RESEARCH PAPER

Exploration of the potential of Co/Cu co-doped $Fe₂O₄$ **for medical applications: nanostructure, catalytic properties, and blood compatibility**

Bestenur Yalci[n](http://orcid.org/0000-0002-7233-6561)

Received: 11 May 2022 / Accepted: 5 December 2022 / Published online: 16 December 2022 © The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract Nano-sized metal oxides with magnetic properties are a group of scientifcally valuable materials whose application areas are increasingly diverse. This study investigates the structural, morphological, magnetic, photocatalytic, and hemolytic properties of $CoCuFe₂O₄$ nanoparticles (NPs) synthesized by coprecipitation method. Photocatalytic and biological properties of the samples were investigated by following crystal violet (CV) photocatalytic degradation reactions and hemolysis experiments, respectively. X-ray difraction analysis (XRD) and scanning electron microscope (SEM) were used to analyze crystalline properties and morphological structure of nano-sized ferrites. Photocatalysis tests showed that $CoCuFe₂O₄$ NPs degraded 64.9% of the total organic dye after 420-min exposure to 254 nm irradiation. Coercivity (H_c) and saturation magnetization (M_s) of $CoCuFe₂O₄$ NPs were determined as 1000 Oe and 15.44 emu/g, respectively. Hemolysis tests showed an average hemolysis ratio (AHR) of 12.4% for human erythrocytes subjected to 5.0 mg mL^{-1} CoCuFe₂O₄ concentration, while it was only 2.2% for those of exposed to 1.0 mg mL⁻¹ CoCuFe₂O₄. In addition, at both $CoCuFe₂O₄$ concentrations, spectrophotometric evidence was found indicating hemoglobin oxidation

B. Yalcin (\boxtimes)

Vocational School of Health Services, Department of Medical Laboratory Techniques, Bahcesehir University, 34353 Istanbul, Turkey e-mail: bestenur.yalcin@eng.bau.edu.tr

under the efect of reactive oxygen species (ROS) formed on the nanoparticle surface.

Keywords Co-precipitation method \cdot Fe₂O₄ \cdot Hemolysis · Magnetic properties · Photodegradation

Introduction

Nano-metal oxides (NMOs) have received enormous attention due to their structural stability and high magnetic properties $[1, 2]$ $[1, 2]$ $[1, 2]$ and regarded as valuable materials in medicinal area such as magnetic resonance imaging and magnetic hyperthermia [\[3](#page-13-2), [4](#page-13-3)]. They have a talent to form biological interactions at the cellular level, enabling targeted drug delivery applications and node detections in tumors [[5,](#page-13-4) [6](#page-13-5)]. They also have well-characterized catalytic performances towards the selective oxidation of carbon monoxide, decomposition of hydrogen peroxide, and degradation of synthetic colorants and have been extensively studied for both medicinal and environmental applications [[7,](#page-13-6) [8\]](#page-13-7).

Among NMOs, iron-containing derivatives having spinel confguration have magneto-crystalline anisotropy, high mechanical and chemical stability, and well-characterized magnetic properties [\[9](#page-13-8)[–11](#page-14-0)]. Spinel ferrites have a general molecular formula of $MFe₂O₄$ and constituted by cubic structured unit cells. M represents a divalent metal cation such as Mn^{2+} , Ba²⁺, $Ni²⁺$, Fe²⁺, Cu²⁺, Zn²⁺, or Co²⁺, Face-centered cubic lattice structure of spinel ferrites allows the formation of tetrahedral and octahedral coordination sites occupied by M^{2+} and/or Fe^{3+} ions. It is also possible to produce double ferrites having a general formula of $M'_{1-x}M''_{x}Fe₂O₄$ by the isomorphic substitution of M. Spinel ferrites are very popular in scientifc and technological area due to their adjustable physical, chemical, and physicochemical properties under the efect of external magnetic feld and potential medical applications $[12, 13]$ $[12, 13]$ $[12, 13]$ $[12, 13]$. Ferrites can exhibit high saturation magnetization depending on the particle size and morphological structure [\[14](#page-14-3)]. This feature allows to obtain ferrite-based materials that can respond quickly and efficiently to variable magnetic feld applications. When evaluated in terms of photodegradation applications, the presence of a second metal doped into the ferrite structure allows to obtain photocatalysts with narrower band gaps, and therefore, highly efficient reactions can be proceeded even under ultraviolet/visible light [\[15](#page-14-4)]. Among spinel ferrites, especially cobalt ferrite $(CoFe₂O₄)$ and copper ferrite ($CuFe₂O₄$) are of great interest in physical, chemical, and medical aspects due to the ability to control of their physicochemical properties as well as perfect mechanical properties and chemical stability [\[16](#page-14-5), [17](#page-14-6)].

The mechanical properties and chemical stability of double ferrites and their superparamagnetic behavior that can vary depending on particle size [[9\]](#page-13-8) make these nano-sized materials tough competitors against traditional iron oxide structures such as magnetite (Fe₃O₄) and hematite (Fe₂O₃). Besides the ability of Fe₃O₄ and Fe₂O₃ to form reactive oxygen species, the biocompatibility of these species can also be improved by double ferrites obtained by isomorphic replacement of a second element atom with Fe.

Having inferior toxicity, high bio/cell compatibility, and showing high structural stability in physiological conditions are the main characteristics of materials planned to be used for biological and medicinal purposes. For example, superparamagnetic $CoFe₂O₄$ NPs proven as biocompatible were used in a controlled drug delivery system triggered by the application of an alternating magnetic feld [[18\]](#page-14-7). It was emphasized in another study that $CoFe₂O₄$ NPs display biocompatibility against both erythrocytes and breast cancer cells even without the presence of an exterior immune-specifc coating [\[19](#page-14-8)]. Moreover, negligible hemolysis ratios offer significant biocompatibility which is essential for in vivo biomedical applications such as intravenous drug delivery, magnetic hyperthermia, and node tracer injections [\[20](#page-14-9), [21](#page-14-10)].

Although being a heavy metal, Cu has a vital role in biological processes. In trace amounts, Cu is being required as co-factor of numerous enzymes involved in biological redox reactions [[22\]](#page-14-11). Co is also vital as taking part in cyanocobalamin $(C_{63}H_{88}CoN_{14}O_{14}P)$ and methylcobalamin $(C_{63}H_{91}CoN_{13}O_{14}P)$ which are the most stable and biologically active forms of vitamin B12 [\[23](#page-14-12)]. On the other hand, elevated concentrations of both Co and Cu show toxic efects in biological systems. ROS produced by Co and Cu containing NPs may cause high levels of oxidative stress on tissues leading to failure of cell functions, infammatory reactions, and cardiovascular diseases as well as cancer. However, some literature studies highlight the potential of nanostructures containing Co and Cu, especially in medical and biomedical applications. For example, in the study of Sattarahmady et al., dextrin-coated Co-Zn nano-ferrites $(Zn_05Co_15Fe_2O_4)$ synthesized by co-precipitation technique were declared as having potential in MRI [[24\]](#page-14-13). Properties of porphyrins attached on cobalt oxide surfaces were also investigated in terms of metalation which is one of the important interactions between porphyrins and metal oxide surfaces, due to the efect of metal ion incorporated in the porphyrin ring on chemical, electrical, and optical characteristics [[25\]](#page-14-14). In another study, the applicability of cobalt protoporphyrinloaded silica NPs in photoacoustic imaging by subcutaneous and myocardial injection approaches was proposed [[26\]](#page-14-15). Another study reports the synthesis of ultrasmall CuO (Us-CuO) NPs showing enzymemimicking properties and broad-spectrum ROS scavenging ability. Also, researchers emphasize the cellprotective efects of Us-CuO NPs and their potential use in the treatment of ROS-related diseases [[27\]](#page-14-16).

Materials designed for medical purposes must be well-characterized in terms of their biocompatibility. Hemolysis tests are one of the well-accepted scientifc ways to establish the biocompatibility of a synthetic material [[28,](#page-14-17) [29\]](#page-14-18). Magnetic NPs, especially ferrites, are being studied for their usability in biomedical applications such as controlled drug release, hyperthermia applications, selective protein adsorption, and magnetic resonance imaging (MRI) [\[30](#page-14-19)[–33](#page-14-20)]. Biological incompatibility between blood components (including RBCs) and iron-containing molecules arises from the oxidizing properties of hypervalent iron towards organic molecules [\[34](#page-14-21)]. A study conducted by Xiong et al. emphasized the enhanced reduction ability of Fe/Cu bimetallic particles and broadened reduction efficiency in the pH range of 3.0–9.0 in respect to pure Fe [[35\]](#page-14-22). Reactivity of $Fe³⁺$ in biological systems can be adjusted by the incorporation of ferrite structures. Undesirable interactions between synthetic materials and blood components caused by the presence of Co and Cu ions in the structure of synthetic materials can be reduced or prevented by using ferrites. Ferrite structures show higher biocompatibility compared to conventional iron oxides. The synthesis of ferrites at nanoscale provides high photocatalytic, electrical, and magnetic properties in addition to biocompatibility. Thus, in this study, $CoCuFe₂O₄$ NPs were synthesized and investigated in terms of their material properties as well as biological potential. The aim of this study is to provide data about the advantages that $CoCuFe₂O₄$ NPs can provide in medical and biomedical felds.

Especially in the last few decades, design of new materials especially in the nanometer scale has become a very popular research area. Designing new materials with unique and/or improved properties for various application areas such as electronics, sensors, medicine, and biotechnology makes this area of research much more valuable. Up to date, many studies have been conducted on nano-sized metal oxides which were focused mainly on the material properties rather than the potential for use in medical area. Literature research shows that $MFe₂O₄$ and $M'_{1-x}M''_{x}Fe₂O₄$ nanomaterials have a high potential especially in terms of biomedical applications [\[36](#page-15-0)[–38\]](#page-15-1). However, there are only limited number of studies presented to the literature regarding the properties of $CoCuFe₂O₄$, and these studies have focused mainly on the synthesis conditions and catalytic properties of these NPs [\[39,](#page-15-2) [40](#page-15-3)]. Very few studies have been conducted on the biological properties of $CoCuFe₂O₄$ NPs. Thus, in order to prove the accuracy of the predictions on the potential of $CoCuFe₂O₄ NPs$, the interactions between the ferrite structures synthesized in this study and blood components were investigated by hemolysis tests. This study also reports the synthesis and material properties of $CoCuFe₂O₄$ NPs as well as the photocatalytic properties of $CoCuFe₂O₄$ NPs which have not been reported adequately.

Experimental part

Nanoparticle synthesis

Synthesis procedure of $CoCuFe₂O₄$ nano-ferrites by co-precipitation method was summarized in Fig. [1.](#page-3-0) Iron(III) nitrate nonahydrate (Fe(NO₃)₃.9H₂O, \geq 99.95%,
Sigma Aldrich), cobalt(II) nitrate hexahydrate cobalt(II) nitrate hexahydrate $(Co(NO_3), 6H_2O, \geq 99.0\%$, Sigma Aldrich), and copper nitrate trihydrate $(Cu(NO_3), 3H_2O) \geq 99.0\%$, Sigma Aldrich) were used in the synthesis. In a typical experimental procedure to synthesize $CoCuFe₂O₄$ nano-ferrites, a 100-mL aqueous solution of $Fe(NO₃)₃$.9H₂O, $Co(NO₃)₂$.6H₂O, and $Cu(NO₃)₂$.3H₂O was prepared with 0.2 M, 0.05 M, and 0.05 M concentrations, respectively. All reagents used in the nanoparticle synthesis were of analytical grade (Alfa Aesar). In nanoparticle syntheses, 30 µL of oleic acid was added to the reaction medium as the surfactant to prevent aggregation of NPs. Reaction mixture was continuously sonicated using an ultrasonic bath (Bandelin RK103H) for 2 h at 80 °C. Next, the pH of the reaction mixture was adjusted to pH 9 with NaOH added dropwise to form fne particles of solid hydroxides of metals (Eq. [1](#page-2-0)). Simultaneously, the mixture was maintained in ultrasonic bath for an additional 1 h to allow the transformation of metal hydroxides to metal oxides (Eq. [2](#page-2-1)). Next, distilled water was added to the precipitate and centrifuged (NUVE NF400) at 5000 rpm for 10 min. This purifcation process was repeated fve times to remove the unreacted hydrates, unwanted impurities, and excess surfactant from the obtained product. CoCuFe₂O₄ NPs were than dried at 80 $^{\circ}$ C under vacuum for 8 h. CoCuFe₂O₄ NPs were calcined at 500 °C for 2 h at atmospheric conditions. As confrmed by XRD analysis, the fnal product obtained was NPs of cobalt–copper ferrite (CoCuFe₂O₄) with spinel structure:

$$
Cu^{2+}(aq) + Co^{2+}(aq) + 2Fe^{3+}(aq) + OH^{-}(aq)
$$

\n
$$
\rightarrow Cu(OH)_{2}.Co(OH)_{2}.2Fe(OH)_{3}(s)
$$
\n(1)

$$
Cu(OH)_2.Co(OH)_2.2Fe(OH)_3(s) \rightarrow CoCuFe_2O_4.nH_2O(s)
$$
\n(2)

Structural analysis

The crystal properties of the $CoCuFe₂O₄$ NPs were characterized by XRD measurements using fully computerized X-ray difractometer (PANalytical

Fig. 1 Schematic illustration of the synthesis of CoCuFe₂O₄ nano-ferrites by co-precipitation method

X'pert Powder 3) with CuK α (λ = 1.5418 Å) radiation. Characterizations were performed at room temperature and patterns were recorded with a scanning speed of 3 (\degree)/min in the range of 2θ=10° –90° and a step size of 0.02°. The morphological characteristics of the $CoCuFe₂O₄$ NPs were investigated by using SEM (Zeiss EVO MA). Before SEM analysis, $CoCuFe₂O₄$ NPs were coated with gold–palladium under argon atmosphere to make the surface electrically conductive. Shape, surface morphology, length, and diameter of NPs were examined by SEM micrographs with diferent magnifcations. Optical properties of the $CoCuFe₂O₄$ NPs were characterized by using a UV-Spectrometer (Shimadzu 2600) between 300 and 1000 nm. Magnetic characteristics were investigated through a vibrating sample magnetometer (Lake Shore 7304), operating in the temperature range of 15 K to 300 K.

Photocatalytic performance of CoCuFe₂O₄ NPs</sub>

Photocatalytic degradation experiments of crystal violet (CV) in the presence of $CoCuFe₂O₄$ NPs were evaluated using an aqueous dispersion of NPs (1.0 mg mL−1) depending on the varying photodegradation time. CV solution with a concentration of 2.5×10^{-6} M was used in photocatalysis tests. In order to ensure that the CV reaches the equilibrium adsorption/desorption condition on the nanoparticle surfaces, magnetic stirring was applied continuously in the dark for 1 h before photocatalysis. Thereafter, aqueous dispersions of NPs in CV solution were exposed to 254 nm irradiation in cylindrical open top Pyrex reactors. The irradiation was carried out using a couple of UV lamps (45 W each) which was placed vertically on the reaction vessels at a distance of 40 cm. During the photodegradation process, 1.5 ml samples of CV dispersions were withdrawn at appropriate time intervals and subsequently centrifuged at 4000 rpm for 3 min to settle the NPs down. Supernatants were analyzed for undegraded CV content using Shimadzu UV mini 1240 UV–Vis spectrophotometer at λ_{max} =591 nm. Distilled water was used as a reference.

Blood compatibility tests

Susceptibility of erythrocytes (red blood cells, RBCs) to hemolysis in the presence of $CoCuFe₂O₄$ NPs was investigated. Venous blood samples were drawn from healthy adult volunteers (35–38 age female) and anticoagulated with the aqueous solution of 3.2% trisodium citrate. Blood:trisodium citrate ratio was 9:1. Blood:anticoagulant mixture was diluted with phosphate bufer solution (pH 7.35) and centrifuged at 5000 rpm for 3 min to precipitate the red blood cells (RBCs). After discharging the supernatant, RBCs were diluted with PBS. Solutions of RBC's were prepared freshly and kept at room temperature during the tests. 1.0 ml of RBC stock solution was added to 5.0 ml of $CoCuFe₂O₄$ nanoparticle suspensions prepared at concentrations of 1.0 mg mL⁻¹ and 5.0 mg mL⁻¹. The prepared samples were incubated at 37 °C , which is the physiological temperature, for 3 h. NP erythrocyte suspensions were kept in the dark during the incubation period in order to avoid the efect of ROS that can be formed by the nanoparticles under the infuence of ambient light. Each test was repeated twice, and the hemolysis percentages were averaged. After the incubation period, dispersions were centrifuged at 4000 rpm for 5 min, and absorbance of the supernatant was measured between 400 and 700 nm using a UV–Vis spectrophotometer. Absorption spectra were interpreted to detect the possible presence of hemoglobin (Hb) released into the environment following the lysis of RBCs.

The hemolysis ratio of each sample was calculated using the absorbance values at 540 nm corresponding to the absorption maxima of oxyhemoglobin (OxHb) in accordance with the following equation $[41]$ $[41]$:

$$
\%Hemolysis = \frac{A_T - A_{NC}}{A_{PC} - A_{NC}} \times 100\tag{3}
$$

Test results of RBCs in PBS alone were used as negative control (*NC*), whereas the results of RBCs in pure water was used as positive control (*PC*). A_T refers for the absorbance value of test sample at 540 nm. Erythrocyte-CoCuFe₂O₄ interactions, $CoCuFe₂O₄$ -induced erythrocyte deformations, and overall erythrocyte morphology before and after incubation with $CoCuFe₂O₄$ NPs were examined using a Nikon Eclipse E100 optical microscope.

Results and discussions

In this study, $CoCuFe₂O₄$ NPs were synthesized by coprecipitation which is a convenient method for the synthesis of NMOs. In this method, simple precursor solutions are used to synthesize NMOs with desired properties. Moreover, the co-precipitation method allows a rapid, simple, low-cost synthesis route to easily control the properties of the fnal product. In the following section, the structural, morphological, magnetic, photocatalytic, and biological properties of CoFe_2O_4 NPs synthesized by the co-precipitation method in this study are reported.

XRD analysis

Characteristic powder XRD pattern confrmed the crystal structure of $CoCuFe₂O₄$ NPs (Fig. [2\)](#page-5-0). Moreover, the formation of cubic structured spinel lattice was approved by all difraction peaks for the $CoCuFe₂O₄$. No additional reflections were detected for the secondary phases in the XRD difraction patterns corresponding to the oxides. In addition, it was determined that $CoCuFe₂O₄$ NPs belong to the Fd-3 m space group (PDF Card No.: 98–019-1044). The lattice parameter, *a*, was calculated using Eq. [4:](#page-4-0)

$$
a_{exp} = d_{hkl}(h^2 + k^2 + l^2) \frac{1}{2}
$$
 (4)

The crystallite size (D) of the $CoCuFe₂O₄$ NPs was calculated by Debye–Scherrer expression (Eq. [5\)](#page-4-1) considering the full width at half maximum (FWHM) of the most intense peak (113):

$$
D = 0.9\lambda / \beta cos\theta_B \tag{5}
$$

In Eq. [5,](#page-4-1) λ , β , and θ_B are the X-ray wavelength of CuKα, the FWHM of the difraction peak (113), and the Bragg difraction angle, respectively. The calculated values of D and a , for CoCuFe₂O₄ NPs, were given in Table [1.](#page-5-1)

SEM analysis

The surface morphology of $CoCuFe₂O₄$ NPs synthesized by the co-precipitation method was investigated using scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) at an accelerating voltage of 30 kV. SEM images showed that $CoCuFe₂O₄$ NPs were not monodispersed in terms of size and shape and highly agglomerated (Fig. [3](#page-6-0)). SEM images showed that $CoCuFe₂O₄$ NPs were agglomerated as reported in previous studies [\[42](#page-15-5), [43](#page-15-6)].

The chemical composition of $CoCuFe₂O₄$ NPs was given by the EDS spectrum reported in Fig. [4.](#page-6-1) The information obtained from the EDS spectrum was used in the identifcation of the presence of Co, Cu, and Fe in ferrite structure as well as for the **Fig. 2** X-ray difraction patterns of $CoCuFe₂O₄$ nanoparticles

Table 1 Calculated values of the crystallite size (D) and lattice parameter (*a*) of $CoCuFe₂O₄$ nanoparticles

confrmation of the successful result of Co and Cu co-doping into the $Fe₂O₄$ structure (Fig. [4\)](#page-6-1).

Band gap calculation

The reflectance spectra of the CoCuFe₂O₄ NPs were obtained by UV–Vis difuse refectance measurements in 300–1000 nm wavelength range. Figure [5](#page-7-0) inset graph shows the absorption edge which is close to 378 nm. The reflectance $F(R)$ is proportional to the absorption coefficient (α). It was calculated by using the Kubelka–Munk function [\[44\]](#page-15-7):

$$
F(R) = \frac{(1 - R)^2}{2R}
$$
 (6)

The optical band gap E_g for the photon energy (hv) and the absorption coefficient (α) was calculated by using the following equation:

$$
\alpha h v = k (h v - E_g)^{1/n} \tag{7}
$$

In Eq. (7) (7) , *k* and E_g are the energy-independent constant and the optical band gap, respectively. $F(R_\alpha)$ is proportional to α and, *n* was taken 1/2 and 2 for direct and indirect band gaps, respectively. Since *n* is taken to be 1/2 for directly allowed transitions, Eq. [\(7](#page-5-2)) becomes

$$
F(R_{\alpha})hv = k(hv - E_g)^2
$$
 (8)

In other words, $(F(R_\alpha)h\nu)^2 = k^2(\nu - E_g)$. The slope of the graphs of $(F(R_{\alpha})h\nu)^2$ was approximated by using a linear ft.

The direct band gap energy E_g was calculated by the linear approximation of the slope of the graph of $(F(R_\alpha)$ *hv*)² to the photon energy where $F(R_\alpha) = 0$, namely, $E_g = hv$. The extrapolation of linear fit onto photon energy axis gives the E_g value. Direct and indirect band gap energies of CoCu-ferrite NPs were found as 1.93 eV and 0.6 eV, respectively. Band gap energy depends on carrier concentration, crystallite size, lattice strain, grain size, and the size effect of the dopant metal atoms in CoCu-ferrite lattice. In the study of Chavan and Naik $[45]$ $[45]$ $[45]$, Ni_{1-x}Mg_xFe₂O₄ ($x = 0.0$, 0.1, 0.2, 0.3, 0.4, and 0.5) NPs were synthesized by auto-combustion method, and band gap values of samples were found between 2.84 and 2.94 eV. In another study conducted by Khan et al. [[46](#page-15-9)], the band gap value of bismuth ferrite ($BiFeO₃$) NPs was calculated as 2.84 eV. Siva et al. [[47](#page-15-10)] studied

Fig. 3 SEM images of CoCuFe2O4 nanoparticles for 5 KX, 10 KX, 20 KX, and 40 KX magnifcations in **a**, **b**, **c**, and **d**, respectively

the material properties of $CoCuFe₂O₄$ NPs synthesized by hydrothermal method. In that study where the optical band gap was determined by Tauc equation, direct and indirect band gap values were calculated as 2.74 eV and 1.83 eV for $CoCuFe₂O₄$ NPs. Hammad et al. [[48](#page-15-11)] explored the decreasing trend in band gap values of $Cu_{1-x}Co_xFe_2O_4$ (*x* = 0.2, 0.4, 0.6, 0.8, and 1.0) NPs (from 3.65 to 3.20 eV) with increasing content of $Co²⁺$. Thus, in the current study, the calculated band gap values for $CoCuFe₂O₄$ NPs were found to have improved compared to literature studies.

Magnetic behavior

The magnetic nature of the $CoCuFe₂O₄$ NPs was characterized by using a vibrating magnetometer. Magnetic measurements were conducted in the range of \pm 1 T at room temperature. From the obtained data, the graph of magnetization dependent on magnetic feld is shown in Fig. [6.](#page-7-1) The magnetic properties (coercivity (H_c)) and saturation magnetization (M_s)) of CoCuFe_{[2](#page-7-2)}O₄ spinel ferrites can be seen in Table 2 and Fig. [6.](#page-7-1) Moreover, it can be seen in Fig. [6](#page-7-1) that the magnetization curve exhibits a narrow hysteresis.

The field dependence of the magnetization (M) close to the saturation value was calculated by using the formula below [[49\]](#page-15-12):

Fig. 6 M versus H plots measured for $CoCuFe₂O₄$ nanoparticles at room temperature

Table 2 Coercivity feld, magnetic saturation, and parameter related to the magneto-crystalline anisotropy values of $CoCuFe₂O₄$ nanoparticles at room temperature

Sample	Η, (Oe)	$M_{\scriptscriptstyle\rm c}$ (emu/g)	
CoCuFe ₂ O ₄	1000	15.44	-0.443

$$
M = Ms [1 - \frac{\beta}{H^2}]
$$
 (9)

where *H* is the applied magnetic field, β is a parameter related to the magneto-crystalline anisotropy, and *Ms* is the saturation magnetization. Calculated values $(M_s H_c)$ and β) for the CoCuF₂O₄ NPs are depicted in Table [2.](#page-7-2)

The plots of magnetization as a function of $1/H²$ and linear fit for the $CoCuFe₂O₄$ NPs was depicted in Fig. [7](#page-8-0). β and M_s values was found by the linear fitting of the slope of the graph as shown in Fig. [7](#page-8-0) and tabu-lated in Table [2](#page-7-2). In this study, M_s , H_c , and β values obtained for $CoCuFe₂O₄$ NPs were found to be compatible with the studies in the literature [[44,](#page-15-7) [49\]](#page-15-12).

Photocatalytic properties

Although oxidative stress has adverse effects on various biological systems, ROS produced by metal oxide particles can also be used to remove various pollutants such as paint, antibiotics, and biological wastes from the environment by photocatalytic degradation.

The photocatalytic properties of $CoCuFe₂O₄$ NPs were investigated by UV−Vis spectroscopy in the wavelength range of 400–700 nm. Absorbance values at 591 nm corresponding to the absorption maxima of CV were recorded at special time intervals and used to calculate the concentration of undegraded

 $\frac{\beta}{H^2}$] (remaining) CV in the solution. Time-dependent vari-
ation of the UV–Vis spectra lines of the non-photodegraded CV in an aqueous suspension of $CoCuFe₂O₄$ NPs shows the decrease of the characteristic band intensity at 591 nm over the range of 0–7 h (Fig. [8](#page-9-0)). This change under the efect of 254 nm irradiation indicates that the CV has been successfully photodegraded by $CoCuFe₂O₄$ NPs.

> The decolorization percentages of CV solutions were calculated using the equation given as follows [\[50](#page-15-13)]:

$$
Percentage of decolorization = [\frac{C_o - C_t}{C_o}] \times 100
$$
\n(10)

where C_o and C_t define for the initial CV concentration and the concentration of CV at time *t*, respectively.

It was observed that $CoCuFe₂O₄$ NPs were able to degrade 64.9% of total CV at the end of 420 min. The mechanism for the degradation of CV in the presence of $CoCuFe₂O₄$ NPs follows the below mentioned route. Irradiation of $CoCuFe₂O₄$ NPs causes excitation and shift of electrons from valence band (VB) to the conduction band (CB) and electron–hole pairs $(e^- - h^+)$ form (Eq. [11](#page-9-1)). Holes (h^+) react with water molecules and form *HO*[∗] , while electrons in conduction band (e^-) combines with O_2 to produce *O*₂[∗] (Eq. [12](#page-9-2)–[14\)](#page-9-3). Formation of other reactive intermediates such as hydroperoxyl radical (*HO*[∗] ²) and

Fig. 8 a UV–Vis spectra of CV as a function of time in the presence of $CoCuFe₂O₄$ under 254-nm irradiation, **b** plot for the zero-order degradation kinetics, and **c** degradation percentages varying with time

 H_2O_2 is then followed (Eq. [15](#page-9-4)[–16\)](#page-9-5) [[51\]](#page-15-14). *HO*^{*}, *HO*^{*}₂, and *O*−∗ ² radicals are strong oxidizing agents towards CV and other organic molecules and lead to their degradation into non-toxic molecules such as $CO₂$ and H_2O (Eq. [17\)](#page-9-6). Schematic illustration of the photocatalytic effect of $CoCuFe₂O₄$ and photodegradation mechanism of CV were given in Fig. [9:](#page-10-0)

$$
CoCuFe2O4 + h\nu \rightarrow CoCuFe2O4(e-) + CuFe2O4(h+)
$$
\n(11)

$$
e^- + O_2 \to O_2^{-*} \tag{12}
$$

$$
h^+ + H_2O \rightarrow H^+ + HO^- \tag{13}
$$

$$
h^+ + HO^- \to HO^* \tag{14}
$$

$$
O_2^{-*} + H^+ \to HO_2^* \to H_2O_2 + O_2 \tag{15}
$$

$$
H_2O_2 + O_2^{-*} \to HO^* + HO^- + O_2 \tag{16}
$$

$$
O_2^{-*}, HO^* + CV \to \text{Degradation products of CV} \tag{17}
$$

To investigate the kinetics of photodegradation reactions, three different kinetic models were applied; those were zero order, first order, and second order [[52](#page-15-15)–[54](#page-15-16)]. Equations describing these kinetic models, rate constants $(k, k_1, \text{ and } k_2)$ and correlation coefficients (R^2) were listed in Table [3.](#page-10-1) In each equation, *C* and *Co* represent the concentration of CV after a certain irradiation time (*t*) and initial concentration of CV at $t = 0$, respectively.

Among the three kinetic models tested, the kinetic expression that most successfully described the photodegradation reaction of CV by $CoCuFe₂O₄$ NPs was the zero-order kinetic model having the highest correlation coefficient (R^2) 0.9932. CoCuFe₂O₄ NPs exhibited UV-irradiated photocatalytic activity which strongly depend on the formation of *HO*[∗] radicals which are generated through the transition of photo-excited electrons from valence band to conduction band.

Blood compatibility tests

NPs can afect physical appearance and chemical parameters of various cells including the erythrocytes. Alterations in the morphology of erythrocytes change the elastic properties of cells and damage the rheological properties and respiratory functions [\[55](#page-15-17), [56](#page-15-18)]. Cellular response in the presence of a synthetic material is an important subject of interest. Since the erythrocyte membrane is based on a similar principle of molecular organization with the cell membranes of other tissues which make up the biological system, possible responses of other membrane systems can be predicted by examining

Fig. 9 Schematic illustration of the photodegradation mechanism of CV in the presence of CoCuFe₂O₄

nanoparticle-induced erythrocyte cell disruptions and making reasonable corrections for diferent cell types. In this study, hemolytic activity tests were performed to examine the effects of $CoCuFe₂O₄$ NPs on RBCs. In Fig. $10a$ and [b,](#page-11-0) aggregation of cell membranes of completely lysed erythrocytes incubated in pure water (due to high osmolarity) and healthy normal erythrocyte cells having a highly specifc biconcave shape and a pallor area in the center is shown, respectively. Oxidative stress-induced erythrocyte deformations generated by $CoCuFe₂O₄$ NPs with 1.0 mg mL^{-1} and 5.0 mg mL^{-1} are shown in Fig. [10c](#page-11-0) an[d](#page-11-0) d, respectively. While lots of healthy normal RBCs are counted in 1.0 mg mL⁻¹ treatment, RBCs treated with 5.0 mg mL^{-1} CoCuFe₂O₄ have diferent types of deformations (schistocytes, spherocytes, Heinz bodies). Heinz bodies and an increased degree of variation in cell morphology (poikilocytosis) [[57\]](#page-15-19) was clearly visible in Fig. [10d](#page-11-0). When cells are exposed to oxidative stress, ROS start attacking the bonds between heme unit and globin moieties in the hemoglobin molecule. Globin units leave from the hemoglobin complex, form little aggregates, and stick to the inside of the RBC membrane. These inclusions composed of oxidized denatured hemoglobin

are called Heinz bodies [[58\]](#page-15-20) (Fig. [10d\)](#page-11-0). Heinz bodies form mainly during intense oxidative stress and hemolysis occurs after appearing inclusions in the erythrocytes [[59\]](#page-15-21). In 1.0 mg mL⁻¹ CoCuFe₂O₄ application, a fragmented RBC (schistocyte) was observed as evidence for erythrocyte lysis; nevertheless, the degree of hemolysis was below the acceptable level of 5%. On the contrary, at 1.0 mg mL⁻¹ CoCuFe₂O₄ application (Fig. [10d\)](#page-11-0), lots of deformed cells (poikilocytosis) including Heinz bodies and spherocytes were detected. Spherocytes which are observed in all hemolytic anemias are considered as evidence of extravascular factor-mediated hemolysis that forces the blood cell to have spherical shape [\[28](#page-14-17), [60](#page-15-22), [61](#page-15-23)].

As shown in Fig. 11 , the supernatant of the 1.0 mg mL⁻¹ CoCuFe₂O₄ application was colorless and transparent, demonstrating the negligible hemolysis ratio. However, at 5.0 mg mL⁻¹ CoCuFe₂O₄ application, supernatant phase showed a bright red color, indicating the presence of an obvious hemolysis phenomena. While the AHR for human erythrocytes subjected to 5.0 mg mL⁻¹ CoCuFe₂O₄ concentration was 12.4%, it was only 2.2% for those of exposed to 1.0 mg mL⁻¹ CoCuFe₂O₄ which was lower than the allowed limit that is 5% [\[51](#page-15-14), [62](#page-15-24)].

Fig. 11 UV–Vis spectra of erythrocyte suspensions treated with PBS alone (negative control) and CoCuFe₂O₄ nanoparticles with 1.0 mg mL⁻¹ and 5.0 mg mL $^{-1}$ concentrations (after incubation and centrifugation). Insets: UV–Vis spectra of erythrocyte suspension in positive control test and after centrifugation digital photos of CoCuFe₂O₄ samples in 1.0 mg mL^{-1} (left) and 5.0 mg mL^{-1} (right) concentrations

The porphyrin ring system consists of four highly conjugated pyrrole rings linked by methane bridges. The heme moiety in Hb is the Fe(II) complex of protoporphyrin $(Hb(Fe^{2+}))$, which carries a methyl group and a vinyl or propionic acid unit

in each pyrrole ring. ROS produced on the surface of $CoCuFe₂O₄$ NPs would be responsible from the oxidation of hem iron into Fe(III) and the formation of methemoglobin (MHb). In MHb having the ferric state iron, the oxygen binding capacity

of the molecule is signifcantly reduced. MHb $((Hb(Fe³⁺)OH)$ in Eq. [18](#page-12-0) can also be formed in a small amount under the infuence of various substances such as heavy metal ions or phenolics that are exposed in daily life [\[63](#page-16-0), [64](#page-16-1)]. In a healthy metabolic process, it is reduced by intracellular enzymatic reactions and converted back to Hb having a $Fe²⁺$ carrying ferroprotoporphyrin system [\[65\]](#page-16-2). MHb reduction systems, in which NADH cytochrome b5 reductase and glutathione are primarily efective (Eq. [19–](#page-12-1)[20](#page-12-2)), prevent MHb from exceeding 1% of the total Hb concentration [[66\]](#page-16-3). Glutathione is an antioxidant which protects cells from the toxic efects of oxidants such as free radicals, peroxides, and heavy metals. Glutathione is found in erythrocytes and protects the cell from oxidative stress with the efect of enzymes such as superoxide dismutase and glutathione peroxidase [[67\]](#page-16-4):

$$
Hb\left(Fe^{2+}\right) + ROS \to Hb\left(Fe^{3+}\right)OH\tag{18}
$$

$$
Hb\left(Fe^{3+}\right)OH \stackrel{Glutathione}{\longrightarrow} Hb\left(Fe^{2+}\right) \tag{19}
$$

$$
Hb\left(Fe^{3+}\right)OH \xrightarrow{NADHcytochromeb_sreductase} Hb\left(Fe^{2+}\right) \tag{20}
$$

Another possible $CoCuFe₂O₄$ -blood interaction may be the interaction of Co–Cu and $Fe²⁺$ in protoporphyrin ring system. Selective separation of some specific molecules is difficult due to interferences created by protein-based molecules which are abundant in blood. Chelating species such as Cu and Co in the structure of nano-sized materials make them suitable for being used in selective separation. Cu^{2+} , $Co²⁺$, Ni²⁺, or Fe²⁺ containing NPs form covalent interactions and chelates especially with histidinerich proteins. In a related literature study conducted by Thomas et al. $[68]$ $[68]$, it was emphasized that ferrite-based NPs can be used in the chemical recognition of some molecules and in the selective separation and fractionation of blood proteins. In the study of Guo et al. $[69]$ $[69]$ $[69]$, sol–gel-synthesized CuFe₂O₄ NPs were investigated for their chelating properties and photoactivities towards methylene blue. In another study, solvothermally synthesized $CuFe₂O₄$ particles were investigated for their performances to be used in the selective separation of hemoglobin- and histidine-bearing proteins [\[70](#page-16-7)]. Superparamagnetic $CoFe₂O₄$ NPs synthesized by seed-mediated growth method were also investigated for selective separation, enrichment, and characterization of phosphoproteins [[71\]](#page-16-8).

In this study, although the $CoCuFe₂O₄$ NPs seem to have good biocompatibility especially at 1.0 mg mL^{-1} concentration just by considering the hemolysis rates, when the full spectrum is examined, changes indicative of the potential interactions of the samples with blood components are striking. One of the most probable interactions of $CoCuFe₂O₄$ NPs and blood components is the oxidation of hem units as a direct result of ROS production by NPs. The decrease in intensity in the Q band at 1.0 mg mL $^{-1}$ nanoparticle concentration is an indicator showing the presence of $Fe³⁺$ in the ferroprotoporphyrin system and proving the formation of MHb. At the same time, the characteristic change in the oxyhemoglobin Q bands is found as another evidence confrming MHb formation [[72](#page-16-9)]. The UV spectrum of 1.0 mg mL^{-1} CoCuFe₂O₄ nanoparticle concentration also shows a signifcant blue shift and decrease in intensity in the Soret band, which are indicative of the oxidation of Hb to MHb because of oxidative stress created by ROS in erythrocytes (Fig. [11\)](#page-11-1).

At 5.0 mg mL⁻¹ CoCuFe₂O₄ NP concentration, the main and dominant interaction is between NPs and the erythrocyte cell wall. Erythrocyte membrane is a composite structure, primarily composed of a phospholipid bilayer bearing almost the same concentrations of both lipid and protein moieties [[73](#page-16-10), [74](#page-16-11)]. NPs inactivate proteins in the erythrocyte membrane, causing cell death. NPs form $R-S-(Cu)^{2+}-S-R$ complexes by interacting with proteins in the membrane structure, especially those carrying sulfhydryl (-SH) groups such as cysteine. These interactions reduce erythrocyte membrane permeability and ultimately result in lysis of the erythrocyte cell wall [\[75,](#page-16-12) [76\]](#page-16-13). In Fig. [11,](#page-11-1) along with the characteristic red color of hemoglobin leaking out of the cell as a result of lysis of the erythrocyte cell wall, a small amount of blue shift in the Soret band was also observed as an indicator of MHb formation. One of the main reasons for the deterioration of erythrocyte cell integrity is the destruction of the erythrocyte membrane by ROS such as superoxide and hydroxyl radicals. Thus, hemolysis at 5.0 mg mL⁻¹ CoCuFe₂O₄ nanoparticle concentration can be attributed to the comparatively high amount of ROS formed by $CoCuFe₂O₄$ NPs, which is also consistent with the results of photodegradation experiments.

Conclusion

 $CoCuFe₂O₄$ spinel ferrites were synthesized by the co-precipitation method using $Fe(NO_3)_3.9H_2O$, $Co(NO₃)₂$.6H₂O, and $Cu(NO₃)₂$.3H₂O. NPs have a high crystalline quality; no secondary crystalline phases in addition to the cubic structured spinel lattice were observed and exhibited an agglomerated structure. SEM images showed the agglomerated morphology of $CoCuFe₂O₄$ NPs. UV–Vis diffuse refectance spectra was interpreted, and direct and indirect band gap energies were determined as 1.93 eV and 0.6 eV, respectively. Photocatalytic properties of $CoCuFe₂O₄$ NPs were attributed to the formation of ROS such as HO^* and O_2^{-*} triggered by the photo-excitation of electrons from valence band to conduction band. The decomposition of CV under the infuence of ROS formed on the nanoparticle surface was determined as 64.9%. Three diferent kinetic models were tested to explain the CV photodegradation kinetics. Among them, it was concluded that the zero-order kinetics $(R^2 = 0.9932)$ was the best fitted model for the CV photodegradation reaction. Blood compatibility tests showed that $CoCuFe₂O₄$ did not cause hemolysis at 1 mg mL^{-1} concentration; however, a blue shift in the Soret band with a decrease in intensity and the disappearance of the Q bands demonstrated the formation of MHb. It was concluded that erythrocyte lysis at 5.0 mg mL⁻¹ concentration was caused by high amount of ROS produced by NPs, which also caused oxidation of heme units on the porphyrin ring. Microscopic images of erythrocytes showed spherocytes, schistocytes, and Heinz bodies at a concentration of 5.0 mg mL⁻¹ NPs, while large number of healthy cells was detected at 1.0 mg mL⁻¹. Photocatalytic activity test results and RBC deformations were evaluated together, and it was concluded that NPs showed cytotoxic efects, especially at high concentrations, associated with ROS. It is hoped that the fndings from this study will be developed with subsequent research and modifcations, thus leading to the development of nanomaterials with better biocompatibility and adapted structural properties.

Data availability The author confrms that the data supporting the fndings of this study are available within the article.

Declarations

Competing interests The author declares no competing interests.

References

- 1. Rajan A, Sharma M, Sahu NK (2020) Assessing magnetic and inductive thermal properties of various surfactants functionalised $Fe₃O₄$ nanoparticles for hyperthermia. Sci Report 10:1–15. [https://doi.org/10.1038/](https://doi.org/10.1038/s41598-020-71703-6) [s41598-020-71703-6](https://doi.org/10.1038/s41598-020-71703-6)
- 2. Yang X, Zheng G, Wang Q, Chen X, Han Y, Zhang D, Zhang Y (2022) Functional application of multi-element metal composite materials. J Alloys Compd 895:162622
- 3. Joshi R, Singh BP, Ningthoujam RS (2020) Confrmation of highly stable 10 nm sized $Fe₃O₄$ nanoparticle formation at room temperature and understanding of heat-generation under AC magnetic felds for potential application in hyperthermia. AIP Adv 10:105033.<https://doi.org/10.1063/5.0022446>
- 4. Mousavi SM, Hashemi SA, Zarei M, Bahrani S, Savardashtaki A, Esmaeili H, Ramavandi B (2020) Data on cytotoxic and antibacterial activity of synthesized $Fe₂O₄$ nanoparticles using Malva sylvestris. Data Br 28:104929. <https://doi.org/10.1016/j.dib.2019.104929>
- 5. Pachaiappan R, Manavalan K (2021) Role of metals, metal oxides, and metal sulfdes in the diagnosis and treatment of cancer. In: Rajendran S, Naushad M, Durgalakshmi D, Lichtfouse E (eds) Metal, Metal Oxides and Metal Sulphides for Biomedical Applications. Environmental Chemistry for a Sustainable World, vol 58. Springer, Cham
- 6. Gholami A, Mousavi SM, Hashemi SA, Ghasemi Y, Chiang WH, Parvin N (2020) Current trends in chemical modifcations of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metab Rev 52:205–224. <https://doi.org/10.1080/03602532.2020.1726943>
- 7. Gaikwad P, Sabale S, Kurane R, Kakade B, Parase H, Dhabbe R, Kamble P (2021) Magneto-structural properties and reliability of (Mn/Ni/Zn) substituted cobaltcopper ferrite heterogeneous catalyst for selective and efficient oxidation of aryl alcohols. Inorg Nano-Met 1-14. <https://doi.org/10.1080/24701556.2021.1980036>
- 8. Yalcin B, Ozcelik S, Icin K, Senturk K, Ozcelik B, Arda L (2021) Structural, optical, magnetic, photocatalytic activity and related biological effects of CoFe_2O_4 ferrite nanoparticles. J Mater Sci Mater 32:13068–13080. [https://doi.](https://doi.org/10.1007/s10854-021-05752-6) [org/10.1007/s10854-021-05752-6](https://doi.org/10.1007/s10854-021-05752-6)
- 9. Ozcelik S, Yalçın B, Arda L, Santos H, Sáez-Puche R, Angurel LA, Ozcelik B (2021) Structure, magnetic, photocatalytic and blood compatibility studies of nickel nanoferrites prepared by laser ablation technique in distilled water. J Alloys Compd 854:157279. [https://doi.org/10.](https://doi.org/10.1016/j.jallcom.2020.157279) [1016/j.jallcom.2020.157279](https://doi.org/10.1016/j.jallcom.2020.157279)
- 10. Senol SD, Yalcin B, Ozugurlu E, Arda L (2020) Structure, microstructure, optical and photocatalytic properties of Mn-doped ZnO nanoparticles. Mater Res Express 7:015079.<https://doi.org/10.1088/2053-1591/ab5eea>
- 11. Heiba ZK, Mohamed MB, Arda L, Dogan N (2015) Cation distribution correlated with magnetic properties of nanocrystalline gadolinium substituted nickel ferrite. J Magn Magn Mater 391:195–202. [https://doi.org/10.](https://doi.org/10.1016/j.jmmm.2015.05.003) [1016/j.jmmm.2015.05.003](https://doi.org/10.1016/j.jmmm.2015.05.003)
- 12. Nikazar S, Barani M, Rahdar A, Zoghi M, Kyzas GZ (2020) Photo-and magnetothermally responsive nanomaterials for therapy, controlled drug delivery and imaging applications. Chem Select 5:12590–12609. [https://doi.org/](https://doi.org/10.1002/slct.202002978) [10.1002/slct.202002978](https://doi.org/10.1002/slct.202002978)
- 13. Kossatz S, Grandke J, Couleaud P, Latorre A, Aires A, Crosbie-Staunton K, Calero M (2015) Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res 17:66. <https://doi.org/10.1186/s13058-015-0576-1>
- 14. Junaid M, Qazaf IA, Khan MA, Gulbadan S, Ilyas SZ, Somaily HH, Amin MA (2022) The infuence of Zr and Ni co-substitution on structural, dielectric and magnetic traits of lithium spinel ferrites. Ceram Int 48(10):14307– 14314.<https://doi.org/10.1016/j.ceramint.2022.01.320>
- 15. Jacinto MJ, Ferreira LF, Silva VC (2020) Magnetic materials for photocatalytic applications - a review. J Solgel Sci Technol 96:1–14. [https://doi.org/10.1007/](https://doi.org/10.1007/s10971-020-05333-9) [s10971-020-05333-9](https://doi.org/10.1007/s10971-020-05333-9)
- 16. Bahrami M, Derikvand Z (2022) Fabrication of a new magnetic $CoFe₂O₄/ZrMCM-41$ nanocomposite: simple construction and application for fast reduction of Cr (IV) and nitroaromatic compounds. J Molec Str 1254:132367. <https://doi.org/10.1016/j.molstruc.2022.132367>
- 17. Zhang J, Liu P, Ren Y, Du Y, Geng C, Ma J, Zhao F (2022) Treatment of shale gas produced water by magnetic $CuFe₂O₄/TNTs$ hybrid heterogeneous catalyzed ozone: efficiency and mechanisms. J Hazard Mater 423:127124
- 18. Amiri M, Salvati-Niasari M, Akbari A (2019) Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv Colloid Interface Sci 265:29–44. [https://doi.](https://doi.org/10.1016/j.cis.2019.01.003) [org/10.1016/j.cis.2019.01.003](https://doi.org/10.1016/j.cis.2019.01.003)
- 19. Oh Y, Moorthy MS, Manivasagan P, Bharathiraja S, Oh J (2017) Magnetic hyperthermia and pH-responsive efective drug delivery to the sub-cellular level of human breast cancer cells by modified CoFe_2O_4 nanoparticles. Biochimie 133:7–19.<https://doi.org/10.1016/j.biochi.2016.11.012>
- 20. Chapman MC, Lee AY, Hayward JH, Joe BN, Price ER (2020) Superparamagnetic iron oxide sentinel node tracer injection: efects on breast MRI quality. J Breast Imaging 2:577–582.<https://doi.org/10.1093/jbi/wbaa083>
- 21. Ansari SM, Bhor RD, Pai KR, Mazumder S, Sen D, Kolekar YD, Ramana CV (2016) Size and chemistry controlled cobalt-ferrite nanoparticles and their anti-proliferative efect against the MCF-7 breast cancer cells. ACS Biomater Sci Eng 2:2139–2152. [https://doi.org/10.1021/](https://doi.org/10.1021/acsbiomaterials.6b00333) [acsbiomaterials.6b00333](https://doi.org/10.1021/acsbiomaterials.6b00333)
- 22. Zarrabi M, Afzal E, Ebrahimi M (2018) Manipulation of hematopoietic stem cell fate by small molecule compounds. Stem Cells Dev 27:1175–1190. [https://doi.org/10.](https://doi.org/10.1089/scd.2018.0091) [1089/scd.2018.0091](https://doi.org/10.1089/scd.2018.0091)
- 23. Sunitha Y, Kumar S (2021) An assessment of vitamin B12 through determination of cobalt by X-ray fuorescence spectrometry. Radiat Phys Chem 188:109583. [https://doi.](https://doi.org/10.1016/j.radphyschem.2021.10958) [org/10.1016/j.radphyschem.2021.10958](https://doi.org/10.1016/j.radphyschem.2021.10958)
- 24. Sattarahmady N, Zare T, Mehdizadeh AR, Azarpira N, Heidari M, Lotfi M, Heli H (2015) Dextrin-coated zinc substituted cobalt-ferrite nanoparticles as an MRI contrast agent: in vitro and in vivo imaging studies. Colloids Surf B 129:15–20. <https://doi.org/10.1016/j.colsurfb.2015.03.021>
- 25. Wahler T, Schuster R, Libuda J (2020) Self-metalation of anchored porphyrins on atomically defned cobalt oxide surfaces: in situ studies by surface vibrational spectroscopy. Chemistry 26:12445. [https://doi.org/10.1002/chem.](https://doi.org/10.1002/chem.202001331) [202001331](https://doi.org/10.1002/chem.202001331)
- 26. Yao M, Ma M, Zhang H, Zhang Y, Wan G, Shen J, Wu R (2018) Mesopore-induced aggregation of cobalt protoporphyrin for photoacoustic imaging and antioxidant protection of stem cells. Adv Funct Mater 28:1804497. [https://](https://doi.org/10.1002/adfm.201804497) doi.org/10.1002/adfm.201804497
- 27. Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, Deng J (2020) Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of infammation related diseases. Nat Commun 11:1–16. [https://doi.](https://doi.org/10.1038/s41467-020-16544-7) [org/10.1038/s41467-020-16544-7](https://doi.org/10.1038/s41467-020-16544-7)
- 28. Agarwal V, Gupta V, Bhardwaj VK, Singh K, Khullar P, Bakshi M (2022) Hemolytic response of iron oxide magnetic nanoparticles at the interface and in bulk: extraction of blood cells by magnetic nanoparticles. ACS Appl Mater Interfaces 14:6428–6441
- 29. Yadav S, Maurya PK (2022) Recent advances in the protective role of metallic nanoparticles in red blood cells. Biotech 12:1–13
- 30. Bai C, Hu P, Liu N, Feng G, Liu D, Chen Y, Zhang Y (2020) Synthesis of ultrasmall $Fe₃O₄$ nanoparticles as T 1–T 2 dual-modal magnetic resonance imaging contrast agents in rabbit hepatic tumors. ACS Appl Nano Mater 3:3585–3595.<https://doi.org/10.1021/acsanm.0c00306>
- 31. Vangijzegem T, Stanicki D, Panepinto A, Socoliuc V, Vekas L, Muller RN, Laurent S (2020) Infuence of experimental parameters of a continuous flow process on the properties of very small iron oxide nanoparticles (VSION) designed for T1-weighted magnetic resonance imaging (MRI). Nanomaterials 10:757. [https://doi.org/10.3390/](https://doi.org/10.3390/nano10040757) [nano10040757](https://doi.org/10.3390/nano10040757)
- 32. Du H, Akakuru OU, Yao C, Yang F, Wu A (2022) Transition metal ion-doped ferrites nanoparticles for bioimaging and cancer therapy. Transl Oncol 15:101264
- 33. Kumari S, Manglam MK, Kumar L, Seal P, Borah JP, Kumar Zope M, Kar M (2022) Magnetic properties and hyperthermia action of cobalt zinc ferrite fbers. J Sol-Gel Sci Technol 101:546–561. [https://doi.org/10.1007/](https://doi.org/10.1007/s10971-022-05737-9) [s10971-022-05737-9](https://doi.org/10.1007/s10971-022-05737-9)
- 34. Sharma VK, Bielski BH (1991) Reactivity of ferrate (VI) and ferrate (V) with amino acids. Inorg Chem 30:4306– 4310.<https://doi.org/10.1021/ic00023a005>
- 35. Xiong Z, Lai B, Yang P, Zhou Y, Wang J, Fang S (2015) Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under diferent conditions of N2, air or without aeration. J Hazard Mater 297:261–268. <https://doi.org/10.1016/j.jhazmat.2015.05.006>
- 36. Jiang K, Zhang L, Bao G (2021) Magnetic iron oxide nanoparticles for biomedical applications. Curr Opin Biomed Eng 20:100330. <https://doi.org/10.1016/j.cobme.2021.100330>
- 37. Kumar G, Katoch G (2021) Recent advances in processing, characterizations and biomedical applications of spinel ferrite nanoparticles. Materials Research Foundations 112:62–120. <https://doi.org/10.21741/9781644901595-2>
- 38. Nosheen S, Irfan M, Abidi SH, Syed Q, Habib F, Asghar A, Waseem B, Soomro B, Butt H, Akram M (2021) A review: development of magnetic nan o vectors for biomedical applications. GSC Adv Res Rev 8:85–110. <https://doi.org/10.30574/gscarr.2021.8.2.0169>
- 39. Matloubi Moghaddam F, Pourkaveh R, Ahangarpour M (2018) Cobalt-copper ferrite nanoparticles catalyzed click reaction at room-temperature: green access to 1, 2, 3-triazole derivatives. Chem Select 3:2586–2593. [https://doi.](https://doi.org/10.1002/slct.201800134) [org/10.1002/slct.201800134](https://doi.org/10.1002/slct.201800134)
- 40. Dave PN, Sirach R, Deshpande MP (2022) Evaluating the effect of nanosized $CoCuFe₂O₄$ for thermal decomposition of nitrotriazolone high energetic material. Chem Select 7:e202202071. <https://doi.org/10.1002/slct.202202071>
- 41. Yalcin B, Erbil C (2018) Efect of sodium hydroxide solution as polymerization solvent and activator on structural, mechanical and antibacterial properties of PNIPAAm and P (NIPAAm–clay) hydrogels. Polym Compos 39:E386– E406. <https://doi.org/10.1002/pc.24490>
- 42. Dadaei M, Naeimi H (2020) An environment-friendly method for green synthesis of pyranopyrazole derivatives catalyzed by $CoCuFe₂O₄$ magnetic nanocrystals under solvent-free conditions. Polycycl Aromat Compd 42:204– 217. <https://doi.org/10.1080/10406638.2020.1725897>
- 43. Moghaddam FM, Pourkaveh R, Ahangarpour M (2017) Nano $CoCuFe₂O₄$ catalyzed coupling reaction of acid chlorides with terminal alkynes: a powerful toolbox for palladium-free ynone synthesis. Catal Commun 102:71– 75. <https://doi.org/10.1016/j.catcom.2017.08.029>
- 44. Jamil H, Dildar IM, Ilyas U, Hashmi JZ, Shaukat S, Sarwar MN, Khaleeq-ur-Rahman M (2021) Microstructural and optical study of polycrystalline manganese oxide flms using Kubelka-Munk function. Thin Solid Films 732:138796. <https://doi.org/10.1016/j.tsf.2021.138796>
- 45. Chavan P, Naik LR (2017) Investigation of energy band gap and conduction mechanism of magnesium substituted nickel ferrite nanoparticles. Phys Status Solidi 214:1700077. <https://doi.org/10.1002/pssa.201700077>
- 46. Khan HAA, Ullah S, Rehman G, Khan S, Ahmad I (2021) First principle study of band gap nature, spontaneous polarization, hyperfne feld and electric feld gradient of desirable multiferroic bismuth ferrite (BiFeO₃). J Phys Chem Solids 148:109737. [https://doi.org/10.1016/j.jpcs.](https://doi.org/10.1016/j.jpcs.2020.109737) [2020.109737](https://doi.org/10.1016/j.jpcs.2020.109737)
- 47. Siva KV, Kumar A, Chelvane JA, Arockiarajan A (2022) Structural, magnetic, magnetostrictive and optical properties of Mn and Cu codoped cobalt ferrite. Mater Sci Eng, B 284:115885. <https://doi.org/10.1016/j.mseb.2022.115885>
- 48. Hammad TM, Kuhn S, Amsha AA, Hempelmann R (2021) Investigation of structural, optical, and magnetic properties of Co2+ ions substituted CuFe2O4 spinel ferrite nanoparticles prepared via precipitation approach. J Aust Ceram Soc 57:543–553. [https://doi.org/10.1007/](https://doi.org/10.1007/s41779-020-00556-z) [s41779-020-00556-z](https://doi.org/10.1007/s41779-020-00556-z)
- 49. Mirzaee S, Mahdavifar S, Shayesteh SF (2018) Experimental and theoretical investigations of magnetic properties of Co ferrite/polyvinyl alcohol nanocomposites. J Supercond Nov Magn 31:217–223. [https://doi.org/10.](https://doi.org/10.1007/s10948-017-4166-6) [1007/s10948-017-4166-6](https://doi.org/10.1007/s10948-017-4166-6)
- 50. Yalcin B, Akcan D, Yalcin IE, Alphan MC, Senturk., Ozyigit II, Arda L, (2020) Efect of Mg doping on morphology, photocatalytic activity and related biological properties of $Zn_{1-x}Mg_xO$ nanoparticles. Turk J Chem 44:1177–1199.<https://doi.org/10.3906/kim-2004-9>
- 51. Bhaskar N, Sulyaeva V, Gatapova E, Kaichev V, Khomyakov M, Kolodin A, Basu B (2022) On the origin of better hemocompatibility of the $BC_xN_yO_z$ coatings. Appl Surf Sci 576:151760. <https://doi.org/10.1016/j.apsusc.2021.151760>
- 52. Frolova LA, Khmelenko OV (2020) The study of Co– Ni-Mn ferrites for the catalytic decomposition of 4-nitrophenol. Catal Lett 151:1522–1533. [https://doi.org/10.1007/](https://doi.org/10.1007/s10562-020-03419-1) [s10562-020-03419-1](https://doi.org/10.1007/s10562-020-03419-1)
- 53. Rani M, Shanker U, Chaurasia AK (2017) Catalytic potential of laccase immobilized on transition metal oxides nanomaterials: degradation of alizarin red S dye. J Environ Chem Eng 5:2730–2739. [https://doi.org/10.](https://doi.org/10.1016/j.jece.2017.05.026) [1016/j.jece.2017.05.026](https://doi.org/10.1016/j.jece.2017.05.026)
- 54. Oladoja NA, Anthony ET, Ololade IA, Saliu TD, Bello GA (2018) Self-propagation combustion method for the synthesis of solar active Nano Ferrite for Cr (VI) reduction in aqua system. J Photochem Photobiol 353:229–239. <https://doi.org/10.1016/j.jphotochem.2017.11.026>
- 55. Pleskova SN, Gornostaeva EE, Kryukov RN, Boryakov AV, Zubkov SY (2018) Changes in the architectonics and morphometric characteristics of erythocytes under the infuence of magnetite nanoparticles. Cell Tissue Biol 12:127–134. <https://doi.org/10.1134/S1990519X18020086>
- 56. Zemlyanova MA, Zaitseva NV, Ignatova AM, Stepankov MS, Toropov LI, Kol'dibekova YV, (2021) Study of hematological parameters and morphometric indices of erythrocytes in rats exposed to calcium oxide nanoparticles. Bull Exp Biol Med 170:665–668. [https://doi.org/10.](https://doi.org/10.1007/s10517-021-05128-0) [1007/s10517-021-05128-0](https://doi.org/10.1007/s10517-021-05128-0)
- 57. Corrons JLV, Bain BJ (2022) Haemoglobin Bristol-Alesha in a child with non-spherocytic severe haemolytic anaemia and marked anisochromic poikilocytosis with basophilic stippling and amorphous intracellular content. Blood Cells Mol Dis 94:102652.<https://doi.org/10.1016/j.bcmd.2022.102652>
- 58. Thiagarajan P, Parker CJ, Prchal JT (2021) How do red blood cells die? Front Physiol 12:318
- 59. Mameri A, Bournine L, Mouni L, Bensalem S, Iguer-Ouada M (2021) Oxidative stress as an underlying mechanism of anticancer drugs cytotoxicity on human red blood cells' membrane. Toxicol in Vitro 72:105106. [https://doi.](https://doi.org/10.1016/j.tiv.2021.105106) [org/10.1016/j.tiv.2021.105106](https://doi.org/10.1016/j.tiv.2021.105106)
- 60. Johnson S (2021) Review on spherocytosis. J Hematol Thrombo Dis 9:445
- 61. Agarwal V, Gupta V, Bhardwaj VK, Singh K, Khullar P, Bakshi MS (2021) Avoiding hemolytic anemia by understanding the efect of the molecular architecture of Gemini surfactants on hemolysis. Langmuir 37:3709–3720. <https://doi.org/10.1021/acs.langmuir.1c00154>
- 62. Singh S, Singh G, Bala N (2021) Synthesis and characterization of iron oxide-hydroxyapatite-chitosan composite coating and its biological assessment for biomedical
- 63. Iolascon A, Bianchi P, Andolfo I, Russo R, Barcellini W, Fermo E (2021) SWG of red cell and iron of EHA and EuroBloodNet, Recommendations for diagnosis and treatment of methemoglobinemia. Am J Hematol 96:1666– 1678.<https://doi.org/10.1002/ajh.26340>
- 64. Arnhold J (2019) Cell and tissue destruction: mechanisms, protection, disorders. Academic Press
- 65. Cortazzo JA, Lichtman AD (2014) Methemoglobinemia: a review and recommendations for management. J Cardiothorac Vasc Anesth 28:1043–1047. [https://doi.org/10.](https://doi.org/10.1053/j.jvca.2013.02.005) [1053/j.jvca.2013.02.005](https://doi.org/10.1053/j.jvca.2013.02.005)
- 66. Keohane E, Otto CN, Walenga J (2019) Rodak's Hematology-E-Book: Clinical Principles and Applications. Elsevier Health Sciences
- 67. Chu L, Wu Y, Xu X, Phillips L, Kolodrubetz D (2020) Glutathione catabolism by Treponema denticola impacts its pathogenic potential. Anaerobe 62:102170. [https://doi.](https://doi.org/10.1016/j.anaerobe.2020.102170) [org/10.1016/j.anaerobe.2020.102170](https://doi.org/10.1016/j.anaerobe.2020.102170)
- 68. Thomas SL, Thacker JB, Schug KA, Maráková K (2021) Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci 44:211–246. <https://doi.org/10.1002/jssc.202000936>
- 69. Guo X, Wang K, Xu Y (2019) Tartaric acid enhanced $CuFe₂O₄$ -catalyzed heterogeneous photo-Fenton-like degradation of methylene blue. Mater Sci Eng B 245:75–84. <https://doi.org/10.1016/j.mseb.2019.05.015>
- 70. Zheng J, Lin Z, Liu W, Wang L, Zhao S, Yang H, Zhang L (2014) One-pot synthesis of $CuFe₂O₄$ magnetic nanocrystal clusters for highly specifc separation of histidine-rich proteins. J Mater Chem B 2:6207–6214. [https://doi.org/](https://doi.org/10.1039/C4TB00986J) [10.1039/C4TB00986J](https://doi.org/10.1039/C4TB00986J)
- 71. Chen B, Hwang L, Ochowicz W, Lin Z, Guardado-Alvarez TM, Cai W, Ge Y (2017) Coupling functionalized cobalt ferrite nanoparticle enrichment with online LC/ MS/MS for top-down phosphoproteomics. Chem Sci 8:4306–4311. <https://doi.org/10.1039/C6SC05435H>
- 72. Denzer ML, Mowery C, Comstock HA, Maheswarappa NB, Mafi G, VanOverebeke DL, Ramanathan R (2020) Characterization of the cofactors involved in non-enzymatic metmyoglobin/methemoglobin reduction. In Vitro Meat Muscle Biol 4:1–10.<https://doi.org/10.22175/mmb.9507>
- 73. Cho Y, Woo JH, Kwon OS, Yoon SS, Son J (2019) Alterations in phospholipid profles of erythrocytes deep-frozen without cryoprotectants. Drug Test Anal 11:1231–1237. <https://doi.org/10.1002/dta.2600>
- 74. Sathi A, Viswanad V, Aneesh TP, Kumar BA (2014) Pros and cons of phospholipid asymmetry in erythrocytes. J Pharm Bioallied Sci 6:81. [https://doi.org/10.4103/0975-](https://doi.org/10.4103/0975-7406.129171) [7406.129171](https://doi.org/10.4103/0975-7406.129171)
- 75. Tkachenko A, Onishchenko A, Klochkov V, Kavok N, Nakonechna O, Yefmova S, Posokhov Y (2020) The impact of orally administered gadolinium orthovanadate $GdVO₄$: Eu³⁺ nanoparticles on the state of phospholipid bilayer of erythrocytes. Turkish J Biochem 45:389–395. <https://doi.org/10.1515/tjb-2019-0427>
- 76. Azzam EMS, Zaki MF (2016) Surface and antibacterial activity of synthesized nonionic surfactant assembled on metal nanoparticles. Egypt J Pet 25:153–159. [https://doi.](https://doi.org/10.1016/j.ejpe.2015.04.005) [org/10.1016/j.ejpe.2015.04.005](https://doi.org/10.1016/j.ejpe.2015.04.005)

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.