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doses (1, 2.5, 5, and 10  mM). Other observations 
included ROS generation in hemocytes, phenotypic 
alterations in the mouths and wings of adult flies, 
and impaired locomotor behavior. This is the first 
research to report genotoxic evidence on the impact 
of WO3 exposure in Drosophila larvae, highlighting 
the significance of this model organism in exploring 
the potential biological impact of nanoparticles and 
MPs of WO3. The results of our in vivo testing should 
make a vital contribution to the existing database on 
the genotoxicity of WO3 NPs.
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Introduction

Lately, huge strides in the sphere of nanotechnology 
have culminated in more than 20-fold increase in the 
amount of nanomaterial production. Nanoparticles 
(NPs), ranging in size between 1 and 100  nm, are 
key components of nano-based products [1]. Certain 
characteristics of NPs, including surface area, diam-
eter, and shape, give them some properties consid-
erably different from their microparticulated (MPs) 
(> 100 nm), which are prized across a wide range of 
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fields [2]. Such broad-spectrum of NP utilization is 
predicted to cause a significant increase in their leak-
age or escape into diverse environments [3]. They can 
find their way into the organisms dwelling in these 
environments, raising concerns over their hazardous 
health impact on animal and plant life. Human popula-
tions could be exposed to NPs through natural routes 
like ingestion, inhalation, and dermal contact [4].

There is still limited research into the toxic and 
genotoxic impacts of NPs despite the potential risks 
associated with their acute and chronic exposure [5, 
6]. Earlier research in the relevant literature employ-
ing various in vivo testing models to explore the toxic 
and genotoxic effects of several NPs showed that 
some could induce significant genotoxicity, along 
with oxidative stress [5, 7, 8]. Tungsten trioxide (or 
tungsten (VI) oxide (WO3) is a thermally stable and 
valuable semiconductor compound with a wide band-
gap (2.5–2.8  eV). Industrial applications of WO3 
include utilization as pigment for tint and ceramics 
on account of its yellowish color [9]. Its nanoparti-
cle form, WO3 NPs, attracts considerable attention 
thanks to the large surface area of particles and their 
stability at extreme temperatures [10]. Different nano 
forms of WO3, such as nanocrystals and nanosheets, 
have been widely used in applications like memory 
devices, micro/optoelectronics [11], smart screens 
[12] gas-sensing devices [13], polluted water purifi-
ers [14], disinfectants [15], and photoelectrocatalysis 
[16]. On top of that, current efforts are geared towards 
using WO3 in biomedical applications, since they 
offer several advantages in this field such as improved 
visibility of target tissues in CT scans. Besides, WO3 
nanorods have been employed as both therapeutic and 
diagnostic agents in tumor CT imaging and photo-
thermal therapy [8].

Although we still have no reliable figure as to the 
total global production of WO3, the US market is 
forecast at 9.9 thousand metric tons in 2021, while 
China is estimated to reach 67.5 thousand metric tons 
by 2026 (https://​www.​repor​tlink​er.​com/​p0415​9772/?​
utm_​source=​GNW).

In spite of its heavy use across various indus-
tries and prevalence of its compounds in the nature, 
potential biological endpoints of WO3 NPs have yet 
to be fully illuminated by using reliable in vivo mod-
els. Limited number of in vitro studies, on the other 
hand, report that WO3 NPs may have some toxic 
potential. There is also evidence that WO3 NPs may 

cause mutagenicity in a bacteria species called Sal‑
monella typhimurium [17]. Also, cytotoxic effects of 
WO3 NPs have been determined in different cell lines 
(Caco-2, 3T3, A549 cell, AGS cell line of human 
stomach cancer, and cultured primary rat hepato-
cytes) [18–21]. In addition, the genotoxic and muta-
genic effects caused by WO3 NPs were explored by 
in  vitro studies employing micronucleus (MN) tests 
and Comet assays in cultured human lymphocytes 
[22]. So far, very little in vivo research has been car-
ried out to explore the toxicity of WO3 NPs to living 
organism, and yet they revealed that chronic or acute 
exposure to WO3 NPs could exert toxic effects on 
hamsters and rats [8, 23–26]. Exposure via oral route 
is the most common entrance way of the NPs into the 
human body, which is well reflected in in vivo model 
organisms that are often exposed to such materials via 
ingestion [20].

Over the recent decades, researchers have been 
striving to find a way to avoid the high costs and pre-
vailing ethical issues related to the handling of mam-
malian testing models in experiments, trying alterna-
tive in  vivo model organisms with a capacity to act 
as near-perfect counterparts of higher vertebrates 
[27–31]. To that end, a number of non-mammalian 
organisms including Daphnia magna [32, 33], Cae‑
norhabditis elegans [29, 30], and Drosophila mela‑
nogaster [34–36] have been used in search of an alter-
native in vivo model organism.

Research previously established that certain engi-
neered NPs might escape or leak into the nature dur-
ing their fabrication, transfiguration, and utilization, 
causing significant pollution and endangering plant 
and animal life. Despite their common usage, there 
still exists rather little scientific evidence as to the 
cytotoxic and genotoxic capacity of WO3 NPs across 
different fauna and flora. A nanomaterial’s capac-
ity to produce toxicity is principally regulated by the 
particle size, shape, surface area, form, and surface 
coating or modification [37]. More recently, toxicity 
research into NPs has reported that several types of 
NPs could bring about oxidative stress, ROS genera-
tion, and detrimental consequences to genetic makeup 
and essential components of cell membranes mainly 
including lipids and proteins [38, 39].

Around 75% of human genes linked to diseases 
have been discovered to exhibit matches or homologs 
in the genes of Drosophila fruit flies [40], and since 
then this species has been adopted as a popular 
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genetic model by researchers to study various dis-
eases including gastrointestinal infections [41], heart 
and circulatıry problems [42], oxidative stress [43], 
carcinoma [44], genetic disorders [45], and neurode-
generative disorders [46, 47]. Furthermore, several 
biological commonalities are conserved between 
humans and fruit flies, which include gene expres-
sion, cell proliferation, cell signaling, differentiation, 
homeostatic cellular balance, and cell death [48]. 
Best of all, Drosophila enables bypassing frustrating 
ethical rules in place to restrict testing on mammals 
or higher vertebrates [49, 50]. A new field commonly 
referred to as Drosophotoxicology [51, 52] involves 
the development of biological data from toxico-
logical research using D. melanogaster [53]. Also, 
this organism is among those recommended by the 
researchers [54, 55] including the European Center 
for the Validation of Alternative Methods (ECVAM) 
[56] to minimize experiments on higher vertebrates 
like mice.

Our study aimed to characterize as many as end-
point biomarkers for MPs and nano forms of WO3 
through a series of experiments on Drosophila. For 
an in-depth analysis and risk assessment, we adopted 
a combined approach, and as far as we are aware, our 
study is to become the first in vivo study to investi-
gate this compound’s cytotoxicity, genotoxicity, and 
morphologic alterations in fruit flies. To that end, we 
conducted several tests and microscopy imaging tech-
niques, which included quantification of egg-to-adult 
viability, climbing assays to measure overall locomo-
tion in exposed adult flies (direct cytotoxicity), obser-
vation of morphological alterations, Comet assays to 
detect the genotoxic capacity of WO3 compounds (as 
revealed by DNA strand breaks), SMART assays to 
analyze activities like genetic mutations and recombi-
nations, and finally, determination of ROS generation. 
We firmly believe that our study findings will contrib-
ute significantly to our present understanding of risks 
pertaining to WO3 exposure.

Experimental details

Chemicals

Tungsten oxide (VI) NPs (mean diameter: 30  nm, 
nanopowder with 99.99% purity, CAS No. 1314–35-
8) and its MPs (tungsten oxide (VI)) (99% purity; 

CAS No. 1314–35-8, amorphous powder) were 
obtained from Acros Organics (Belgium). We pro-
cured hydrogen peroxide (H2O2, CAS No. 7722–84-
1) and ethyl methanesulfonate (EMS, CAS No. 
62–50-0) from Sigma Chemical (USA). WO3 NPs 
and MPs were dispersed in deionized water, a com-
mon solvent in previous research [57], and as for 
positive control substance in SMART and Comet test-
ing, we used EMS at 1 mM [57, 58], EMS at 4 mM 
[57–60], respectively. In the tests conducted for the 
quantification of ROS levels, we employed 0.5 mM of 
hydrogen peroxide solution (H2O2) [57, 58, 60].

Characterization and dispersion of tungsten oxide 
(IV) nanoparticles

For the characterization of WO3 NPs, we utilized 
the following instruments: Environmental Scan-
ning Electron Microscopy (ESEM, FEI QUANTA 
260F) (Hillsboro, Oregon, USA), TEM, (Tecnai 
G2 F30) (Austin, Texas, USA) and Malvern Zeta-
sizer Nano-ZS zen3600 laser Doppler velocimetry 
(LDV) (Worcestershire, UK), and Malvern Zeta-
sizer Nano-ZS zen3600 dynamic light scattering 
(DLS) (Worcestershire, UK). In elemental analy-
ses of test materials, we utilized energy-dispersive 
X-ray spectroscopy (EDX) (Malvern, UK), which 
is generally considered a well-established tech-
nique for the chemical evaluation of nanomaterials. 
We prewetted WO3 NPs in 0.5 vol% ethanol, and 
then dispersed the NPs in a stabilizing agent (BSA 
0.05%) in Milli-Q water, purified by a Milli-Q lab 
water system. After that stage, once in the disper-
sion medium, we sonicated the NPs at 20  kHz for 
30 min in a Branson digital sonifier (S-250D, Cam-
bridge, MA, USA) to create a 2.56  mg/mL stock 
dispersion, as per the Nanogenotox protocol [61].

Toxicity (viability) of WO3 NPs and MPs

In our experiments, we used a wild-type strain of 
Drosophila commonly referred to as Oregon-R+ to 
determine the toxic potential of WO3 NPs and MPs. 
Toxic doses of these materials were previously speci-
fied in detail by earlier research (genotoxicity, ROS 
production in cells, locomotor behavior, and pheno-
typic changes). Following exposure to study com-
pounds, egg-to-adult viability was measured in per-
centages. The steps in this procedure were as follows: 
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50 eggs for each dose of WO3 NPs and its MPs (1, 2.5, 
5, and 10  mM) were placed into 5 plastic test vials 
containing food media (4 g). Agar-based food media 
was initially treated with different doses of WO3 
NPs (10 mL) and its MPs (0, 1, 2.5, 5, and 10 mM), 
which accounted for nominal doses of 231.84, 579.6, 
1159.2, and 2318.4  μg/mL, and following disper-
sion in the media they accounted for 0.5796, 1.449, 
2.898, and 5.796 mg/g food. We decided on the ideal 
doses of study compounds in reference to findings of 
earlier studies using in  vivo and in  vitro models [8, 
20, 21, 24, 26]. The upper threshold for WO3 NP and 
MPs doses was 10  mM, and for each test dose we 
performed 5 replications in total. After the eggs had 
been exposed to the study compounds throughout the 
stages of development, we noted the number of adult 
flies that successfully survived in order to quantify 
the survival rate. Throughout the paper, we presented 
the doses of WO3 NPs and MPs in mM to maintain 
coherence and unity.

Intracellular oxidative stress (ROS) detection in 
Drosophila hemocytes

Oxidative stress, often caused by disturbances in 
the balance between free radicals and antioxidants, 
is a crucial phenomenon governing the extent of the 
toxic and genotoxic capacity of fabricated NPs. In 
detecting any possible elevation in ROS production, 
we utilized 2′,7′ dichlorodihydrofluorescein diac-
etate (DCFH-DA), a useful cell-permeable fluoro-
genic probe commonly used to quantify ROS levels 
in the cells of living organisms. Accordingly, our 
tests detected increased ROS in the hemocytes of 
96 h-old 3rd instar Drosophila larvae upon exposure 
to both WO3 NPs and MPs for 24  h. During these 
experiments, the steps we followed, in line with our 
previous studies [57, 58, 60], were as follows: First, 
we collected samples of Drosophila hemocytes, then 
incubated the samples in 5 μM DCFH-DA at 24 °C 
for 30 min. Second, the cells were examined under 
fluorescence microscopy equipped with a green fil-
ter (485-nm excitation and 528-nm emission). As 
a negative control, we used sterile distilled water, 
while 0.5  mM of hydrogen peroxide (H2O2) was 
employed as positive control. In the final step, the 
images created through microscopy studies were 
transferred to a software package called ImageJ for 
further analysis [62].

Phenotypic alterations

In an attempt to probe whether exposure to WO3 NPs 
and MPs would induce any alterations in the phe-
notype, we examined a total of 50 Oregon R+ adult 
flies through a stereomicroscope [34, 58], performing 
assessments in all body parts of flies (including eyes, 
legs, wings, and abdomen) and observed alterations 
and abnormalities mainly in the mouth and wings.

Climbing assay

Locomotor behavior of the flies was measured 
through climbing assays in accordance with the pro-
cedures proposed by previous studies [58, 63–68]. 
For this experiment, 10 flies randomly selected from 
control and study groups were transferred into sepa-
rate vials, and before assessing the parameters of 
climbing behavior, they were kept there for 15  min 
at room temperature to allow acclimatization. The 
flies were moved to the bottom of the vial by a gentle 
tap on the vial, and the number of flies that managed 
to climb above the 7 cm mark in 10 s was recorded 
to assess their climbing ability. For each group, we 
repeated this climbing assay ten times after exposure 
to different doses of test materials.

Genotoxicity detection with Drosophila wing spot 
test and Comet assay

The wing‑spot assay (somatic mutations 
and recombination test, SMART)

SMART assays, which yield results in a short period 
of time at significantly low costs, rapidly identify 
allelic imbalance and chromosome instability in lar-
val somatic cells [69]. They have been used by many 
studies into genotoxicity and antigenotoxicity of envi-
ronmental contaminants like plastics and nanoma-
terials [58, 70, 71]. In SMART assay, we employed 
two distinct strains of fruit flies: flare-3 (flr3/In (3LR) 
TM3, Bds) and multiple wing hairs (mwh/mwh). More 
detailed information on these strains was given in 
early research [70]. Prior to this research protocol, 
we first crossbred virgin female flare-3 and male 
mwh flies to obtain trans-heterozygous flies for two 
recessive mutations, and then we cultured such trans-
heterozygous eggs in test vials that were added food 
media (containing agar, sugar, corn in powder form) 
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for 8  h. Once the eggs had turned into 72 ± 4  h-old 
larvae, we placed them into plastic vials for expo-
sure to the study compounds. Before this exposure, 
we carried out a viability test in the larvae, and the 
final test doses for WO3 NPs and MPs were deter-
mined as follows: 1, 2.5, 5, and 10 mM. At all tested 
doses, the viability rate was calculated to be above 
70%. Exposure vials contained 4 g instant Drosophila 
food media including 10 mL of WO3 NPs and its MPs 
and also negative (sterile distilled water) as well as 
positive control solutions (EMS, 1 mM). Drosophila 
larvae (72 ± 4 h-old) were exposed to WO3 NPs and 
MPs via ingestion throughout the larval-pupal tran-
sition. In line with the standards elaborated in great 
length in earlier research, the experiments were car-
ried out under normal conditions (25 ± 1 °C, humidity 
at around 65%). Once the pupation was completed, 
adult flies were immersed in ethanol (70%) at 4  °C 
until they were ready for preparation of wing slides. 
Next, their wings were dissected from the body and 
fixed on the microscopy slides to allow detection of 
any possible clone formations through a light micro-
scope (400 ×). Presence of mwh single spots is con-
sidered to indicate recombination and substitution 
of certain genes, or deletion of wild-type segments, 
whereas presence of flr3 single spots could indi-
cate deletion of wild-type alleles [69]. On the other 
hand, both mwh and flr3 twin spots observed on the 
fly’s wing blades usually result from gene recombina-
tion during mitosis [69]. In our study, we examined a 
total of 40 flies at each series by following step-by-
step commonly adopted procedures for the wing-spot 
assay and scoring described by previous reports [6, 
57, 58].

Comet assay

Third instar (72 ± 4 h-old) Drosophila larvae belong-
ing to the Oregon R+ strain were exposed to WO3 
NPs, its MPs, as well as positive control substance 
(4  mM EMS) and negative control (sterile dis-
tilled water). The exposure to such compounds was 
achieved as follows: instant Drosophila food media 
(4  g) was mixed with 10  mL of varying doses of 
study compounds (0.1, 1, 2.5, and 5 mM). The larvae 
were exposed (through ingestion) to the mixture for 
1 day (24 ± 2 h). Then, hemocyte cells were collected 
following the steps in the research protocol proposed 
by Irving et  al. [72]. Comet assays were carried out 

on isolated hemocytes by following the procedure 
specified by Singh et al. [73] along with some minor 
changes. Trypan blue exclusion assay was used to 
assess the viability of the hemocytes [74]. As well as 
low melting point agarose (75% LMA, 120 µL), slides 
coated with normal melting point (1% NMP) agarose 
were employed to spread the hemocytes (20 µL). 
Then, coverslips were placed on the slides to allow 
keeping them on ice (for 5 min) and to embed the iso-
lated hemocytes into the slides. After the removal of 
these coverslips, we applied a second LMA (80 µL) 
spreading and kept them on ice for 5 min once again 
[73, 75]. In a dark chamber, the slides were saturated 
in lysing solution (10  mM Trizma base, 100  mM 
EDTA, 2.5 M NaCl, 1% Triton X-100, and 1% N lau-
royl sarcosinate pH 10) at 4  °C for 2 h. We did not 
use dimethyl sulfoxide during the preparation of the 
lysing solution, as it could give rise to some extra 
damage in the fly tissues [76, 77]. Besides, all such 
procedures were carried out under dim light condi-
tions to avoid any potential DNA breakage owing to 
strong light. The slides were transferred into a run-
ning buffer for electrophoresis (1  mM EDTA and 
300 mM NaOH, pH ~ 12.8) and kept there for as long 
as 20  min (300  mA and 1  V/cm). Tris buffer solu-
tion (pH 7.5) was used to wash the slides, which was 
repeated 3 times for 5 min. After that, they were fixed 
with cold 70% ethanol for 5  min and dried prior to 
EtBr (20 mg/ml) staining. To acquire images with flu-
orescence microscopy (filter 515–560 nm), the slides 
were stained for 20  min, after which Comet assays 
were performed on CaspLab (version 1.2.3b2) [78]. 
Such experiment protocols are realized by strictly 
following procedures described in detail by earlier 
research [79]. For each exposure series (300 cells in 
total), 100 cells randomly chosen in triplicate were 
analyzed. Damage in DNA was measured as the per-
centage of DNA in the tail (% DNA tail), so mean and 
standard error values were calculated accordingly.

Statistical analysis

The conditional binomial test, tabulated in detail by 
Kastenbaum and Bowman [80], was used to assess 
the differences in the frequency of each type of 
wing spot in exposed flies and negative controls, and 
α = β = 0.05 was considered statistically significant. 
Mann–Whitney-Wilcoxon nonparametric U-test [81] 
and the multiple decision method [82] were employed 
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to decide whether there were positive, weakly posi-
tive, negative, or inconclusive responses to the test 
materials (P ≤ 0.05). While Kolmogorov–Smirnov 
and Shapiro–Wilk test assessed the normality of vari-
ance, Levene’s test analyzed the homogeneity of vari-
ance. Data displaying normal distribution and equal 
variance were analyzed by the Student’s t-test (Comet 
assay and ROS production) and one-way ANOVA 
(climbing assay) on SigmaPlot 11.0 (SPSS). Non-par-
ametric Mann–Whitney U-test analyzed data exhibit-
ing unequal variance or skewed distribution (toxicity/
viability). Unless specified otherwise, all research 
data were presented as means of two independent 
experiments, as well as duplicates of each test, and 
the figures represent arithmetic means ± standard 
error values.

Results

Physicochemical characterization of WO3 NPs

The physicochemical characterization of WO3 NPs 
(mean diameter 30  nm) was achieved by means of 
TEM, ESEM, EDX, LDV, and DLS, whose results 
are presented in Figs.  1, 2. Figure  1A  shows the 
examples of ESEM images, while Figs. 1C, 2B pre-
sent relevant TEM images. Spectroscopy images 
obtained with EDX are shown in Fig. 1B. Details of 
WO3 characterization are presented in Figs. 1, 2. The 
mean diameter of WO3 NPs was 43.71 ± 1.59  nm, 
measured through respective TEM images. The his-
togram graph in Fig. 2A  illustrates particle size dis-
tribution. Average size of WO3 was 43.71 ± 1.59 nm, 
zeta potential − 22 ± 5.26 mV (Fig. 2C), and the mean 
diameter calculated by DLS was 756.8 ± 161.9  nm 
(Fig. 2D). This zeta potential value indicates the good 
dispersion of WO3 NPs. The Polydispersity index 
(PDI) determined by DLS was 0.483 for WO3 NPs. 
PDI gives information about the size distribution in a 
sample or agglomeration, corresponding to the meas-
urement of the heterogeneity of a chemical based 
upon size [83]. In order to avoid any potential aggre-
gation, all experimental applications were carried out 

with freshly prepared NPs solutions. On the other 
hand, energy-dispersive X-ray (EDX) spectroscopy 
via ESEM was performed to assess the chemical 
composition of WO3 and showed that oxygen (O) 
peak was 84.49% and tungsten (W) peak of 15.51% 
(atomic % by element) (Fig. 1B).

Toxicity of WO3 NPs and its MPs

Toxic capacity of study compounds was measured 
with viability assays by calculating the egg-to-adult 
survival rate. The results of these assays showed no 
significantly impaired survival at doses of 1, 2.5, 
5, and 10 mM. On the other hand, Drosophila eggs 
exposed to our negative control substance (sterile 
distilled water) exhibited perfect viability at 100%. 
Following exposure to 1, 2.5, 5, and 10 mM (great-
est dose) of WO3 NPs, the eggs showed the follow-
ing viability rates: 96, 95, 96, and 94%, respectively, 
while exposure to the MPs resulted in slightly higher 
rates at 98, 99, 97, and 96% (Fig. 8). Drosophila lar-
vae were also exposed to non-toxic doses (0.1, 1, 2.5, 
and 5 mM) of WO3 NPs and its MPs to conduct ROS 
assays, genotoxicity studies (SMART and Comet 
assay), climbing assays, and to assess alterations in 
phenotypes.

Oxidative stress in hemocytes after exposure to WO3 
NPs and its MPs

Closely associated with the accumulation of ROS in 
cells, oxidative stress can be accepted as an indicator 
of hazardous consequences of exposure to WO3 NPs 
and MPs, as it induces the generation of ROS in sev-
eral cells within the organism. Therefore, we explored 
ROS levels in the 3rd instar larvae hemocytes upon 
exposure to WO3 NPs and its MPs by means of 
fluorescent dye, 6-carboxy 2,7′-dichlorodihydro-
fluorescein diacetate (DCFH-DA) under fluorescent 
microscopy. Exposure to WO3 NPs at doses of 1, 2.5, 
5, and 10  mM brought about statistically significant 
increases in ROS accumulation (P ≤ 0.001), with a 
direct concentration–response relationship (Fig. 3A). 
This is especially observed for WO3 NPs (Fig.  3B). 
ROS generation at the highest dose (10  mM) was 
considerably greater following exposure to MPs 
(103%) as compared to WO3 NPs (153.1%), suggest-
ing that WO3 NPs caused greater ROS induction than 
WO3 MPs (Fig. 3A). WO3 NPs exposure was found to 

Fig. 1   Characterization of WO3 NPs (43.71 ± 1.59  nm). A 
Typical SEM images. B EDX spectroscopy illustrates the 
chemical structure of WO3 NPs in the dispersion solution by 
SEM. C Typical TEM images

◂
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756.8±161.9 nm

-22 ± 5.26 mV

A B

C

D

Fig. 2   Characterization of WO3 NPs (43.71 ± 1.59 nm). A, B TEM image and size distribution histogram through images. C, D Zeta 
potential and size distribution, by LDV and DLS characterization, respectively
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induce some ROS build-up in hemocytes. However, 
WO3 MPs induced no ROS formation (Fig. 3A).

Phenotypic alterations

Experiments with non-toxic doses (1, 2.5, 5, and 
10  mM) of WO3 NPs and its MPs were carried out 
in 3rd instar larvae of Drosophila to probe whether 
any alterations specific to fly phenotypes would be 
observed in the wings, head, thorax, abdomen, or legs 
of the flies. All doses of WO3 NPs caused such abnor-
malities in the mouth and wing parts (Figs. 4B, E and 
Figs. 5B, E). The mouth of the flies was enlarged, and 
the wings were defective in shape following exposure 
to WO3 NPs (1, 2.5, 5, and 10  mM). On the other 
hand, no such abnormalities were detected after expo-
sure to WO3 MPs at doses of 1, 2.5, 5, and 10 mM.

Climbing behavior

Climbing test, conducted to quantify a Drosophila 
fly’s ability to climb upwards, is a useful assay to 

assess whether locomotor behavior is affected. Our 
climbing tests, after chronic exposure to the WO3 
NPs and its MPs (1, 2.5, 5, and 10 mM) for 7 days, 
detected significant differences between the climbing 
behavior of the study and control groups. All three 
doses of WO3 NPs (1, 2.5, 5, and 10  mM) caused 
impairment in climbing performances (86 ± 2.3, 
80 ± 3.1, 62 ± 2.6, and 57 ± 3.3%, respectively) as 
compared to the control group, while exposure 
to WO3 MPs at doses of 1, 2.5, 5, and 10 mM pro-
duced milder effects (91 ± 2.6, 86 ± 3.4, 82 ± 3.7, and 
77 ± 3.2%, respectively) (Fig.  6). Two highest doses 
of WO3 NPs (5 and 10  mM) were found to impair 
locomotor activity at statistically significant levels.

Genotoxicity tests (Drosophila wing spot test and 
Comet assay)

Drosophila SMART assay

We undertook a series of Drosophila SMART assays 
to determine WO3 mutagenicity and recombinegenic 

Fig. 3   Intracellular ROS 
generation in hemocytes of 
unexposed 3rd instar larvae 
(distilled water only) and 
of those exposed to varying 
doses of WO3 NPs and 
MPs (A). Hemocytes were 
incubated in 5 μM DCFH-
DA for 30 min at 24 °C 
and then observed under 
fluorescence microscopy. 
ImageJ analysis quantified 
the fluorescence intensity 
of hemocytes in larvae 
exposed to WO3 NPs and 
MPs (B). Positive control 
substance was 0.5 mM 
H2O2. ***P ≤ 0.001 as 
compared to the negative 
control by Student’s t-test
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sequences, whose results are presented in Tables  1, 
2. In Table  1, we present data relating to trans-het-
erozygous 3rd instar (3-day-old) larvae exposed to 
varying doses of WO3 NPs (1 to 10 mM) until they 
completed larval development. In such test condi-
tions, single mutant spots on the wings are triggered 
by both somatic mutations and somatic recombina-
tion events, whereas twin spots on wing blades occur 
only because of somatic mutations. WO3 NPs were 
found to cause a significant rise in the frequency of 
small single mwh spots, large single spots, and in the 
total mutant spots in a dose-dependent manner. Geno-
toxic potential of an agent does not singly determine 

the presence of small or large wing spots, rather the 
exposure time needed to allow the compound to reach 
the target cells appears to be the key factor, so we can 
assume that WO3 NPs caused genetic damage during 
the final stages of larval development.

We carried out one experiment on balanced het-
erozygous Drosophila larvae, a genotype suppress-
ing gene recombination and allowing observation 
of clones induced by somatic mutation only, in an 
attempt to gain insight into possible mechanisms 
through which WO3 NPs could induce mutant wing 
spots, however, no significant single, large, or total 
mutant clones were observed; the findings of this 

Fig. 4   Phenotypic altera-
tions in D. melanogaster 
after exposure to WO3 NPs 
and MPs. Normal mouth 
phenotype after exposure 
to WO3 MPs at all doses 
(A) and abnormal mouth 
phenotypes after exposure 
to WO3 NPs at doses 1 mM 
(B), 2.5 mM (C), 5 mM 
(D), and 10 mM (E). The 
dark-colored circles in the 
image show the defective 
areas

Fig. 5   Phenotypic altera-
tions in D. melanogaster 
after exposure to WO3 NPs 
and MPs. Normal wing 
phenotype after exposure to 
WO3 MPs at all doses (A) 
and abnormal wing pheno-
types after exposure to WO3 
NPs at doses 1 mM (B), 
2.5 mM (C), 5 mM (D), 
and 10 mM (E). The dark-
colored circles in the image 
show the defective areas
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experiment are summarized in Table  1. We can 
therefore suggest that WO3 NPs caused genotoxicity 
mainly through somatic recombination. We should 
also note that exposure doses were found to increase 
incidence of mutant clones depending on doses, yet 
this was not statistically significant.

Finally, we assessed the genotoxic potential of 
WO3 MPs, and doses varying between 1 and 10 mM 
caused no significant genotoxic effects (Table  2); 
however, high doses of WO3 MPs could have greater 
genotoxicity than do WO3 NPs; Fig. 7 presents a com-
parison of WO3 NPs and MPs. Examination of results 
obtained in negative and positive groups reveals that 
our findings are mostly in parallel with those reported 
in our earlier papers [6, 58, 59, 84, 85].

Comet assay

Assessment of genotoxicity is vital in any risk assess-
ment of physical or chemical compounds. Comet 
assay is a useful and practical technique to detect 
DNA strand breaks. Our Comet assays revealed that 
all doses of WO3 NPs significantly elevated % DNA 
in the tail (1, 2.5, 5, and 10 mM), in a dose-depend-
ent way, as compared to the controls exposed only 
to sterile distilled water (Fig. 8A). This is especially 
observed for WO3 NPs (Fig.  8B). The greatest dose 
of WO3 NPs (10 mM) resulted in more severe DNA 
damage in the hemocytes, by 8.67%, as compared 
with control. No DNA damage occurred in the group 
exposed to WO3 MPs (Fig. 8A). Our findings seem to 

confirm that the amount of WO3 NPs in the concen-
tration is a primary determinant of genotoxic effects.

Discussion

The field of nanotechnology has been expanding at 
an accelerating rate, bringing new synthesized NPs 
into our lives with everyday products. Over the recent 
years, WO3 NPs have garnered significant attention in 
various fields owing to their superior properties like 
thermal stability and conductivity [10]. However, the 
potential hazards of WO3 NPs to animal and plant life 
have not been explored in detail. The endpoint bio-
markers that we used in this study not only revealed 
the toxic and genotoxic potential of WO3 NPs and its 
MPs for the first time but also reinforced, once again, 
the practicality of D. melanogaster as an in  vivo 
model organism. The current study was conducted 
to obtain the first report of the toxicity, genotoxic-
ity, ROS induction, locomotor behavior, and pheno-
typic alterations caused by WO3 NPs and MPs upon 
exposure via oral route (1, 2.5, 5, and 10 mM) in D. 
melanogaster. Accordingly, WO3 NPs were found to 
cause genotoxic effects at all tested doses without any 
toxicity/mortality in the Comet assay. Our SMART 
showed induction of mutant clone formations at 
the two highest doses (5 and 10  mM), which could 
be associated with somatic mutations. In contrast, 
WO3 MPs caused no genotoxicity in any doses, as 
revealed by SMART and Comet assays, and similar 

Fig. 6   Climbing assay 
results following chronic 
exposure (for 7 days) 
to WO3 NPs and MPs. 
Numerical values represent 
mean ± standard error (SE) 
of the mean. ***P ≤ 0.001 
as compared to the negative 
control by one way ANOVA
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results were obtained from tests for ROS level deter-
mination and phenotypic alterations. Mouth and wing 
defects were detected in flies exposed to WO3 NPs 
(1, 2.5, 5, and 10 mM), while intracellular ROS pro-
duction elevation was detected in only hemocytes of 
WO3-exposed flies. We assume that the entrance of 
NPs into the cells was much easier than microparti-
cles due to their smaller size, wide surface area, and 
crystal form. In this context, the nanoparticle form of 
WO3 could be considered a toxic substance in cases 
of high doses of acute exposure, which appears to be 
in accordance with previous in vivo studies conducted 
with mammals [8]. In addition, biobehavior of NPs 
may be influenced by a wide range of physicochemi-
cal properties, which in turn increase their toxic/gen-
otoxic effects as compared to their MPs, especially if 
exposed via oral route [8, 86–89].

Genotoxicity (DNA damage) not only causes car-
cinogenesis but also affects the fertility and health of 
offspring if a compound penetrates the reproductive 
cells. Genotoxicological research has been focusing 
on revealing the genetic damage potentials of differ-
ent test compounds and risk assessment of potential 
carcinogens. Because of their small size, NPs can 
easily pass into the cells and affect the biomolecules 
including DNA [90, 91]. Both in  vivo and in  vitro 
studies have reported that various classes of NPs 
showed genotoxic effects [5, 36, 57, 89, 92–95].

We assessed the amount of damage in DNA on 
Drosophila hemocytes caused by NPs through geno-
toxicity assays, including Comet assays to detect sin-
gle and double-strand breaks in DNA, often used in 
a number of cell targets in this species, for example, 
hemocytes responsible for immune response [96, 
97]. Hemocyctes in fruit flies have functions com-
parable to those of lymphocytes found in the blood-
stream of mammals [72]. Therefore, they could suf-
fer direct exposure to certain compounds and agents 
running through the hemolymph system, hence a 
valuable focus of research on the toxic and genotoxic 
capacity of various nanomaterials [57, 60]. Comet 
assays have been widely employed in ecotoxicology 
research efforts involving the testing of substances on 
various organisms like fruit flies [89]. In this study, 
Comet assay results revealed that WO3 NPs induced 
% tail DNA significantly in D. melanogaster hemo-
cytes at all tested doses as compared to the distilled 
water. Similarly, limited number of genotoxicity 
studies looking into WO3 NPs with Comet assays Ta
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have reported DNA damage induction after in  vivo 
testing [8, 20]. The current literature contains rather 
limited research into in  vivo toxicity of WO3 NPs 
[24, 26]. Chinde and Grover [8] reported that WO3 
NPs induced DNA damage in white blood cells and 

liver cells of Wistar rats upon chronic oral exposure 
for 28  days at higher doses (1000  mg/kg). Besides, 
Chinde et al. [20] also showed that oral single admin-
istration of WO3 NP (1000 mg/kg) caused DNA dam-
age in white blood cells (leukocytes) and liver cells 

Fig. 7   Frequency of clone 
formations after exposure 
to WO3 NPs and MPs in 
Drosophila wing spot assay. 
Positive control was EMS 
(1 mM)

WO3 NPs (mwh/TM3)
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Fig. 8   Comet assay shows genotoxic effects of WO3 NPs and 
MPs and viability of Drosophila hemocytes (A). After 24-h 
exposure to WO3 NPs and MPs, the % of DNA tail in larvae 
(three replicates were performed and 100 randomly selected 
cells were examined for each exposure dose). Numerical val-

ues represent the mean ± standard error (SE) of the mean. 
Positive control was EMS (4 mM). ***P ≤ 0.001 as compared to 
the negative control by Student’s t-test. Representative comet 
images are shown (B)
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of Wistar rats. Another in  vivo study on the toxic 
potential of WO3 NPs explored the impacts of expo-
sure via inhalation and its results showed that WO3 
NPs were toxic to the cells, caused morphologi-
cal changes, and lung injury in tested rodents [24]. 
Most recently, research investigating in  vivo effects 
upon intraperitoneal injection of WO3 nanorods has 
reported that such exposure induced hepatotoxicity 
while melatonin administration diminished this tox-
icity in rats [26]. Researchers note that smaller WO3 
nanorods (125–200  nm) caused more severe toxic 
effects and oxidative stress than did micro-size parti-
cles (0.8–2 μm) [26].

Most of the research into WO3 NPs toxicity was 
carried out as in  vitro using different kinds of cell 
types such as Caco-2 and A549 [18–21]. Data from 
in vitro tests should be compared and reinforced with 
in vivo results to understand true effects within a living 
organism by using reliable in vivo model organisms in 
experiments [98]. As Drosophila has shown its poten-
tial as a reliable testing model in toxicity/genotoxicity 
assessment of several nanomaterials, we chose to use 
this organism in our study into WO3 NPs and MPs.

Furthermore, intracellular ROS levels in hemo-
cytes were accepted as an oxidative stress param-
eter in this current study. Although the genotoxic 
mechanism has yet to be fully illuminated, the 
most prominent source of NP-induced toxicity is 
thought to be oxidative stress caused by ROS pro-
duction. Elevated levels of ROS could lead to DNA 
and cell membrane damage, disrupt the protein-
lipid balance, and impair enzyme and hormone 
mechanisms [99]. A recent in vivo study by Mishra 
and Panda [39] proposed that ROS accumula-
tion could be associated with the toxic impacts 
of nanomaterials in D. melanogaster. Ever since 
the first research to address the toxicity of NPs in 
Drosophila [100], substantial research efforts have 
been geared towards characterizing a through toxic 
profile of many nanomaterials [66, 101]. The toxic 
effects of certain compounds mediated by cyto-
toxicity, cellular internalization, and pigmentation 
may cause alterations in the genetic composition 
of fruit flies. Despite the knowledge gaps existing 
in the mechanism by which genotoxicity occurs, 
oxidative stress triggered by ROS accumulation is 
often considered as the culprit behind the nanopar-
ticle toxicity [101, 102]. Increased ROS levels are 

known to trigger inflammation response, as well as 
protein damage and DNA strand breaks [103, 104]. 
Our findings suggest that the injurious effects of 
WO3 NPs responsible for modifications in normal 
functions of DNA could be attributed to ROS pro-
duction in cells. However, WO3 MPs did not cause 
significant elevation in ROS levels. Similar results 
obtained upon exposure to WO3 NPs and MPs in 
mice hint that smaller WO3 particles could induce 
greater hepatoxicity [26]. Different properties of 
NPs such as particle size, shape, and surface area 
may determine their toxicity and genotoxicity.

Conclusions

The findings of this study confirm that both nan-
oparticles and MPs of WO3, if exposed to high 
doses can cause some hazardous effects on D. 
melanogaster, underscoring the importance of a 
thorough risk assessment of WO3 NPs for the first 
time. This is the first study to use Drosophila in 
testing in  vivo effects including parameters like 
toxicity, genotoxicity, phenotypic alterations, loco-
motor behavior impairments, and ROS induction 
of exposure to WO3 NPs (43.71 ± 1.59  nm) and 
MPs of WO3 at varying doses. Non-toxic doses 
of WO3 NPs caused significant % tail DNA dam-
age, elevated ROS production in hemocytes, phe-
notypic alterations in wing shapes, and mouth 
parts as well as impaired locomotor behavior in 
adult flies. Most importantly, evidence from our 
assays establishes that a considerable portion of 
toxic effects is linked to somatic mutations (5 and 
10  mM doses of WO3 NPs), which may alter key 
functions in cells and play a role in carcinogene-
sis. In this context, the use of Drosophila could be 
further extended to research into cancer and nano-
particles. Our model organism, Drosophila, has 
shown its potential to reliably detect and quantify 
potential biological and genetic effects of WO3 
NPs and its MPs. Future studies should focus on 
the underlying mechanisms of various endpoint 
biomarkers of such widely adopted substances.
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