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Introduction

Glioma, which is derived from glial cells, accounts 
for ~ 80% of primary central nervous system (CNS) 
tumors and is one of the most common and aggres-
sive tumors (Bi et al. 2020). According to the grow-
ing speed and aggressiveness, the World Health 
Organization (WHO) classified glioma into four 
grades: low grade (WHO grade I/II), such as astro-
cytes, oligodendrocytes, and ependymal cells, and 
high grade (WHO III/IV), such as oligodendro-
glioma, ependymoma, and glioblastoma multiforme. 
The median survival of patients bearing glioma is 
14.6 months and the 5-year survival rate is 5% (Lu 
et  al. 2017; Kim et  al. 2017). Accurate diagnosis 
plays a key role in cancer treatment, which could 
present important information about the histological 
type, classification, grade, potential aggressiveness, 
and so on. The imaging techniques such as magnetic 
resonance imaging (MRI), computed tomography 
(CT), positron-emission tomography (PET), and 
fluorescence imaging (FI) are widely used in glioma 
diagnosis, which could help doctors determine the 
best therapeutic schedule. Current treatments of gli-
oma rely on surgical resection, but the therapeutic 
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outcomes are limited due to the lack of a sharp bor-
der between glioma and normal tissues (Xie et  al. 
2021). The remaining invasive glioma cells can 
rapidly penetrate and destroy normal tissue struc-
tures. Therefore, malignant gliomas can rarely be 
cured by surgery alone. In 2013, Scholtyssek et al. 
found that the combination of chemotherapy with 
radiotherapy significantly prolonged the survival of 
patients, underlining the therapeutic potentials of 
chemotherapy for treating glioma. The mechanism 
of these chemotherapy agents includes directly kill-
ing of tumor cells, anti-angiogenesis, and inhibition 
of tumor invasion (Cooney et  al. 2020). Besides, 
immunotherapy (Qi et  al. 2020; Wang et  al. 2020; 
Carpenter et al. 2021), gene therapy (Altshuler et al. 
2020; Peng et  al. 2018; Banerjee et  al. 2021), and 
phototherapy (Li et  al. 2020; Yang et  al. 2020a; 
Liu et  al. 2018a) are emerging as promising thera-
peutic methods for glioma. Although these above 
treatments can improve the quality of patients’ life, 
98% of small molecule drugs and nearly 100% of 
macromolecular drugs are difficult to penetrate into 
brain tissue due to the complicated blood–brain bar-
rier (BBB) combined with the blood–brain tumor 
barrier (BBTB). Therefore, developing an effective 
strategy that can penetrate the BBB, and specifically 
enter the tumor area, is highly required.

Receptor-mediated cascade targeting (RMCT) 
strategies have proven to be a viable approach for 
overcoming the abovementioned two obstacles 
(Fig.  1), in which the first phase targeting ligands 
circumvent the BBB barrier, and the second-phase 
targeting ligands deliver drugs selectively against 
glioma cells (Fu et  al. 2019a; Cui et  al. 2020). The 
RMCT strategies have been extensively employed in 
glioma targeting research, whose mechanism is based 
on the interaction between the targeting ligands and 
the receptors expressed in the brain. The receptors 
involve in transferrin receptor (TFR) (Luo et al. 2019; 
Choudhury et al. 2018; Kang et al. 2020), low-density 
lipoprotein receptor–related protein receptor (LRPR) 
(Zong et  al. 2019; Han et  al. 2018), insulin recep-
tor (IR) (Bonnin et  al. 2017), nicotinic acetylcho-
line receptor (NAR) (Clarke et al. 2021; Pucci et al. 
2021), etc. To achieve RMCT strategies, two methods 
have been adopted. One method is to fabricate the 
drug delivery system modified with only one kind of 
ligand, the corresponding receptor of which is over-
expressed on both BBB and glioma cells. The second 
method is to construct the drug delivery system modi-
fied with two kinds of ligands, one targeting BBB, 
and the other targeting glioma cells (Jang et al. 2016).

The integrated nanoplatforms are increasingly 
applied in RMCT strategies as the drug delivery 

Fig. 1  Schematic illustration of RMCT strategies for GBM therapy
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system (Ho et  al. 2017; Tammam et  al. 2017). The 
integrated nanoplatforms mainly include organic 
nanoplatform, inorganic nanoplatform, and cell-
based nanoplatform. The nano-sized agents could 
preferentially target the tumor tissue passively due to 
the enhanced permeation and retention effect (EPR) 
(Byeon et  al. 2016). It is evidenced that the EPR 
effects could offer 20–30% increases in tumor site tar-
geting (Kobayashi et al. 2013). In addition, targeting 
ligands can be linked to nanoplatforms for active tar-
geting. Therefore, combining RMCT strategies with 
nanoplatforms can further improve therapeutic effi-
cacy and reduce toxic side effects.

In the current review, we summarize the recep-
tor and targeting ligands used in glioma, the catego-
ries of RMCT strategies, and nanoplatforms used in 
RMCT strategies. We believe the RMCT strategies 
would have a revolutionary impact on glioma diag-
nosis and therapy.

Receptor‑mediated cascade targeting strategies 
for the therapy of glioma

The tight BBB prevents therapeutic agents from enter-
ing the brain, functioning as the first barrier for gli-
oma therapy (Dai et al. 2018; Chen et al. 2019). The 
nonspecific accumulation of drugs in the brain after 
crossing the BBB is the second barrier for glioma. To 
overcome these two obstacles, RMCT delivery sys-
tems modified with the active ligands for bypassing 
the BBB and BBTB respectively are being developed 
(Cui et al. 2016; Chen et al. 2017). The selection of 
targeting ligands for efficient BBB penetration and 
the subsequent BBTB targeting would be crucial for 
RMCT strategies. According to the modification of 
targeting ligands, there are two types of RMCT strate-
gies: single ligand-modified RMCT strategy and dual 
ligand-modified RMCT strategy. Herein, we summa-
rize the commonly utilized targeting ligands and the 
categories of RMCT strategies.

Receptor-mediated endocytosis

Receptor-mediated endocytosis (RME) is one of 
the most important pathways for drug delivery to 
the brain, which have been extensively employed in 
glioma targeting research. There are many receptors 
that are overexpressed on the BBB or glioma cells 

(Table  1 and Table  2), which can promote the drug 
targeting delivery via receptor-mediated endocytosis 
(Gao 2016).

Receptor‑based on transferrin

Receptor based on transferrin (TFR), as a type of 
transmembrane protein, is overexpressed in brain cap-
illary endothelium and glioma cell. Besides, TFR in 
gliomas can promote iron accumulation and promote 
tumor progression, which indicated that it is a prom-
ising target for achieving gliomas targeting therapy. 
TF, a serum glycoprotein of 80 kDa, with a high bind-
ing affinity to TFR, has been widely used to enhance 
the cellular uptake of drug-loaded delivery systems 
(Gu et  al. 2017; Zhang et  al. 2014). Despite some 
promising preclinical results, the application of TF 
is limited by the endogenous TF and high molecular 
weight of the protein. TF showed high concentrations 
in the blood and it could competitively inhibit the 
binding of TF-modified carrier to TFR. Besides, TF 
with relatively high molar weight is difficult to con-
struct the drug delivery systems. Alternative ligands 
for TFR have been extensively evaluated. Recently, a 
novel targeting ligand, HAIYPRH (T7) peptide, was 
identified by a phage display system (Fu et al. 2019a; 
Han et al. 2011). This ligand showed a robust binding 
affinity for TFR. The binding site of T7 to TFR is dif-
ferent from that of TF to TFR. Thus, endogenous TF 
will not competitively inhibit the binding of TF-mod-
ified carrier to TFR. Surprisingly, research showed 
that the endogenous TF in  vivo can conversely pro-
mote the uptake of T7. T7, thus, can be developed 
as a more advantageous targeting ligand for TFR as 

Table 1  The receptor on BBB, glioma cells, and both BBB 
and glioma cells

The receptor on BBB The receptor 
on glioma cells

The receptor on both 
BBB and glioma 
cells

Mannose receptor IL-13 receptor TFR
TGN receptor Integrin LRPR

Nucleolin N-Acetylglucosamine
LR
LDLR
LRPR
FR
IR
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compared to TF. Besides T7, another peptide, e.g., the 
cycle nine amino-peptide CRTIGPSVC (CRT), has 
also been developed to improve the binding between 
TF and TFR (Kang et  al. 2015). It is noted that the 
CRT is able to functionally “mimic” iron via binding 
to a complex of TF and TFR, inducing an allosteric 
conformational shift to apo-TF that leads to transport 
(Kang et al. 2015).

Receptor based on low‑density lipoprotein receptor–
related protein

LRP, a member of the low-density lipoprotein 
receptor family, is not only highly expressed on the 
blood–brain barrier but also on glioma cells (Xu 
et  al. 2016; Jiang et  al. 2018; Du et  al. 2020). LRP 
can interact with a variety of secreted proteins and 
molecules on the surface of cells (Shi et  al. 2018a). 
Angiopep-2 (TFFYGGSRGKRNNFKTEEY, molecu-
lar weight 2.4 kDa), a high-efficiency ligand of LRP 
receptor, can be used for modifying nanoplatforms 
as RMCT delivery systems to deliver chemotherapy 
molecules to glioma (Zhu et  al. 2018; Tian et  al. 
2018). Fan et  al. (Tian et  al. 2018) developed angi-
opep-2-modified biocompatible framework nucleic 
acid (FNA)–based imaging probe (ANG-TDNs) 
for brain tumor targeting. This probe exhibited high 

binding efficiency with low-density lipoprotein recep-
tor–related protein-1 (LRP-1) of BBB and glioma. 
They found that ANG-TDNs stayed intact for at least 
12 h in serum, and that enhanced cellular uptake of 
tetrahedral DNA nanostructures in brain capillary 
endothelial cells and Uppsala 87 malignant glioma 
(U87MG) cells. Remarkably, studies in both in vitro 
and in  vivo models revealed that ANG-TDNs could 
cross the BBB. Especially, in  vivo imaging showed 
strong fluorescent signals in U87MG human glioblas-
toma xenograft in nude mice.

Receptor based on insulin

IR, a transmembrane glycosylated protein, which 
consists of two α and two β chains linked by 
disulfide bonds, could mediate the transport of 
blood-borne insulin into the brain parenchyma, hav-
ing been extensively studied as a part of the RMCT 
delivery system (Hampton 2015; Newton 2006). 
The insulin molecular pocket formed by two α sub-
units results in an increase in tyrosine phosphoryla-
tion of the β subunit, and induces a conformational 
change of the IR to form a channel. This special 
conformational change could allow transmembrane 
transport of drug molecules (Fang et al. 2017). The 
8314 monoclonal antibody (8314 mAb), a kind 

Table 2  Targeting ligands used in RMCT strategies

TFR transferrin receptor; LRPR low-density lipoprotein receptor–related protein receptor; LFR lactoferrin receptor; TGNR 
TGNYKALHPHNG peptide receptor; IL‑6R interleukin-6 receptor; FAR folate receptor; TF transferrin; LR lactoferrin receptor; T7 
HAIYPRH peptide; CRT  CRTIGPSVC peptide; 8314mAb 8314 monoclonal antibody; LF lactoferrin; TGN TGNYKALHPHNG pep-
tide; I6P8 LSLITRL; RGD Arg-gly-asp peptide; FA folic acid; DOX doxorubicin; RES resveratrol; siRNA small interfering RNA; 
TMZ temozolomide; miRNA micro RNA; VC vincristine; CED/PTX cediranib/paclitaxel; ATO arsenic trioxide; ETP etoposide; 
IONPs iron oxide nanoparticles; CUR  curcuminoid; SHK shikonin; DTX docetaxel

Receptor Targeting ligand Modal drug Reference

TFR TF
T7
CRT 

DOX, RES, siRNA, TMZ/JQ1
MiRNA, VC, siRNA, CED /PTX
PTX, fluorescent probe

Luo et al. 2019; Jhaveri et al. 2018; Liu et al. 2018b; Lam et al. 
2018)

Sukumar et al. 2019; Liang et al. 2018; Wei et al. 2016; Yu et al. 
2019)

Kang et al. 2015; Ni et al. 2020)
LRPR Angiopep-2 DOX, ATO, DTX Xu et al. 2016; Xu et al. 2021; Kadari et al. 2018)
IR 8314MAb ETP Kuo and Lee 2016)
LFR LF DOX, IONP, CUR, SHK Zhang et al. 2021; Tomitaka et al. 2015; Xu et al. 2017; Li et al. 

2018a)
TGNR TGN DTX Gao et al. 2014)
IL-6R I6P8 peptide DOX Shi et al. 2017)
Integrin αvβ3 RGD PTX, DOX/siRNA, DTX Fu et al. 2019b; Huang et al. 2018; Sonali et al. 2016)
FAR FA PTX, DOX, TMZ Li et al. 2018b; Niu et al. 2020; Minaei et al. 2019)
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of peptidomimetic antibody, could recognize the 
α-subunit of IR expressed on human brain micro-
vascular endothelial cells (HBMECs) which can be 
used for the first targeting.

Other related receptors

In addition to the several receptors above, there are 
also some receptors highly expressed on both glioma 
cells and angiogenesis including interleukin-4 recep-
tor (IL-4R) with specific binding to CRKRLDRNC 
peptide (AP-1) (Sun et  al. 2017), heparan sulfate 
proteogly receptor (HSPG) with specific binding 
to CGKRK peptide (Lv et  al. 2020), TGNYKALH-
PHNG receptor (TGN) with specific binding to TGN 
peptide (Gao et  al. 2014; Yang et  al. 2020b), and 
interleukin-6 receptor (IL-6R) with specific binding 
to  I6P8 peptide (Shi et al. 2017) that can be applied in 
RMCT strategies.

Categories of receptor-mediated cascade targeting 
strategies

According to the modification of targeting ligands, 
there are two types of RMCT strategies: single ligand-
modified RMCT strategy and dual ligand-modified 
RMCT strategy (Table  3). Both of them show their 
advantages and disadvantages (Table 4).

Single ligand‑modified receptor‑mediated cascade 
targeting strategy

The single ligand-modified RMCT strategy is linked 
with one ligand, which could not only target BBB but 
also can target glioma cells. Specifically, it was found 
that a large number of receptors are richly expressed 
on brain capillary endothelial cells, such as TFR, 
LRPR, LFR, and IR. Among them, TFR, LRPR, 
and LDLR, etc. are highly expressed in glioma cells. 

Table 3  An overview of 
two RMCT strategies

TF transferrin; WGA  
wheat germ agglutinin; 
LF lactoferrin; LRP 
low-density lipoprotein 
receptor–related 
protein; FA folate; TGN 
TGNYKALHPHNG

RMCT strategies BBB GBM cells Reference

Single ligand-
modified RMCT 
delivery system

TF ligand TF ligand Lam et al. 2018; Ramalho et al. 2022)
WGA WGA Xiao et al. 2018)
LF LF Xiong et al. 2020)
LRP ligand LRP ligand Liu et al. 2021a; Polidoro et al. 2021; 

Jiao et al. 2019)
Dual ligand-

modified RMCT 
delivery system

83–14 mAb Anti-EGF receptor Kuo and Lee 2016)
LRP ligand Anti-CD133 mAb Kim et al. 2018)
TF ligand FA Gao et al. 2013)
TGN peptide AS1411 aptamer Gao et al. 2014)

Table 4  Advantages and 
disadvantages of the two 
RMCT drug delivery 
systems

RMCT strategies Advantages Disadvantages

Single ligand-modified RMCT strategy 1. Easy for preparation
2. Easy for production

1. Low speci-
ficity

2. Fewer 
targeting 
ligands to 
choose from

Dual ligand-modified RMCT strategy 1. High specificity
2. High affinity
3. High accumulation in tumor site

1. Complex 
preparation 
process

2. High 
production 
cost

3. Interference 
between 
the two 
molecules
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These ligands could serve as dual-targeting to achieve 
cascade delivery. Xiao et  al. (Su et  al. 2014) pre-
pared LF-modified DOX-loaded bovine serum albu-
min nanoparticles, which enhanced blood–brain bar-
rier (BBB) penetration and improved cellular uptake 
in the glioma cells of the drug. Jiang et  al. (Pang 
et  al. 2011) used TF to modify doxorubicin-loaded 
poly(ethylene glycol)-poly(caprolactone) (PEG-
PCL) vesicles, which overcame BBB, promoted drug 
accumulation in the brain, and enhanced the cellular 
uptake in the glioma cells of the drug. Jiang et al. (Bi 
et al. 2016) prepared T7 peptide-conjugated, carmus-
tine-loaded micelles via the emulsion-solvent evapo-
ration method, which could target the TFR expressed 
on BBB endothelium and glioma cells.

Dual ligand‑modified receptor‑mediated cascade 
targeting strategy

The double ligand-modified RMCT strategy is con-
jugated with two specific ligands. These two ligands 
cooperate with each other, where one ligand targets 
to BBB and promotes penetration into the brain tis-
sue, while the other targets glioma cells and promotes 
cellular uptake. Recently, the combination of vari-
ous ligands has been widely studied. Gao et al. (Cui 
et al. 2020) used DWSW and NGR peptide ligands to 
modify PLGA nanoparticles that coated with eryth-
rocyte membranes, which could penetrate the BBB 
and BBTB. Mei et al. (Zhang et al. 2017) developed 
T7 and DA7R dual peptide-modified liposomes to 
co-deliver doxorubicin (DOX) and vincristine (VCR) 
to glioma. The T7 could bind to TFR expressed on 
the BBB and glioma cells, while the DA7R has a 
high affinity to endothelial growth factor receptor 2 
(VEGFR 2) highly expressed on angiogenesis.

Nanoplatform‑based receptor‑mediated cascade 
targeting delivery system

Nowadays, nanoplatforms are increasingly applied in 
cancer therapy and diagnosis (Woodman et al. 2021; 
Pavitra et  al. 2021; Ali et  al. 2021). The nano-sized 
agents could preferentially target the tumor tissue pas-
sively due to the enhanced permeation and retention 
effect (EPR) (Byeon et al. 2016). In addition, target-
ing ligands can be linked to nanoplatforms for RMCT 
drug delivery. Therefore, combining dual-targeting 

strategies with nanoplatform can further improve effi-
cacy and reduce toxic side effects. The most widely 
used nanoplatforms to deliver drugs to glioma include 
organic nanoplatform (polymeric nanoparticles, 
liposomes, dendrimer nanoparticles, etc.), inorganic 
nanoplatform (metal nanoparticles, mesoporous sil-
ica, carbon nanotubes, etc.), and cell-based nanoplat-
form (circulating erythrocytes, stem cells, immune 
cells, etc.) (Fig. 2).

Organic nanoparticles

Liposomes are small lipid vesicles mainly made 
from naturally derived biocompatible and biode-
gradable phospholipids and clinically used as a drug 
delivery system by modulating the pharmacokinet-
ics, biodistribution, or drug solubility (Large et  al. 
2021; Sonju et  al. 2021; Wang and Grainger 2019; 
Zahednezhad et al. 2019). Liposomes have also been 
extensively used to increase the transport of drugs 
across the BBB via the binding effect between the 
specific endogenous transporters localized on the 
BBB and the specific ligands modified on the sur-
face of the delivery system (Zhan and Wang 2018; 
Shi et al. 2018b; Zong et al. 2014). P-Aminophenyl-
α-d-manno-pyranoside (MAN) is a kind of man-
nose analog that has a specific affinity to the glucose 
transporter (Singh et al. 2015). Ying et al. (Ying et al. 
2010) developed the daunorubicin-loaded MAN and 
TF co-modified dual-targeting liposomes for glioma 
treatment. The dual-targeting effects were evaluated 
on the BBB model in vitro, C6 glioma cells in vitro, 
avascular C6 glioma tumor spheroids in vitro, and C6 
glioma-bearing rats in vivo, respectively. After apply-
ing dual-targeting daunorubicin liposomes, the trans-
port ratio across the BBB model was significantly 
increased up to 24.9%. The most significant uptake by 
C6 glioma was evidenced by flow cytometry and con-
focal microscope. The C6 glioma spheroid volume 
ratio was significantly lowered to 54.7%. HIV-1 trans-
activating protein (TAT), one of the cell-penetrating 
peptides (CPPs), can facilitate the intracellular deliv-
ery of drugs with various sizes and physicochemical 
properties (Torchilin 2008a, 2008b). Liposomes mod-
ified with TAT can deliver the cargoes into cells with 
high efficiency via an unsaturated and receptor/trans-
porter independent pathway. Zong et al. (Zong et al. 
2014) prepared dual-targeting doxorubicin liposomes 
modified with cell-penetrating peptide (TAT) and 
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transferrin (T7) (DOX-T7-TAT-LIP) for targeting 
brain glioma (Fig.  3). In  vitro cellular uptake and 
three-dimensional tumor spheroid penetration stud-
ies demonstrated that the system could not only target 
endothelial and tumor monolayer cells but also pen-
etrate the tumor to reach the core of the tumor sphe-
roids. In vivo imaging demonstrated that T7-TAT-LIP 
provided the highest tumor distribution.

Dendrimers are synthetic macromolecules with 
hyperbranched nanostructure, high degree of 
functionality, and low polydispersity, which are 
widely used in the field of drug delivery system. 
Poly(amidoamine) (PAMAM) is the first den-
drimer with a three-dimensional spherical struc-
ture, and it was prepared by the classical Michael 
addition reaction and ester aminolysis reaction 
by the gradual divergence method (Araujo et  al. 
2018). Its properties change with the change of 
its generation (Li et  al. 2018c). PAMAM can 
deliver drugs/genes through chemical bond cou-
pling, physical encapsulation, and electrostatic 

interaction. Besides, PAMAM is acid-sensitive, 
and its size and structure would change with the 
change of pH. Because of the acidic microen-
vironment of tumor tissues, the drugs loaded in 
PAMAM may be released rapidly in the tumor 
site (Leng et al. 2013; Patil et al. 2018). Piao et al. 
(Shi et  al. 2020) developed TGN and RGD dual 
peptide-modified PAMAM dendrimer that loaded 
arsenic trioxide to treat glioma. TGN can help 
transport PAMAM dendrimer into the brain, and 
RGD can enhance cellular uptake of PAMAM den-
drimer, which showed great potential in targeted 
glioma therapy (Fig. 4).

Nanogels are formed by physical or chemical 
cross-linked polymeric networks (Liang et al. 2021; 
Hashimoto et  al. 2018; Grimaudo et  al. 2019). 
They can encapsulate both small molecules and 
macromolecule drugs through their cross-linked 
networks (Wang et  al. 2018, 2021; Ekkelenkamp 
et  al. 2018; Hajebi et  al. 2019). Besides, the high 
biocompatibility of the polymers used, the high 

Fig. 2  Summary of nano-
platforms for the applica-
tion to medical diagnoses 
and therapeutics of glioma
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stability, the softness, and the swelling proper-
ties allow for achieving a controlled drug release 
at the target site, which allows them to be applied 

in cancer therapy and diagnosis. Zhao et  al. (Song 
et al. 2021) developed a DOX-loaded dual-sensitive 
nanogel (CMCSN) that was modified with targeting 

Fig. 3  Scheme of T7 and 
TAT modified DOX-loaded 
liposomes (DOX-T7-TAT-
LIP). a The structure 
of DOX-T7-TAT-LIP. b 
DOX-T7-TAT-LIP could 
specifically bind to transfer-
rin receptors expressed on 
BCECs, transport across 
the BBB, then effectively 
accumulate in the glioma. 
Reproduced with permis-
sion from Ref. (Zong 
et al. 2014), Copyright © 
2014 American Chemical 
Society.

Fig. 4  Scheme of TGN and iRGD co-modified PAMAM-based nanoplatform. Reproduced with permission from Ref. (Shi et  al. 
2020), Copyright © 2020 Published by Elsevier Inc.
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ligand ANG peptide, which was named DOX-
ANG-CMCSN. DOX-ANG-CMCSN exhibited pH 
and redox sensitivity, and significantly enhanced 
BBB penetration and glioma cells targeting ability. 

Compared with the nanogel without modification of 
targeting ligand, DOX-ANG-CMCSN significantly 
improved the antitumor efficacy of DOX (Fig. 5).

Fig. 5  Scheme of the AGN-modified DOX-loaded nanogels for GBM targeting therapy. Reproduced with permission from Ref. 
(Song et al. 2021), Copyright © 2021 American Chemical Society
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Inorganic nanoparticles

Nowadays, carbon nanotubes (CNTs) have received 
great attention on drug delivery systems because of 
their unique physicochemical properties (Ren et  al. 
2012; Santos et  al. 2014). With the unique one-
dimensional structure, CNTs showed good trans-
missibility passing cell membrane, which makes it 
easier to deliver therapeutic drugs or diagnostic mol-
ecules to the tumor (Santos et al. 2014; Yaghoubi and 
Ramazani 2020). Moreover, CNTs have an ultrahigh 
surface area that permits efficient loading of multiple 
molecules alongside the nanotube wall. In addition, 
supramolecular binding of aromatic molecules can 
be easily achieved by the p-p stacking of those mol-
ecules onto the polyaromatic surface of nanotubes. In 
order to make it suitable for biomedical applications, 
improve its biocompatibility, and reduce its toxicity, 
appropriate pre-treatment, surface chemical modifi-
cation, or modification are needed (Loh et  al. 2018; 
Zhuang et  al. 2019; Hassan et  al. 2019). The bond 
for surface modification includes covalent or a non-
covalent bond. For covalent bond, it is necessary to 
design a reaction of the molecules on the surface of 
the tube wall with the modifier chemically. The sur-
face can also be modified with non-covalent bonding 
such as some amphiphilic polymers, the hydropho-
bic segments of the polymer can be attached to the 
surface of CNTs by p-p stacking, and the hydrophilic 

segments play an increasing role of water solubility 
(Xiang et al. 2020; Raphey et al. 2019; Kuche et al. 
2018). Ren et  al. (Ren et  al. 2012) constructed the 
RMCT delivery system using angiopep-2-modified 
oxidized multi-walled carbon nanotubes (O-MWNTs) 
to load DOX as a drug delivery system for treatment 
of glioma. The effects of brain targeting and glioma 
targeting were testified by fluorescence image, illus-
trating that the angiopep-2-modified carbon nanotube 
is a prospective RMCT drug delivery system for gli-
oma therapy.

Au nanoparticles (Au NPs) including nano-
spheres, nanorods, nanoshells, and nanocages are 
widely studied as inorganic nanoplatform (Sharifi 
et al. 2019; Luther et al. 2020). They have attracted 
great attention in the therapy of glioma due to their 
favorable properties including high penetration to 
the brain microvasculature, easy modification with 
various ligands, high stability, and low toxicity 
(Mignani et  al. 2021). Besides, Au NPs have the 
ability to generate heat, which can directly kill the 
tumor cells via photothermal therapy (Chen et  al. 
2020; Christie et al. 2015). Gao et al. (Ruan et al. 
2017) developed dual peptide-modified Au NPs 
(AuNP-A&C-R), which could target the integrin 
αvβ3 receptor on the BBB, cross BBB via recep-
tor-mediated endocytosis, then target to the gli-
oma cells. Besides, these dual-functional Au NPs 

Fig. 6  Scheme of the AGN-modified DOX-loaded nanogels for glioma targeting therapy. Reproduced with permission from Ref. 
(Ruan et al. 2017), Copyright © 2017 American Chemical Society
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improved the chemotherapeutic effect on glioma-
bearing mice (Fig. 6).

Cell-based nanoplatform

Cell-based nanoplatform such as circulating erythro-
cytes (Cui et  al. 2020; Chai et  al. 2017), stem cells 
(Wu et  al. 2019; Su et  al. 2015), and immune cells 
(Wu et al. 2019; Majumder et al. 2019) have been a 
new field of cancer therapy. This delivery system 
shows various advantages including long circulation 
in the bloodstream, abundant surface ligands, low 
immunogenicity, and high penetration to BBB as well 
as minimizing side effects (Suryaprakash et al. 2019; 
Dong et al. 2021). Because of these unique features, 
cell-based nanoplatform has received great atten-
tion in glioma therapy (Suryaprakash et  al. 2019). 
Zhang et  al. (Xue et  al. 2017) obtained the neutro-
phil (NE)-based delivery vehicles (PTX-CL/NEs) 
by co-incubating NEs with liposomes that contain 
paclitaxel (PTX). PTX-CL/NEs retained the original 
activity of NEs during the preparation process, and 

its chemotactic effect on inflammatory factors was 
similar to that of natural NEs. After surgical resection 
of glioma, a large number of inflammatory factors 
(IL-8 and TNF-α) were released. Due to the targeted 
penetration of NEs, PTX-CL/NEs can effectively 
penetrate the BBB and reach the tumor site, thus 
preventing postoperative recurrence of glioma. Liu 
et al. (Liu et al. 2021b) labeled harvested live neutro-
phils with a lipid-decorated molecular photoacoustic 
contrast agent TFML, which showed strong photoa-
coustic signal and excellent brain tumor-targeting 
ability. Besides, the original activity of NEs during 
the preparation process and its chemotactic effect on 
inflammatory factors were not affected. These results 
indicated that TFML-labeled neutrophils have great 
potential for glioma detection (Fig. 7).

Conclusion and prospect

The diagnosis and therapy of glioma remains a huge 
challenge due to two major barriers BBB and BBTB. 

Fig. 7  Schematic illustration of NE-mediated drug delivery system for targeted GBM photoacoustic imaging therapy. Reproduced 
with permission from Ref. (Liu et al. 2021b), Copyright © 2021 American Chemical Society
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In this context, great efforts have been made to facili-
tate drugs through the BBB and specifically reach 
the tumor cells. These approaches mainly include 
invasive techniques and noninvasive techniques. 
Intrathecal injection, a kind of invasive technique, 
consists in a direct injection of therapeutics into the 
cerebrospinal fluid (CSF), which show the advan-
tages of high drug concentration in the brain, excel-
lent therapeutic effect and low side effects. However, 
this strategy has certain disadvantages, including CSF 
infection, catheter obstruction, and inadequate drug 
distribution. The RMCT strategy, a kind of noninva-
sive technique, can regulate in vivo drug distribution 
in space, time, and dose due to its unique biologi-
cal characteristics, which simultaneously overcome 
BBB and BBTB. The RMCT strategy consists of two 
important components: nanoplatforms and targeting 
ligands. The nanoplatforms not only can encapsulate 
and deliver drugs, but also can be modified with tar-
geting ligands, which would be recognized by recep-
tors highly expressed on the BBB or the glioma cell. 
In this review, a variety of receptors and targeting 
ligands used in glioma, such as transferrin, peptides, 
and aptamers were summarized. Besides, the cat-
egories of RMCT strategies, and nanoplatforms used 
in RMCT strategies, such as organic nanoplatform, 
inorganic nanoplatform, and cell-based nanoplatform 
were also summarized. More and more studies have 
shown that RMCT strategies can promote drug accu-
mulation in the glioma and reduce the biodistribution 
of drugs in the normal brain site, thus improving the 
therapeutic effect and decreasing the toxic and side 
effects. Despite the great progress, the RMCT strat-
egy is more complex compared with intrathecal injec-
tion, and many challenges still remain in the process 
of design, preparation, and release of RMCT strategy, 
which greatly limited their wide application.

To promote the application of RMCT strategy, we 
proposed several suggestions for the further research 
on RMCT strategy to treat glioma: (1) the proportion 
and density of targeting ligand, linker length, affinity 
between ligands and receptors, and preparation con-
ditions should be fully studied, which can provide a 
reliable basis for in vivo application; (2) the in vitro 
and in vivo stability should be fully considered, which 
have a great effect on the targeting ability of target-
ing ligands; (3) to obtain homogenous nanoplatform 
and push up possible clinical translation, a simple and 
uniform preparation method should be developed; (4) 

for dual ligand-modified RMCT delivery system, the 
synergistic effect of dual ligand should be carefully 
investigated. Overall, great progress has been made 
in the treatment of glioma. With the in-depth study 
of nanoplatforms and glioma therapy, it is believed 
that RMCT strategy will be developed and applied in 
the clinic. This will fundamentally change the current 
defect of traditional clinical treatment, improving the 
quality of life of patients effectively.
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