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definition, mechanism, and expression formula are 
also introduced. Finally, we provided opinions and 
insights on technical obstacles and development 
prospects.
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Introduction

Self-assembly is the process by which system 
components (such as molecules, polymers, col-
loids, and particles) are organized into ordered or 
functional structures without human intervention 
(Grzybowski et  al. 2009). The self-assembly of 
nanoparticles has excellent development potential 
and is an important method to make functional 
materials and devices (Abdellatif et al. 2015, 2018, 
2016a, 2016b; Abdellatif and Azab 2018, 2019; 
Yang et al. 2021; Grzelczak et al. 2010). Non-con-
tact manipulation does not depend on other auxil-
iary substances, does not generate any unnecessary 
contamination, and the process can be continuous, 
still maintaining the original characteristics of the 
particles. To efficiently control the self-assembly 
of nanoparticles, non-contact manipulation of par-
ticles under the action of an external field, e.g., 
optics (Zhang and Liu 2008; Ashkin and Dziedzic 
1987), magnetic (Lebel et al. 2014; Vlaminck and 

Abstract Acoustic-induced nanoparticle self-
assembly has good development prospects in 
tailored, bottom-up material design. Acous-
tic tweezers technology is used for nanoparticle 
manipulation due to its versatility, non-invasive-
ness, and biocompatibility; it can manipulate 
particles of various physical properties and will 
not cause damage when manipulating cells. In 
addition, the wide range of acoustic frequencies 
allows acoustic tweezers to manipulate particles 
ranging in size from nanometers to millimeters 
(100–10 mm). Although acoustic tweezers exhibit 
unique advantages in particle manipulation, there 
are still few reviews on the assembly of particles 
induced by standing acoustic tweezers, especially 
in the area of three-dimensional particle assembly. 
In this review, we summarized the characteristics 
of acoustic micro-nano manipulation technology 
by comparing acoustic tweezers with optical twee-
zers and magnetic tweezers. Furthermore, we cat-
egorized the latest progress in particle assembly 
by standing wave acoustic tweezers using differ-
ent dimensions as a framework: acoustic tweezers’ 
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Dekker 2012), and acoustic (Meng et  al. 2019), 
has been the focus of research.

Acoustic tweezers are a newly developed par-
ticle manipulation technology and exhibit unique 
advantages in the non-contact manipulation of 
micro-nano objects (such as cells (Hartono et  al. 
2011), particles (Ding et  al. 2013), organisms 
(Tian et  al. 2019), or fluids (Miansari and Friend 
2016)). The invention of many acoustic tweezers 
is inspired by optical tweezers (Ozcelik et  al. 
2018). The term “optical tweezers” was initially 
used in 1986 to describe a tightly focused beam 
that enables microparticle manipulation. Although 
optical tweezers are widely used in biomedicine 
and have made many achievements (Zhang and 
Liu 2008; Moffitt et  al. 2008; Polimeno et  al. 
2018), it requires complicated optical hardware, 
and high-power laser manipulation may dam-
age the cell sample (Rasmussen et  al. 2008). The 
basic magnetic tweezers consist of a pair of per-
manent magnets that manipulate magnetic parti-
cles through a magnetic field. Magnetic tweezers 
can perform non-invasive force and displacement 
measurements in complex environments (Bausch 
et  al. 1999) and are easier to implement (Strick 
et  al. 2000a). Magnetic tweezers have the ability 
to rotate objects, making them suitable for DNA 
manipulation (Charvin et  al. 2005; Strick et  al. 
2000b). However, magnetic tweezers are only suit-
able for the manipulation of magnetic particles; 
otherwise, the particles to be manipulated need to 
be pretagged (Neuman and Nagy 2008). Acoustic 
tweezers technology breaks through the limita-
tions mentioned above of optical tweezers and 
magnetic tweezers. It can manipulate particles 
of various physical properties and will not cause 
damage when manipulating cells (Wiklund 2012; 
Lam et al. 2016). The wide range of acoustic fre-
quencies allows acoustic tweezers to manipulate 
particles ranging in size from nanometers to mil-
limeters (Meng et  al. 2019; Baresch et  al. 2016; 
Drinkwater 2016; Destgeer and Sung 2015). These 
features have made acoustic tweezers employed in 
numerous applications, such as crystal self-assem-
bly (Guevara Vasquez and Mauck 2019), cell pat-
terning and culture (Primo and Mata 2021), soft 
robots (Li et  al. 2019), and 3D printing (Wads-
worth et al. 2020; Llewellyn-Jones et al. 2016), to 
name a few.

In particle manipulation, acoustic tweezers 
rely on acoustic radiation force (ARF) and the 
drag force caused by acoustic streaming (AS) 
as the dominant force to move and suspend par-
ticles (Baudoin and Thomas 2020). In 1991, Wu 
first used acoustic tweezers composed of two col-
limated focused ultrasonic transducers to manipu-
late latex particles and frog eggs (Wu 1991). Since 
then, various types of acoustic tweezers have been 
designed and applied to life science and engineer-
ing applications (Friend and Yeo 2011; Zhang 
et al. 2008). Acoustic tweezers are mainly divided 
into traveling wave tweezers, AS tweezers, and 
standing wave tweezers. Traveling wave tweezers 
are usually based on a focused acoustic field to 
manipulate particles (Peng et al. 2021). The trave-
ling wave will generate a unidirectional force to 
keep particles moving along the direction of wave 
propagation, making traveling wave acoustic twee-
zers suitable for particle sorting (Destgeer et  al. 
2013, 2014; Ahmed et  al. 2018). Acoustic twee-
zers manipulate particles in the liquid through the 
steady flow of the liquid that has absorbed sound 
energy (Sadhal 2012). They are mainly used for 
pumping, fluid mixing, and 3D rotation of parti-
cles (Bernassau et  al. 2014; Huang et  al. 2014). 
Standing wave tweezers have two subtypes, that 
is, bulk acoustic waves (BAWs) based and surface 
acoustic waves (SAWs) based tweezers (Ozcelik 
et  al. 2018). In the standing wave field, the ARF 
is the dominant force to move particles to nodes 
or anti-nodes (Courtney et al. 2012). By adjusting 
parameters such as the amplitude and phase of the 
transducer, the position of the node will change 
(Wu and Chang 2005; Meng et al. 2011), enabling 
complex patterning of micro-nano particles. Since 
the standing wave field is a strong-gradient field 
that is easy to construct, they are widely used in 
particle aggregation, arrangement, separation, and 
patterning manipulations (Meng et al. 2019).

Although a series of retrospective reviews sum-
marized the development and application of acous-
tic tweezers (Meng et al. 2019; Ozcelik et al. 2018; 
Baudoin and Thomas 2020; Zhang et  al. 2008; 
Mohanty et  al. 2020), no review has summarized 
the application of standing wave acoustic tweezers 
in the self-assembly of micro-nano structures. This 
article focuses on the acoustic manipulation the-
ory and experimental progress of BAW-based and 
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SAW-based standing wave acoustic tweezers in the 
field of micro/nanoparticle self-assembly in the 
last decade: the characteristics of acoustic micro-
nano manipulation technology are summarized by 
comparing acoustic tweezers with optical tweezers 
and magnetic tweezers; the definition, mechanism, 

and expression formula of acoustic tweezers are 
introduced; the latest progress in particle self-
assembly by standing wave acoustic tweezers are 
categorized using different dimensions as a frame-
work, and these contents are made into two tables, 
as shown in Table 1 and Table 2; the opinions and 

Table 1  Particle assembly induced by standing SAWs

Ref.

Transducer parameters Particles parameters

Dominant 

force

Working region

L×W×D

Acoustic 

assembliesNumber Layout1
Frequency 

(wavelength)

Power or 

voltage

Type/

Size(dia.)
Medium

Concentration

or density

Shi et al. 

2008
2(IDTs) 38.2 MHz (100 μm),

19.116 MHz (200 μm) 24 dBM Fluorescent PS/1.9 μm _ 1.176×107/ml ARF
PDMS channel,

1.3 cm×50 μm×50 μm

Nodal line

(W:100 μm, 5 μm)

Shi et al. 

2009
2(IDTs) 12.6 MHz

(300 μm) 14.8-22 dBM
Fluorescent PS,

870 nm, 4.17 μm
_ 2.76×107/ml,

2.53×107/ml ARF
PDMS channel ,

W150×D80 μm

Separation,

alignment

Wu et al. 

2017 2(IDTs) 19.6 MHz 22 Vpp
PS,

110 nm, 970 nm, 5.84 μm _ _ ARF PDMS channel
Separation,

alignment

Ding et al. 

2012
2(SFITs)

12-18 MHz

(200-300 μm)
23 dBM Fluorescent PS/7.32 μm Water ARF

PDMS channel,

W: 200 μm Nodal line

Wood et al. 

2009
4(IDTs) 32.4 MHz 31 dBM CF fluorescent latex,1 μm _ 2.5×105/μl ARF

Fluidic capillary 

channel,

L1.2 mm×D 20 μm

Nodal array

(456 nodes)

Ding et al. 

2012
4(chirped 

IDTs)

18.5-37 MHz

(100-200 μm)
27 dBM

Bovine RBC/6 μm

C.Elegans/L300 μm

Fluorescent PS/10 μm

-

-

-

-

-

-

ARF
PDMS channel,

2.5×2.5 mm2
Patterning,

cell movement

Guo et al. 

2016
4( IDTs) 13 MHz 23-31.8 dBM

3T3 cells

HeLa S3 cells

PS/1,4.2,7.3,10.1 μm

DMEM

F-12K

Ethanol

-

-

-
ARF+AS

PDMS chamber,

1.8 mm×1.8 μm×10 μm

Patterning,

nodal array

Tan et al. 

2020
4( IDTs)

13.193 MHz+

12.124 MHz
27.1-33.4 dBM

PS/10,20 μm

MCF-7 cells

DI water

DMEM
ARF+AS

Cubic PDMS chamber,

W1.5 mm×D1 mm
3D aligned patterns

Cohen et al. 

2020
2( IDTs) 19.4 MHz 10 Vpp PC12 cells RPMI (1 12)×102/µl ARF

Channel,

D1: 100 μm

D2: 200 μm

Line cluster

(W1:1-2 cells, 

W2:10 cells)

Top view of the placement of IDTs

Table 2  Particle assembly induced by standing BAWs

Ref.

Transducer parameters Particles parameters
Dominant 

force

Working region

L×W×D

Acoustic 

assembliesNumber Type

L×W×T
Layout2

Frequency

(wavelength

Voltage

(power)

Type/

Size(dia.)
Medium

Concentration

or density

Devendran

et al. 2014
1

Ferroperm PZ-26,

5×5×0.5mm
1.75 MHz

0.1,0.5,1,2 

Vpp
PS/3,10μm Water 1507 kg/m3 ARF+AS

Fluidic channel,

10×1×0.1 mm

Separation,

nodal line

Collino et 

al. 2016
1

Meggitt, PZ26,

T:1 mm,φ:20 mm
2.09 MHz 16,23 Vpp

SiC fibers/7 μm, L20-63 μm

BaTiO3 spheres/34.5 μm

Hollow glass spheres/31 μm

Epoxy

Epoxy

Epoxy

ARF
Silicon-glass channel,

12×0.35×0.15 mm

Deposition,

alignment

Fornell et 

al. 2018
1

Ferroperm PZT26,

T:1 mm
1.83-1.85 MHz 22 Vpp

PS/10 μm+PDMS/

0.772-1.2076 μm

water droplets

Olive oil ARF
Silicon-glass channel,

W380×D100 μm

Binary particle 

separation

Cohen et al. 

2020
1 PZT, ID:22mm 1.14 MHz 10 Vpp

PC12 cells

PS/2 μm

RPMI

Water

1×106 cells/ml
ARF

Acousticradial resonator,

ID: 22 ,OD: 26 ,L20 mm
Ring cluster

Oberti et al. 

2007
1 PZT,5×5×0.5mm

2.562 MHz,

2.562MHz+25Hz
16 Vpp Copolymer/9.6 μm DI water 1507 kg/m3 ARF

Silicon wafer chamber,

5×5×0.2 mm
2D arrays

Tian et al. 

2016
4

Noliac, NCE 51,

15×2×1 mm

6.76,6.78MHz

(219,218 μm)
10 Vpp

PDDA+ATP droplets/

50-100 μm
_ _ ARF

PET square chamber,

20×20 mm
2D arrays

Hou et al. 

2020
4 PZT-5H, 20×5×1 mm 2 MHz PS/30 μm DI water 1507 kg/m3 ARF

Acrylic cavity,

20×20×5 mm

Dynamic patterns,

2D arrays

Prisbrey et 

al. 2017
4 PZT , SM111

1.5 MHz

(12.75 mm)
Carbon/80 μm water _ ARF

PMMA fluid reservoir,

12.75×12.75×12.75 mm

3D user-specified 

patterns

Doruk et al. 

2017
6

Steiner & Martins Inc., 

piezo plate actuators

2.33 MHz

(600 μm)
100 Vpp

Magnetite/300 nm

Copper/200-600 nm

CNFs/Length 5-50 μm

Resin

Resin

Resin

ARF
Hexagonal cavity,Side 

lengths are 50 mm apart
3D structures

Bouyer et 

al. 2016
1

Air-backed ceramic,

SMD20T08F2500R, 

Steminc, USA

2.78 MHz
5 Vpp

(9 dBM)
NCPs

fibrin 

prepolymer 

solution

10mg/ml ARF+AS
PMMA ring

(ID:16,OD:18,D2.2mm)

3D multilayer 

architecture

Top view of the placement of PZTs
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insights on technical obstacles and development 
prospects are also provided.

Acoustic micro‑nano‑manipulation techniques

The research and application of micro-nano 
manipulation techniques have become one of the 
important disciplines in science and technology 
today and have led to tremendous progress and 
even revolutionary breakthroughs in other fields 
of science and technology. Micro-nano techniques 
have been widely used in traditional engineer-
ing fields such as biomedicine (Blankenstein and 
Wechsung 2005), aerospace (Hunter et  al. 2010), 
materials science (Wang et  al. 2012), energy and 
environmental engineering (Gammaitoni 2012; 
Xiao et al. 2019), electrical circuits (Shimoda et al. 
2003), chemical metallurgy (Mücklich et al. 2006), 
and mechanical manufacturing (Xc et  al. 2008). 
A series of applications such as micro-nano engi-
neering (Yabe et al. 2004), micro-electromechani-
cal systems (Xu and Jia 2013), biomimetic robots 
(Wang et al. 2006), and very large-scale integrated 
circuits (Goodman et al. 2005) are formed.

At present, micro-manipulation techniques are 
mainly divided into two categories. One category 
is to use mechanical tools, such as micropipette 
(Schalbetter et  al. 2021), atomic force micro-
scope (Ramachandran et al. 1998), and microgrip- 
per (Menciassi et  al. 2001), to directly apply a 
contact-adjustable force to the target objects. The 
other is non-contact manipulation techniques rep-
resented by magnetic tweezers (Vries et al. 2005), 
optical tweezers (Ashkin et  al. 1986; Lou et  al. 
2021), and acoustic tweezers (Wu 1999). In the 
abovementioned micro-nano manipulation method, 
the acoustic tweezers use the physical effects of 
the ultrasonic field: ARF and AS to realize the  
concentration (Collins et  al. 2016), generation 
(Tang et  al. 2018), separation (Sehgal and Kirby 
2017), alignment (Smorodin et  al. 2010), and pat-
terning (Shi et  al. 2009a) of micro-nano particles. 
Compared to other types of micro-nano control 
methods, as shown in Table  3, acoustic tweezers 
exhibit low selectivity to the physical properties 
of the manipulated particles and less damage to 
biological samples. These characteristics make 
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acoustic tweezers have a wide range of engineer- 
ing applications.

Acoustic tweezers are of critical importance in 
capturing and assembling particles, and user-spec-
ified pattern arrangements can be achieved by con-
trolling the transducer arrangement and operating 
parameters (Greenhall et  al. 2016). The forward 
problem requires the calculation of the particle 
pattern generated by the user-specified ultrasonic 
transducer parameters (Grzelczak et  al. 2010), 
and the inverse problem involves the calculation 
of the ultrasonic transducer parameters required 
to assemble the user-specified particle pattern 
(Grinenko et al. 2012; Greenhall et al. 2013; Ber-
nassau et al. 2013a). By adjusting parameters such 
as the amplitude and phase, the patterns of parti-
cles can be changed. The accuracy of the experi-
mentally obtained pattern in relation to the user-
specified pattern can be quantified by means of 
numerical analysis (Prisbrey et al. 2017).

Particle assembly mechanism

The self-assembly of the particles or cells 
reviewed in this review mainly depends on ARF 
in the standing wave field. Particles with different 
acoustic contrast factor are captured at nodes or 
anti-nodes to achieve a series of operations such as 
aggregation, arrangement, and patterning.

Wave generation and propagation

A piezoelectric transducer usually generates 
the ultrasonic field in the ultrasonic micro-nano 
manipulation techniques. It is a device that con-
verts electrical energy input into mechanical 
energy output based on the piezoelectric effect. 
A piezoelectric transducer is composed of piezo-
electric elements and other metal parts (Katzir 
2003). Piezoelectric materials can be natural,  
such as quartz and sugarcane, and synthetic mate-
rials, such as lead zirconate titanate piezoelec-
tric ceramics (PZT) and zinc oxide piezoelectric 
ceramics (ZnO) (Hu 2014; Dual et  al. 2014). The 
two waves generated in the volume and along the 
surface of the elastic medium are usually called 
BAW and SAW (Zhang et al. 2008). BAW converts 
electrical signals into mechanical waves through 

piezoelectric transducer. In contrast, SAW is usu-
ally generated by interdigital transducers (IDT) 
patterned on a piezoelectric substrate surface. 
One-dimensional (1D), two-dimensional (2D), 
and three-dimensional (3D) manipulation of parti-
cles can be achieved by exciting single or multiple 
PZTs/IDTs to generate pressure fields (Han et  al. 
2021; Zhu et al. 2021).

The sound wave will carry a certain amount of 
energy and momentum in the process of propa-
gation, and objects in the sound field will scat-
ter, refract, and absorb the sound wave to a cer-
tain extent, resulting in the exchange of energy 
and momentum and a consequent effect by ARF 
(Gor’Kov 1962). In engineering estimation and 
finite element calculations, we generally use the 
Gor’kov method to solve the acoustic radiation. 
The following four conditions must be met when 
using Gor’kov solving ARF method: (1) an equiv-
alent spherical particle shape, (2) medium is a vis-
cous fluid, (3) the wavelength of the sound wave 
is much larger than the radius of the sphere, (4) 
does not consider the multiple scattering effects 
of sound waves on the surface of the object in the 
sound field. Based on these conditions, Gor’kov 
(Gor’Kov 1962) writes the force, F, in terms of a 
potential U, such that

The potential for a spherical particle of radius 
a , sound speed c

0
 , density �

0
 , and bulk modulus 

K
0
= ρ

0
(c2

0
− 4∕3c2

0
) in a fluid of density � , sound 

speed c, and bulk modulus K = ρc2 is given by

where p2 is the mean square pressure of the inci-
dent wave at the particle position and v2 is the mean-
squared velocity.

AS

AS is a kind of flow in the medium caused by the 
change of the spatial gradient of the sound field 
due to the viscous attenuation when the acoustic 
field propagates in the medium (Frommelt et  al. 
2008), and there are three types of AS (Wiklund 
et al. 2012).

(3-1)F = −∇U

(3-2)U = 2�a3�

{

p2

3�2c2

(

1 −
K

K
0

)

− v2

(

�
0
− �

)

2�
0
+ �

}
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Schlichting streaming and Rayleigh streaming: 
Schlichting streaming and Rayleigh streaming 
are the boundary layer-driven steaming caused 
by energy dissipation in the acoustic viscous 
boundary layer (Meng et  al. 2019; Boluriaan 
and Morris 2003). When the acoustic field 
propagates along with the solid–liquid inter-
face, the AS field is generated inside and out-
side the boundary layer due to the attenuation 
of the boundary layer viscosity (Nyborg 1958). 
This type of AS field can usually be observed in 
a cavity or channel, and the length of the solid 
boundary along the propagation direction of the 
acoustic field needs to be greater than a quarter 
wavelength. Suppose there is a standing wave 
acoustic field parallel to the solid surface in 
the cavity or channel. In that case, the viscous 
attenuation of the acoustic field in the bound-
ary layer will produce a stable acoustic flow 
field, and the sound pressure usually determines 
the flow direction of the acoustic flow field 
in the standing wave acoustic field. Moreover, 
the flow direction of the acoustic flow field is 
usually from sound pressure anti-nodes to pres-
sure nodes. Since the node and anti-node posi-
tions have been fixed in space, the boundary 

layer will generate a stable Schlichting stream-
ing field (Boluriaan and Morris 2003). Once 
the acoustic flow field in the boundary layer is 
generated, due to its strong flow, a vortex field 
with the opposite direction of rotation will be 
induced in the medium outside the bound-
ary layer, which is generally called Rayleigh 
streaming (Westervelt 1953).
Eckart streaming: Eckert streaming is the result 
of the acoustic energy being absorbed in the bulk 
of the fluid (Eckart 1948; Lighthill 1978). When 
the acoustic field propagates through the medium, 
a part of the energy of the acoustic field will be 
absorbed by the medium. The gradient change of 
the sound pressure in space will change the acous-
tic momentum flux, thereby forming a jet-like flow 
in the sound beam along the acoustic field propa-
gation direction. In a cavity or channel with a 
finite length, when the flow along the sound field 
propagation direction hits the cavity wall or chan-
nel wall, the direction of the streaming field will 
change, thereby forming a stable AS field in the 
cavity or channel.
Drag force: Streaming flow will induce the 
stokes’ drag force, which can dominate the sus-
pended particles around the streaming flow. At 

Fig. 1  a SSAW generated by two oppositely placed IDTs. c–f are the aggregation of the (I–IV) area in b respectively (reprinted with 
permission from (Shi et al. 2008))

J Nanopart Res (2022) 24: 81 81   Page 6 of 22



1 3
Vol.: (0123456789)

a low Reynolds number, the Stokes’ drag force 
acted on a particle can be calculated by an equa-
tion given below (Gao et al. 2020):

where � denotes the fluid viscosity, v is the relative 
velocity between the fluid and particles, and Rp is the 
radius of the particle.

Self-assembly of particles induced by SAW

SAWs are mechanical waves discovered by Lord 
Rayleigh in 1885 (Rayleigh et al. 1885). The most 
common SAW device is composed of a piezoelec-
tric substrate and an IDT printed on the surface 
of the piezoelectric substrate (Agostini and Cecchini  
2021). SAW has two substyles, that is, standing  
surface acoustic waves (SSAW) (Lei and Hu 2020; 
Meng et  al. 2012; Nam et  al. 2011) and traveling  
surface acoustic waves (TSAW) (Destgeer et  al.  
2014; Mohanty et  al. 2020; Franke et  al. 2009). In 
this review, we mainly introduce particle assembly by 
SSAW.

1D particle assembly

Acoustic tweezer technology has enabled the 
aggregation and separation of particles or cells 

(3-3)FD = −6��Rpv

within a microfluidic channel between a pair of 
oppositely placed IDTs. Considering that magnetic 
(Mccloskey et  al. 2003), hydrodynamic (Huang 
et al. 2004; Takagi et al. 2005), and dielectropho-
resis (Doh and Cho 2005; Pethig 2010) technolo-
gies in microfluidic systems have their disadvan-
tages in particle aggregation, Shi et  al. (Shi et  al. 
2008) introduced a new focusing technique, the 
SSAW focusing technique. They placed the micro-
fluidic channel between a pair of opposing IDTs 
and designed the channel width to cover only one 
pressure node, as shown in Fig.  1. As the parti-
cles pass through, they gather at the center of the 
channel under the action of ARF. The method has 
simple equipment and a fast aggregation rate and 
can be used for particles with different physical 
properties and sizes. On this basis, Shi et al. (Shi 
et al. 2009b) used a similar device to separate the 
particles. Particles with the same physical proper-
ties but different sizes are mixed and injected into 
the channel. Since the ARF acting on large par-
ticles is larger than that on small particles, large 
particles move toward the center of the channel, 
and tiny particles move toward both sides of the 
channel. In 2017, Wu et  al. (Wu et  al. 2017) suc-
cessfully applied acoustic tweezer technology to 
isolate exosomes from whole blood and achieved 
the separation of nano-scale exosomes from whole 
blood with a removal rate of over 99%, as shown 
in Fig. 2. In addition to the research on commonly 

Fig. 2  a Schematic of the acoustic fluid device used to separate exosomes. b Separation of microparticles and nanoparticles 
(reprinted with permission from (Wu et al. 2017))
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used interdigital transducers, Ding et  al. (Ding 
et  al. 2012a) used pairs of slanted-finger inter-
digital transducers (SFIT) to reconstruct parti-
cle patterns in microfluidic channels. They used 
the equipment shown in Fig.  3 to realize the 1D 
assembly of fluorescent polystyrene beads, prov-
ing that different kinds of IDTs could also achieve 
dynamic patterning of particles.

2D particle assembly

Two pairs of orthogonal placed IDTs generate 
the 2D SSAWS field. 1D SSAW field is used to 
focus and separate particles or cells; 2D SSAWS is 
mainly used to pattern particles or cells. The inter-
ference between the two counter-propagated trave-
ling surface acoustic waves produces a standing 

Fig. 3  1D dynamic pattern 
of fluorescent polystyrene 
beads induced by SSAW 
produced by two opposed 
SFITs (reprinted with per-
mission from (Ding et al. 
2012a))

Fig. 4  a The four-port acoustic wave device. b SAW off. c SAW on (reprinted with permission from (Wood et al. 2009))
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wave field on the substrate, and the particles dis-
persed in the liquid are taped in the node or the 
anti-node when the SSAW is turned ON, thereby 
realizing particle arrangement. Wood et al. (Wood 
et  al. 2009) demonstrated that the particles self-
assemble to form a 2D square array in the stand-
ing wave field generated by two pairs of orthog-
onally placed IDTs, as shown in Fig.  4c. When 
parameters, such as frequency and phase change, 
the shape of the pattern changes. Ding et al. (Ding 
et  al. 2012b) proposed a SAW-based acoustic 
manipulation method that can accurately control 
the movement of individual particles/cells/organ-
isms along a specified path in a 2D single-layer 
microfluidic channel. His team demonstrated the 
feasibility of 2D manipulation and arrangement of 
bovine red blood cells and C. elegans. The bovine 
red blood cells were arranged into different let-
ters by precisely tuning the input signal frequency 
(Fig.  5d). The viability and proliferation ability 
of cancer cells (HeLa cells) exposed to a high-
power (23 dBm) SAW field were found not sig-
nificantly influenced, confirming the biocompat-
ibility of the SAW technique. In their subsequent 
study, movement and stretching of the C. elegans 
were achieved by the SAW technique without 
causing physical damage. The researcher also 

demonstrated that although SAW acoustic tweezer 
cannot select a single particle from a cluster of 
particles, it can simultaneously operate a single 
particle at multiple pressure nodes.

3D particle assembly

3D particle manipulation has always been a diffi-
cult point in research. In 2011, Shi et al. (Shi et al. 
2011) found that although particles can move verti-
cally in a 1D SSAW field, the movement was not 
apparent due to the weak ARF in the vertical direc-
tion. In their following study, the team designed a 
new device to produce a 2D SSAW field, as shown 
in Fig. 6a (Guo et al. 2016). In the new device, the 
signal passes through two pairs of orthogonally 
placed IDTs to produce a 2D displacement field 
on the surface of the substrate (Redwood 1967). 
Figure 6 b shows that the acoustic wave propagat-
ing in the fluid medium is reflected by the cham-
ber wall and establishes a 3D, differential Gor’kov 
potential field (Gor’Kov 1962). The vibration of 
the substrate surface introduces acoustic flow in  
the vertical direction and generates a drag force to 
balance gravity. The simultaneous action of ARF 
and acoustic flow creates a 3D acoustic potential 
trap in the chamber to trap the particles, and the 

Fig. 5  a SSAW generated by two pairs of orthogonally placed 
IDTs. b Node location changes with frequency. c Polystyrene 
balls are assembled into the letters “PNAS” under the induc-

tion of the acoustic field. d Dynamically control the assembly 
of bovine red blood cells into the letters “PSU” (reprinted with 
permission from (Ding et al. 2012b))
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vertical movement can be controlled by chang- 
ing the input power. Figure  6 c and d show that 
cells and particles can be assembled into different 
patterns under the induction of 3D acoustic twee-
zers. In Fig. 6 d, at the node indicated by the blue 
circle, the particles can be assembled along the 
z-axis and can move along the y-axis. In another 

study, Nguyen et  al. (Nguyen et  al. 2018) studied 
the height range that particles can accurately move 
in the vertical direction and used a new method to 
enable the particles to move to a higher height, i.e., 
up to 1 mm. Recently, to achieve precise control of 
the particle position in three dimensions, Tan et al. 
(Tan et  al. 2020) developed a fluid closed-loop 

Fig. 6  a Configuration of the planar surface acoustic wave 
generators. b 3D acoustic field numerical simulation. c Under 
the induction of 3D acoustic tweezers, HeLa S3 cells assem-

ble into patterns of “3,” “D,” “A,” and “T.” d The particles are 
assembled into a stable array in a 3D field (reprinted with per-
mission from (Guo et al. 2016))
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Fig. 7  a Illustration of closed-loop control system operation. 
b–d The particles move according to the specified path. e A 
process in which particles move to the position of the target 

point. f–i Vertical movement of particles (reprinted with per-
mission from (Tan et al. 2020))
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Self‑assembly of particles induced by BAW

BAW has been applied to particle manipulation 
and exhibits some advantages, such as flexible 
placement of transducers and versatile settings 
(Gao et al. 2020). BAW is usually produced by the 
thickness or lateral vibration mode of piezoelec-
tric ceramic elements. By designing a microflu-
idic channel or fluid cavity, the particles in liquid 
can be manipulated by BAWs (Hawkes et al. 2002; 
Nilsson et  al. 2004). Compared with SAW-based 

Fig. 8  a A single PZT generates BAW to control particle 
aggregation in the microfluidic channel. b Particles with posi-
tive acoustic contrast factor are trapped at the pressure nodes; 
particles with negative are trapped at the anti-nodes. c, d Parti-

cles of different properties are separated when piezo on e sche-
matic of a printing device. f Aggregation under different volt-
ages. g Aggregation under different flow rates (reprinted with 
permission from (Collino et al. 2016))

control system that combines computer vision tech-
nology and SSAW to automatically manipulate 
surface acoustic wave devices’ relative phase and 
power. The combination of these two technologies 
realizes the visualization and precise manipula-
tion of particles in three dimensions. They dem-
onstrated the ability of particles to move vertically 
and can manipulate particles to move along rec-
tangular paths, as shown in Fig. 7f. Their research 
paved the way for the precise assemble of micro-
particles and particles in 3D dimensions.
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standing acoustic tweezers, BAW-based stand-
ing acoustic tweezers generally work at lower fre-
quencies and longer wavelengths and therefore can 
manipulate larger particles (Ivo et  al. 2015; Shu 
et al. 2018).

1D particle assembly

A typical 1D particle assembly uses bulk acous-
tic waves to manipulate particle aggregation and 
separation in the channel. A PZT can resonate 
in the microfluidic channel to generate BAWs. 
Devendran et  al. (Devendran et  al. 2014) created 
a system that uses BAWs to separate particles in 
a microfluidic channel; under the action of ARF 

and AS, 3-micron and 10-micron polystyrene par-
ticles can be separated into different locations and 
remain stable. Collins et  al. (Collino et  al. 2016) 
used microfluidic print nozzles to achieve the 
deposition of ordered two-phase materials. In their 
work, the author uses a single PZT to generate a 
standing wave field in the microchannel to gather 
particles, as shown in Fig. 8. Using this method to 
print microstructures can effectively reduce nozzle 
clogging. Similarly, Fornell et  al. 2018 success-
fully separated two kinds of spheres, polystyrene, 
and in-house synthesized polydimethylsiloxane 
(PDMS) with different acoustic contrast factors. 
The proposed method is conducive to the diver-
sification of microfluidic operations and paves 

Fig. 9  a Cells self-assembly process. b Experimental equip-
ment image. c Image of the directed assembly of particles 
with 1.14  MHz at 10 Vpp. d Width as a function of time for 

various applied voltages using neural cells (PC12). e Particles 
self-assembly process (reprinted with permission from (Cohen 
et al. 2020))
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the way for separating binary particles in fluid. 
In addition to using a single PZT to achieve 1D 
manipulation of particles in a microfluidic chan-
nel, the standing wave field generated by a pair of 
PZTs can also be used to manipulate particles in a 
polygonal cavity (Gesellchen et  al. 2014; Bernas-
sau et  al. 2013b). Andrade et  al. (Andrade et  al. 
2016) designed an octagonal device to separate 
particles with diameters of 6–45  μm. By stimu-
lating two opposing transducers, standing waves 
can be generated in the cavity to achieve particle 
aggregation at the nodes. Recently, Cohen et  al. 
(Cohen et  al. 2020) used a radial piezoelectric 
transducer with an inner diameter of 22  mm to 
make a concentric circle pattern by the self-assem-
bly of 2-μm polystyrene beads. In their study, the 
radial piezoelectric transducer generates BAWs in 
the cylindrical cavity, and the cells are assembled 
on the surface of PZT. The cells grow branches 
within a few days after the piezoelectric transducer 
is removed (Fig.  9a). This study laid a specific 
foundation for 2D particle patterning using BAW.

2D particle assembly

The 2D manipulation of particles can be achieved 
by relying on two pairs of orthogonally placed 
PZT, a single PZT, or using two pairs of orthog-
onal poles on one PZT. Haake et  al. used shear 
piezoelectric ceramic transducers to excite and 

perform 2D manipulation of particles (Haake 
and Dual 2005) and cells (Haake et  al. 2010) in 
the fluid layer between a glass plate and a passive 
reflector. Two pairs of vertically placed transduc-
ers are excited to generate a 2D displacement field 
and coupled to the fluid layer by vibration, driving 
particles to assemble into 2D patterns. A new 2D 
manipulation method was proposed by Oberti et al. 
(Oberti et al. 2007). Their team used a single actu-
ator to establish a field of BAWs in a fluid cham-
ber and changed the spacing between captured 
particles by tuning the excitation signal. In Fig. 10 
a, a 2D pressure field is generated by exciting the 
orthogonal electrodes on the surface of the PZT. In 
another article, Raeymaekers et  al. (Raeymaekers 
et al. 2011) presented the use of BAWs to achieve 
the patterning of nanoparticles for the first time. 
Two PZTs are placed adjacent to each other inside 
the rectangular cavity to generate 2D BAWs in the 
liquid chamber, enabling the patterning of parti-
cles with a 5-nm diameter by trapping them at the 
nodes. The above studies can be classified as 2D 
static manipulation of particles. Tian et  al. (Tian 
et  al. 2016) demonstrated that water-rich droplets 
in the aqueous phase can assemble into tightly 
stacked crystals. This assembly resulted from 
the BAW-induced spontaneous formation of 2D 
arrays, enabling reversible dynamic changes of the 
arrays (Figs. 11 and 12). This research provides a 
new way to design and construct “water-in-water” 

Fig. 10  a BAW generated by a single PZT. b 2D array formation process. c Dynamic manipulation to achieve continuous changes of 
spherical and non-spherical droplets (reprinted with permission from (Oberti et al. 2007))
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micro-droplet arrays with controllable spatial 
organization and high-order collective behavior. 
Recently, Hou et al. (Hou et al. 2020) proposed the 
use of parametric bulk acoustic waves to achieve 
deformable dynamic patterning of multiple parti-
cles. By changing the input frequency and phase, 
the rotation and deformable oscillation of the 
nodal line segment can be realized. This research 
is conducive to the development of multi-particle 
dynamic self-assembly.

3D particle assembly

In recent years, the particle manipulation of 3D 
fields has increasingly attracted the interest of 
researchers. Greenhall et  al. (Greenhall et  al. 
2016) derived a 2D solution to the inverse problem 

and proved the 2D ultrasound-guided self-assem-
bly of nanoparticles with user-specified patterns 
in a square liquid chamber. Prisbrey et  al. (Pris-
brey et  al. 2017) then expanded this solution to 
prove the ultrasonic guided self-assembly of 3D 
user-specified particle patterns in fluid media. In 
the same year, Doruk et  al. (Doruk et  al. 2017) 
reported a new method of combining hexagonal 
acoustic tweezers and a 3D lithography machine 
for particle assembly in the 3D printing process to 
manufacture conductive 3D microstructures and 
embedded electronic components, as shown in 
Figs.  13 and 14. This acoustic induction method 
allows better control over particle distribution and 
orientation, but attention should be paid to pat-
tern design to minimize unwanted inductance. BAWs 
have been used in bioengineering to fabricate and 

Fig. 11  a BAW generated by two pairs of orthogonally placed PZTs. b 2D array of spherical droplets. c 2D array of non-spherical 
droplets. d, e 2D array reversible dynamic transformation (reprinted with permission from (Tian et al. 2016))

J Nanopart Res (2022) 24: 81 Page 15 of 22    81



 

1 3
Vol:. (1234567890)

assemble living tissues and organs (Ouyang et  al. 
2020; Olofsson et  al. 2018; Reversible Design of 
Dynamic Assemblies at Small Scales 2020; Guex 
et  al. 2021). For example, to address some chal-
lenges in brain bioengineering, such as the ran- 
dom distribution of neurons cannot fully represent 
the microenvironment of the brain and the opera-
tional complexity of the in  vitro 3D bioengineer- 
ing, Bouyer et  al. (Bouyer et  al. 2016) presented a 
bio-acoustic suspension assembly method to engi-
neer a multilayer, 3D brain-like structure. Acoustic 
radiation acts on neuro-progenitors derived from 
human embryonic stem cells, and the neuro-pro-
genitor cells are then differentiated and extended 
into a 3D neuronal construct. This method pro- 
motes the research of 3D microstructure recon- 
struction of native tissues.

Conclusions and perspectives

As summarized in this review, SAW-based stand-
ing wave acoustic tweezers have shown powerful 
capabilities in microfluidic applications, especially 
in life sciences, whereas BAW-based standing wave 
acoustic tweezers can handle high-flux fluids and are 
more suitable for 3D printing and structural assembly 
of new materials. Although acoustic tweezers have 
achieved substantial development, some issues still 
need to be addressed to promote their applications. 
For SAW-based standing wave acoustic tweezers, the 
use of other piezoelectric substrates, such as polyvi-
nylidene fluoride (PVDF) flexible films for the devel-
opment of wearable devices, facilitates the expansion 
of this acoustic tweezer technology into the field of 
flexible sensors. For BAW-based standing wave 

Fig. 12  a BAW generated by activating a pair of PZTs placed in parallel. b Node lines assembled by activating a pair of PZTs placed 
in parallel. c, d 2D array in different phases (reprinted with permission from (Hou et al. 2020))
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acoustic tweezers, the accuracy of particle manipu-
lation and the diversity of assembly patterns need to 
be improved. To increase the popularization of stand-
ing wave acoustic tweezers technology in the future, 
measures such as further miniaturization of equip-
ment, improvement of equipment integration, and 
cost reduction need to be further promoted.
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