of the 
mechanisms by which NPs exert their toxic effects 
[140]. Silva et al. reported an inflammatory response 
in adipose tissue and also deposition of visceral and 
subcutaneous fat in mouse treated with SLNs. Lipid 
matrix and the surfactants used in preparation of 

Fig. 2   Cytotoxicity of anionic and cationic liposome and approaches for improving their safety
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SLNs can induce inflammatory reaction in animals. 
Moreover, the accumulation of visceral and subcuta-
neous fat may be related to the slow degradation of 
the lipid matrix used in SLNs preparation and the 
intraperitoneal route of administration which may 
trigger local inflammation and more accumulation of 
visceral and subcutaneous fat [26].

Along with the composition of NPs, the surface 
charge may also affect the cell death mechanism. It was 
found that cationic NPs including polyethylene imines 
(PEI), cationic liposomes, and chitosan impaired the 
activity of Na+/K+-ATPase in cell membrane which 

may contribute to the consequent intracellular Na+ 
overload and finally necrosis (Fig. 3) [141].

NPs can produce reactive oxygen species (ROS) 
and cause cell damage [140]. It has been shown that 
dendrimers overproduced ROS from mitochondria 
which caused oxidative stress, apoptosis, and DNA 
damage. Higher generations of dendrimers showed 
higher toxicity [142]. However, this issue can be 
solved by altering the surface functional groups. 
2,2,6,6-Tetramethylpiperidinyl-1-oxy was used to 
functionalize of dendrimers. 2,2,6,6-Tetramethylpi-
peridine-1-oxyl (TEMPO) as a stable nitroxide free 

Fig. 3   Cytotoxicity of 
cationic nanocarriers and 
approaches for improving 
their safety
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radical exhibited antioxidant activity by ROS scav-
enging. It was observed that TEMPO-functionalized 
dendrimers exhibited significant cytotoxicity on A549 
tumor cells, while it protected normal cells (L132 
cells) against oxidative cell damage [143].

Compared to virosomes and liposomes, dendrim-
ers have higher transfer efficiency and stability, which 
can increase the circulation time of drugs in the 
body. However, the hemolytic activity and cytotoxic-
ity of dendrimers have hindered their clinical appli-
cation [25]. Cationic dendrimers (G2, G3, and G4) 
have been reported to be more cytotoxic than anionic 
dendrimers (G2.5, G3.5) [144]. As mentioned for 
liposomes, modification of surface is an appropri-
ate approach for escaping of immune responses and 
adverse effects (Fig. 2). For dendrimers and to over-
come this problem, it was found that conjugation of 
lauroyl chain can reduce the cytotoxicity of dendrim-
ers [25] by charge masking of the primary amine 
groups (Fig.  3) [145]. Furthermore, it was observed 
that modification of the dendrimers with lauroyl 
moieties reduced the lysosomal accumulation and 
resulted in lower concentration of modified dendrim-
ers in lysosomal acidic compartment and hydrolytic 
enzymes as well. This modification increased the 
uptake of the modified dendrimers into human intesti-
nal epithelial cells and improved their delivery [146].

Furthermore, cationic PAMAM nanocarriers 
caused acute lung injury in mice. In the lung, these 
nanocarriers reduced the activity of angiotensin-con-
verting enzyme 2 (ACE2) by directly binding to it and 
reducing its expression, thereby disrupting the renin-
angiotensin system. Interestingly, losartan adminis-
tration was found to ameliorate nanocarrier-induced 
lung injury, including inflammatory cell infiltration. 
Losartan decreased IL-6 concentration in bronchoal-
veolar lavage fluid after dendrimer injection [147].

Conclusion

Each of the nanocarriers discussed in this review has 
a number of advantages and disadvantages. However, 
the selection criteria of a suitable nanocarrier with 
maximum compatibility and minimum toxicity have 
not been widely considered. In this review, some 
modifiable changes in nanocarriers were discussed 
to improve their efficiency and reduce their toxicity. 

Modification of nanocarriers can reduce their tox-
icity on normal cells and increase their efficiency 
on target cells. Studies indicated that hybrid nano-
carriers are potentially able to overcome the com-
mon problems of using conventional nanocarriers. 
Hybrid nanocarriers have several advantages over 
non-hybrid platforms, including improved circula-
tion time, increased stability, controlled release, and 
increased drug loading. Therefore, these nanocarri-
ers can be considered as a promising platform with 
the least toxic side effects and the most efficiency for 
drug delivery.
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