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Abstract In recent years, nickel nanoparticles (Ni NPs)
have attracted a growing attention from the scientific
research community, because they are inexpensive, eco-
friendly, facile to prepare, and they could be used in a
panoply of applications, ranging from catalysis to sen-
sors and from fuel cells to photoelectrochemical de-
vices. This review article recapitulates different synthe-
sis methods which have been used to prepare unsup-
ported and silica-supported Ni NPs and their utilisation
as nanocatalysts in heterogeneous catalysis and
photocatalysis. Firstly, various widely used techniques
to synthesize unsupported Ni NPs have been briefly
discussed. This includes ball milling, mechanochemical
synthesis, laser ablation, and ion sputtering as top–down
methods, and physical vapour deposition, chemical va-
pour deposition, sol–gel method, chemical precipitation,
chemica l reduc t ion , hydro thermal method,
solvothermal, spray pyrolysis, and biological techniques
as bottom–up methods. Subsequently, the widely ap-
plied methods to incorporate Ni NPs in different types of
silica (e.g. SBA-15, MCM-41, MCM-48, TUD-1) are
briefly reviewed including impregnation, precipitation,
and colloid methods. Finally, recent applications of both
unsupported and supported Ni NPs in heterogeneous
catalysis and photocatalysis have been discussed, with
brief investigation of the effect of Ni NP size and ag-
gregation on their catalytic activity and reusability.
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Introduction

Catalysis is a fundamental process for many chemical
protocols. A catalyst is mostly required to increase the
rate of a chemical reaction in modern organic synthesis
and to produce chemicals and materials at milder con-
ditions (Sheldon and Dakka 1994; Sachdeva et al. 2013;
Clark and Macquarrie 1998). In the last 10 years, re-
search has become more intense on developing new and
effective catalytic systems.

Catalysis has been applied in different areas includ-
ing bio-, electro-, heterogeneous-, and homogeneous
catalysis. Catalysts applied in electrochemical reactions
are labelled electrocatalysts (e.g. fuel cells). Natural
catalysts, involving cells or enzymes, are themed
biocatalysts.

The terms heterogeneous and homogeneous cataly-
ses are used if the catalyst and reactant (s) are in different
phases (e.g. solid/liquid, solid/gas) or same (e.g. liquid/
liquid), respectively. When performing heterogeneous
catalysis, two reaction set-ups can be employed: contin-
uous flow or batch methods. The present review focuses
on heterogeneous catalysis, in which the catalyst is
present in the solid phase, and the reactants are in the
liquid or gas phase.
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The heterogeneous catalysis contributes to a sustain-
able future because it has many economic and environ-
mental benefits. It enables large-scale and faster produc-
tion compared to homogeneous catalysis, and usually,
the catalyst is easily separable and recyclable (Sachdeva
et al. 2013; Liu and Corma 2018).

The development in the area of heterogeneous catal-
ysis over the last 30 years has mainly focused on engi-
neering catalysts in nanoscale, as well as developing
new effective and practical preparation methods. A par-
ticular interest has been devoted to metal nanoparticles
(NPs) due to their favourable properties, including (i)
high available surface area per mass unit, (ii) different
fraction of the types of available active sites, (iii) the
surface energy can be altered by the ultra-fine NPs, and
(iv) reduction of metal NP load is required.

The important characteristics governing the catalytic
activity of the metal NPs include particles size, structure,
and shape. To disperse and stabilize the metal NPs, and
to avoid their aggregation and deactivation, they are
often incorporated into a solid matrix, and so the inter-
action between metal NPs and support is an additional
factor to consider.

Transition metal oxides are a large class of materials
that has been widely investigated due to their important
electronic, magnetic, and catalytic properties (Kung
1989; Henrich and Cox 1996; Noguera 1996; Salem
2003). In recent years, transition metal nanoparticles

Fig. 1 The fraction of atoms located on surface, corner or edge
sites as a function of particle diameter (Lin et al. 2004)

Fig. 2 Atomic arrangements of
low index with highly
coordinated atoms (e.g. (100),
(110), (111)) and high index with
lowly coordinated atoms (e.g.
(557), (730)) (Demello 2006)
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(TMNs) have attracted much attention in many techno-
logical and scientific fields, including heterogeneous
catalysis (Ornelas et al. 2005; Astruc 2007). Many pub-
lications reported the utilisation of TMNs as catalysts
for different important reactions (Zhong et al. 2007;
Moreno-Manas and Pleixats 2003; Li et al. 2002). They
have exhibited a high performance in terms of conver-
sion, selectivity, and yields of products. In fact, the high
surface/volume ratio of NPs affords a greater number of
active sites per unit area compared to their bulky coun-
terparts. In addition, TMNs have attracted a consider-
able interest in catalysis because usually, they are effi-
cient catalysts, inexpensive, eco-friendly, and easy to
prepare (Astruc (Ed.) (2008); Djakovitch et al. 2007;
Durand et al. 2008). To extend the application of TMNs
as nanocatalysts, many efforts have been devoted to
tailor their nanostructure and minimize their size to
ultrafine NPs and hence their surface chemistry (Yang
et al. 2017; Astruc 2020).

One of the most promising TMNs is nickel. Due to its
relative abundance, Ni is more cost-effective than most
of the metals in use as a catalyst (Bian et al. 2017).
Numerous research efforts have been recently devoted

Bulk particles

Nanoparticles

Atoms and Molecules

Top down methods

Bottom up methods

Particles size: 1-100 nm

Size: 0.1-1 nm

Particles size: few mm-to few nm

Fig. 3 An overview of top–down and bottom–up methods to
prepare nickel nanoparticles

Table 1 Top–down methods used to prepare nickel nanoparticles

Method Advantages Disadvantages

Ball milling (Balamurugan et al. 2015;
Ahmadisoltansaraei and Moghaddam
2014)

- Useful for large production - Preparation of
NPs with high purity

- Requires high energy and long time -
Contamination is possible by steel balls

Mechanochemical synthesis (Fiss et al.
2020; Tang et al. 2014)

- Simple and efficient technique - The formed microstructures are highly
sensitive to grinding conditions -
Contamination by milling media and
atmosphere - Long time is required to
synthesis very small NPs (size less than
20 nm)

Laser ablation (Gondal et al. 2012;
Khashan et al. 2017; Mahdi et al.
2020; Safa et al. 2019)

-Simple and useful for large production of small
nickel NPs in the form of suspension -
Properties of NPs can be changed by
changing laser parameters and liquid nature
accordingly - No surfactant is needed in
liquid media

-Prolonged time can lead to the blockage of the
laser path by the formed NPs and reduction
of ablation rate

Ion sputtering (Karpinski et al. 2012; Li
et al. 2017; Salunkhe and AV, M. A.,
& Kekuda, D. 2020; Peng et al. 2010)

- Economical technique - No change in the
composition of sputtered material compared
to the targeted NPs - Suitable method for
intermetallic compounds and refractory
metals - Generates less impurity -
Composition of alloy NPs can be easily
controlled compared to other chemical
methods - Appropriate for the preparation of
ionic NPs with a large range of size and
compositions

- The nature of sputtering gas (Ar, He, Ne, Xe,
and Kr) can affect the morphology, texture,
and composition of the obtained
nanocrystalline nickel oxide films
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Table 2 Bottom–up methods used to prepare nickel nanoparticles

Method Advantages Disadvantages

Solid-state
methods

Physical vapour deposition (Lin
et al. 2017)

- Simple technique for the synthesis of thin films - Expensive technique -
Produces a low quantity of
material - For the
implementation of this
method at industrial level,
high throughput with
lower cost is necessary

Chemical vapour deposition
(Moravec et al. 2011; Napari et al.
2020)

- NP properties can be controlled, such as crystal
structure and surface morphology - High film
durability can be obtained - Easy to scale-up

- Corrosive, toxic, and
explosive gases -
Deposition of
multicomponent material
is difficult

Liquid-state
synthesis
methods

Sol–gel method (Pooyandeh et al.
2020; Shamim et al. 2019;
Zorkipli et al. 2016)

- Simple technique - NP size and morphology can be
controlled by monitoring reaction parameters

-

Chemical precipitation (Abboud
et al. 2020; Ebin 2018; Mahaleh
and Y., Sadrnezhaad, S. K., &
Hosseini, D. 2008)

- Simple and efficient approach to prepare metal NPs -
Abundant bases can be used as precipitation agents
(e.g. NaOH, NH4OH) - Hydrothermal treatment can
be used to accelerate the precipitation - High purity
NPs can be obtained - Particle shape and size can be
controlled using different complexation and
protection agents, respectively

-

Chemical reduction (Ebin 2018;
El-Kemary et al. 2013)

- Simple technique - Abundant reducing agents can be
used such as NaBH4, ethylene glycol, glucose,
ethanol, urea, hydrazine hydrate, citrate of sodium

- Reducing agents are usually
toxic and contain
impurities

Hydrothermal method (Cao et al.
2020; Zhou et al. 2018; Ahire
et al. 2012)

- Produces NPs with suitable size and shape, and high
crystallinity

- Limitation of
reproducibility and
reliability

Solvothermal (Gu et al. 2019; Beach
et al. 2009)

- Produces monodispersed NPs with high crystallinity -
Appropriate technique to prepare NPs with narrow
size distribution using simple heating apparatus

-

Gas-phase
methods

Spray pyrolysis (Ukoba et al. 2018;
Desai 2016)

- Relatively simple technique - Inexpensive method -
Reproducible - NP size is controllable

-

Flame pyrolysis (Dillon et al. 2013;
Seo et al. 2003)

- Promising method for the production of Ni NPs -
Efficient for less volatile nickel precursors

-

Biological
methods

Using fungi proteins (Salvadori et al.
2015; Yang et al. 2014)

- Easy to scale up - Economical flexibility - Large
surface area

- Safety problem - NPs
formed are of different
sizes

Using plant and plant products
(Habtemariam and Oumer 2020;
Sabouri et al. 2019; Helan et al.
2016; Ramalingam et al. 2019)

- No pathogenicity risk as that of bacteria and fungi
methods - Formation of homogenous NPs

- Heating is required which
increases the NP
production cost

Other
methods

Electrochemical deposition (Zhang
et al. 2013; Moghaddam et al.
2008)

- Fast, simple and low-cost method - Produces NPs of
controlled size and morphology

- NPs attach directly to the substrate
Microwave-assisted method

(Azhagu Raj et al. 2017; Jena and
Shivashankar 2008; Nadagouda et
al. 2011)

- Simple, rapid, and highly effective technique -
Homogeneous heating

- Short crystallisation time

Ultrasound technique (Vargas et al.
2016)

- Eco-friendly, easy, and fast method - Useful for less
volatile materials - Different forms of NPs can be
synthesized by changing reaction conditions

- The sonochemical
reduction rate completely
depends on the ultrasound
frequency
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to the preparation of nickel nanoparticles (Ni NPs) with
tailored features, because of their unique electronic,
optical, and mechanical properties and their widespread
potential applications in many fields including catalysis,
nanoelectronics, optoelectronics, adsorption of dyes
from industrial water, development of supercapacitors,
fabrication of dye-sensitized solar cells, and sensors and
biomedical applications (Jaji et al. 2020; Vollath and
Szabó 2009; Schubert and Hüsing 2019; Ozin et al.

2009a; Lai et al. 2006, 2008; Christoskova and
Stoyanova 2001; Ashik et al. 2017; Guo et al. 2011;
Solsona et al. 2016; Vikraman and Park 2016; Sasaki
et al. 2018; Gao et al. 2012; El-Safty et al. 2008; Adil
et al. 2017; Arora et al. 2017; Pike et al. 2017; Chand
and Sandhu 2015; Sun et al. 2016). Due to their unique
magnetic, chemical, and physical properties, we believe
that Ni NPs will gain more attention in future in various
technological fields such as nanocatalysis, battery

Ni(CH3CO2)2.4H2O (s) Ni2+ (aq) + 2CH3CO2
- (aq)

2NH4OH (aq) 2NH4
+ (aq) + 2OH- (aq)

Ni2+ (aq) + 2OH- (aq) + xH2O Ni(OH)2. xH2O (s)

Ni(OH)2. xH2O (s)
stir

Ni(OH)2. xH2O Sol

Ni(OH)2. xH2O Sol 100 °C, 16h Ni(OH)2 green powder + xH2O
autoclave

500, 5hNi(OH)2 green powder NiO black powder (1)

-H2O

Fig. 4 Principal steps involved in
this the synthesis of flower-like
NiO NPs

Fig. 5 SEM images of the
flower-like NiO microspheres
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manufacture, dye-sensitized solar cells, enhanced pseu-
do-capacitance, and drug delivery.

Recently, Ni NP–based heterogeneous nanocatalysts
have been employed for various organic transformations
such as hydrogenation reaction of aromatics (Grosso
et al. 2004), production of synthesis gas (Zou et al.
2005), steam reforming (Ying et al. 1999), methanation
(Jia et al. 2003), isomerisation of hydrocarbons (Basha
et al. 2006), and hydrocracking (Moreno-Tost et al.
2002) (Polshettiwar et al. 2009; Kalbasi and
Mosaddegh 2011; Alonso et al. 2011). Ni NPs are
considered as promising nanocatalysts because they
are eco-friendly, nonexpansive, easy to prepare, and
easily recoverable and recyclable.

Ni NPs have been also employed in photocatalysis.
Nickel oxide is one of the promising intrinsic p-type
transparent electrically conducting oxides (TCOs) that
exhibit several interesting features such as wide band
gap (3.5 to 4 eV), excellent durability, chemical stabil-
ity, and large span optical density (Sriram et al. 2016).

Despite the importance of Ni NPs as efficient eco-
nomic and eco-friendly nanocatalysts, characteristics
such as optical and catalytic activity may be lost if the
dispersion of these particles is not adequately modulat-
ed. Several efforts have been deployed to overcome
their aggregation problem, low durability, low
dispersibility, and electrons and holes recombination
by incorporating them into a solid matrix, like mesopo-
rous silica, zeolites, carbon, metal oxides, or polymers
(Kumar et al. 2016; Wang et al. 2017; Jin et al. 2009;
Martín-Jimeno et al. 2021).

Throughout this review, we will discuss the most
common techniques used to prepare unsupported and
silica-supported Ni NPs and their recent applications in
heterogeneous catalysis, including photocatalysis. The
effect of Ni NP size and aggregation on the catalytic
activity of the reported catalysts will be briefly studied.

Designing metal nanoparticles

Effect of nanoparticle size and shape

Increasing the number of active sites in a surface unit of
a metal by increasing the surface area per gram of the
catalyst, by reducing the metal particles size, not only
minimizes the cost of catalyst preparation but also re-
duces the associated side effects on the environment and
public health of the catalytic process. It has been found
that the reduced particle size has also a higher fraction of
corner and edge sites as shown in Fig. 1 (Martín-Jimeno
et al. 2021), which can affect the binding properties of
reactants on the catalyst. Some reports mentioned that
the catalysis occurs especially on isolated active sites,
and thus, decreasing the NP size is recommended. This
behaviour was observed for the oxidation reaction of

Fig. 6 XRD pattern of the NiO NPs obtained with CTAB

Fig. 7 TEM images of the
obtained NiO nanoflakes. Red
cycles in panel A show uniform
and highly ordered channels
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CO over Au NPs, in which the catalysis occurred in the
isolated active sites located in corners and edges, where
the Au atoms were lowly coordinated, and were able to
bind both CO and oxygen (Lin et al. 2004). Conversely,
Giordano et al. (Tsunoyama et al. 2008) reported that the
oxygen reduction reaction (ORR) catalysed by Pt NPs
preferably occurred in the active sites located in the
planes, where each O2 molecule was bound on two
adjacent Pt atoms. This could lead to a mass normalized
catalytic activity. The smallest NPs contain a low and
isolated number of active sites, and the larger NPs have
small surface area. Therefore, a compromised size

distribution could afford the highest mass normalized
catalytic activity.

Particles shape is another important parameter which
can affect the active sites distribution in the catalyst NPs.
Controlling the metal NP shape is an ongoing challenge.
However, using colloidal methods, this aim has been
relatively achieved (Glasnov 2013; Rogers 2017). The
obtainedmetal NP shapes are a result of the arrangement
of different crystal planes (facets). NP shape could have
a direct effect on reactants adsorption/desorption prop-
erties, reactant binding, and metal/support interactions.
During the catalyst synthesis, different possible facet
arrangements could be formed. But, typically, low index
facets, such as (100), (110), and (111), are predominant,
because these facet arrangements are characterized by
low energy and high atomic coordination (Fig. 2). How-
ever, if the active species are located in corners and
edges, it is preferable to prepare facet arrangements with
high indexes (e.g. (557), (730), Fig. 2) (Baumgard et al.
2013).

The metal/support contact surface area and the num-
ber of active sites in the periphery depend on the shape
of metal NPs. As mentioned above, the CO oxidation
reaction over Au NPs preferentially occurred in the
periphery active sites, and the catalytic performance
was shape dependent (Woehl et al. 2012).

Support effect

The physical and chemical stability, good reusability,
and high turnover numbers are important factors

Fig. 8 Transformation of
cyclohexene to cyclohexene
oxide over flower-like NiO NPs
(Abboud 2020)

Fig. 9 The calculated conversion of the cyclohexene oxidation
reaction at different blank reactions. 10 mg of NiO catalyst,
0.06 mL of cyclohexene, 156 mg of m-CPBA (1.5 equivalent),
3 mL of solvent: CH3CN/CH2Cl2 (1:1 v/v), T = 22 °C, 1 atm
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defining an efficient catalyst. To overcome metal NP
deactivation due to the aggregation, low durability and
dispersibility, electron–hole recombination, and degra-
dation, metal NPs have been incorporated and
immobilized into a support. However, the support can
also affect the catalyst activity and performance either
by (1) changing the shape and structure of NPs, (2)
redox transforming the metal ions which have two or
more redox states (e.g. MnO2, Fe2O3, and CeO2), and
(3) support-metal NP charge transferring (Bönnemann
and Richards 2001).

The choice of the type of support is usually governed
by the application. Carbon is often used as a support for
fuel cell owing to its high conductivity (Polte et al.

2010a), and titanium dioxide (TiO2) has been widely
used as a support in photocatalysis as it is a semicon-
ductor characterized by an appropriate band gap
(McKenzie et al. 2010), whereas silica (Polshettiwar
et al. 2010), alumina, and other transition metal oxides
(Gniewek et al. 2008) have demonstrated to be very
appropriate supports for various applications, even for
nanocatalysts, due to their high thermal and chemical
stabilities and high surface areas (Polte et al. 2010b,
2010c). Mesoporous silica materials have attracted con-
siderable interest as suitable catalyst matrices due to
their unique features. These characteristics include high
surface area; tunable pore size; uniform pore distribu-
tion; high adsorption capacity; high thermal, chemical,
and mechanical stabilities; and highly ordered pore net-
work which facilitate the diffusion of reagents and
products.

Synthesis methods of nickel nanoparticles

Unsupported nickel nanoparticles

Several methods have been used to prepare nickel NPs
which can be classified into two principal categories:
top–down methods and bottom–up methods (Pacioni
et al. 2015; Swathy 2014; Horikoshi et al. 2013;
Ahmed et al. 2016; Jamkhande et al. 2019). The top–
down methods reduce the size of bulk material particles
to NPs, whereas the bottom–up methods prepare NPs
from atoms or molecules, using different mechanical,
physical, and chemical techniques (Fig. 3) (Pacioni et al.
2015; Jamkhande et al. 2019).

Fig. 10 Epoxidation reaction of
styrene oxide over flower-like
NiO NPs
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Fig. 11 The obtained conversion and selectivity of epoxidation of
styrene catalysed by FL-NiO compared to BulkNiO and blank
reactions. Conditions: catalyst: 10 mg, styrene: 0.06 mL,m-CPBA
(1.5 eq): 156 mg, solvent: 3 mL of CH3CN/CH2Cl2 (1:1 v/v),
time: < 1 min, T = 22 °C, 1 atm
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Top–down methods

Using these methods, bulk particles are reduced to NPs
using different physical and chemical techniques such as
mechanical milling, laser ablation, and thermal method
(Meyers et al. 2006). Even though these methods are
relatively easy to curry out, they are not suitable for
synthesising NPs with determined shape and very small
size. In addition, the top–down techniques can affect the
physicochemical and surface of the obtained NPs

(Ahmed et al. 2016). Table 1 recapitulates the most used
techniques in top–down methods with their advantages
and disadvantages.

Bottom–up methods

The synthesis of Ni NPs using these methods is based on
joining of atoms or small molecules. Table 2 recapitu-
lates the most used techniques in this category with their
advantages and disadvantages.

(a)

R1 = H, PhCH2 or Me; R2 = H, Br, or; NO2

Yield = 80-98 % 

(b)

R1 = H or Me; R2 = H; R3 = H, Br, NO2 or OMe

Yield = 60-98 %

Fig. 12 Synthesis of 2,2′-
di(indolyl)oxindole (a) and 3,3′-
di(indolyl)oxindole (b)
derivatives. Reaction conditions:
isatin compounds (1 mmol),
indole compounds (2 mmol),
nano-NiO (0.004 g) and water
(2 mL) at 70 °C. The yield refers
to pure isolated product

(a)

R1 = H or Me; R2 = H, Et, or PhCH2; R3 = H, Cl, Br, Me, OMe or NO2

Yield = 70-98 %

(b)

R1 = H, Me, Et, PhCH2; R2 = H, Cl, Br, Me, OMe, NO2

Yield = 75-98 %

Fig. 13 Preparation of oxindole
(a) and indoline (b) derivatives.
Reaction conditions: dicarbonyl
compounds (1 mmol), isatins
(1 mmol), malononitrile
(1 mmol), catalyst (0.0007 g), and
H2O (2 mL); reactions conducted
at r.t. for 5 min
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Preparation of silica-supported nickel nanoparticles

Usually, silica-supported Ni NP-based catalysts are syn-
thesized by introducing nickel precursors into the silica
followed by calcination. The dispersion degree of nickel
precursor in the silica before calcination will affect the
particle size, degree of dispersion, and aggregation of

the obtained Ni NPs and will then affect the catalytic
activity of the final nanocatalyst (Ashik et al. 2017).
Generally, metal NP species would exhibit higher cata-
lytic activity and stability if the active sites are consid-
erable, quant ized, confined, and accessible
(Alshammari and Kalevaru 2016).

In the past decade, several techniques have been
developed for the preparation of silica materials

Fig. 14 XRD pattern of NiO
nanoparticle

Fig. 15 (a) TEM pattern of NiO nanoparticle and (b) particle size distribution of NiO nanoparticle

O
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Ni(0)

Fig. 16 Hot injection synthesis of monodispersed NPs
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supported Ni NPs. Among these techniques, the impreg-
na t i on , i on exchange , so l–ge l t e chn ique ,
microemulsion, co-precipitation, direct incorporation,
and deposition of nickel precursors into the silica mate-
rials are the most commonly used methods (Solsona
et al. 2016; Sasaki et al. 2018; Barhoum et al. 2017;
Badari et al. 2015; Rudko et al. 2015; Ashik and Daud
2015). However, the use of these approaches is still
limited by the NP size and aggregation, low dispersion,
level of the incorporated Ni NPs into porous silica
matrices, and the complicated, expensive, and time-
consuming techniques.

The synthesis of Ni NPs with quantized size and high
dispersion tended to be difficult. The study of the

catalytic activity of Ni NPs with quantized size was
relatively scarce compared with other transition metal
NPs.

In recent years, some traditional impregnation tech-
niques and approaches have been developed to prepare
highly active and well-dispersed supported nickel cata-
lysts, such as using organic nickel precursor (Corma
1997), direct dispersion (Vadia et al. 2013), aqueous
metal complexes (Ashik et al. 2017; Look and Claflin
2004), and surface modification (Ashik et al. 2017;
Look and Claflin 2004). Despite this, the application
of these techniques is still limited by the aggregation of
Ni NPs, low dispersion, complicated preparation, and
expensive metal precursors.

In addition, the carrier of the catalyst is another key
factor for obtaining high catalytic activities. Mesopo-
rous silica, as an important carrier, is well-known for its
high surface area, high porosity, and oriented channels,
which are ideal characteristics to enhance the catalyst
activity (Kumar et al. 2016; Look and Claflin 2004;
Rioux 2010; Rodríguez and Garcia 2007). Furthermore,
due to the narrow size distribution of mesoporous silica
channels, the growth of the metal particles would be
well confined in these channels, and thus, quantized
active sites would be produced (Wang et al. 2017;
Penner 2014; Finiels et al. 2014). However, practical
methods are still necessary to control the migration of Ni
NPs from silica pores and channels and their aggrega-
tion, hence their deactivation. In addition, more efforts
are still needed to control the dimension, geometry, and
regularity of the silica channels and pores in a systematic
and efficient methodology during the incorporation of
these NPs into nanostructured mesoporous silica. Be-
cause if the interaction between metal particles and
support is weak, metal species will migrate out of the
silica pores and aggregate into bulk particles during the
calcination step or during the catalysis process
(Schubert and Hüsing 2005). Therefore, the force of
the interaction between nickel and silica or the confine-
ment of Ni NPs is necessary to stabilize the nickel
species and to prevent their migration and aggregation
during the calcining process (Lai et al. 2008; Ozin et al.
2009b).

Classical routes commonly used to date to prepare
silica-supported Ni NPs with tailored properties are
based on precipitation and impregnation techniques.
Many efforts have been made to develop the colloidal
methods to be able to tune the nickel-based catalyst
properties, especially using sol immobilisation. The

Table 3 Synthetic conditions and resulting size of Ni NPs

Samples OAma (x) [eq.] TOPb (y) [eq.] Sizec,d [nm]

Ni_2.5×1.5y 2.5 1.5 1.3/8.0±1.4

Ni_5×1.5y 5 1.5 4.0/7.0±1.3

Ni_10×1.5y 10 1.5 5.6/10.6±1.9

a Total number of equivalents of oleylamine (OAm) and 1-
octadecene (21) kept constant by varying the amount of solvent
b Trioctylphosphine
c Determined by XRD
dDetermined by HAADF-STEM

Fig. 17 XRD pattern of Ni nanoparticles
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Fig. 18 (a) and (b) are HR-
HAADF-STEM images of Ni_5
× 1.5y. The arrow indicates the
twinned lamellae of the NPs in (a)
and smaller Ni NPs embedded in
the organic shell in (b); (c) and (d)
are HR-HAADF-STEM images
of Ni_10 × 1.5y. In (c), the arrow
indicates the fivefold axis of a
multiply twinned decahedron. In
(d), the arrow indicates the Ni
atoms of smaller NPs embedded
in the organic shell

Fig. 19 (a) STEM images of Ni_2.5 × 1.5y. LM BF-STEM (LM, lowmagnification; BF, bright field), (b) corresponding HAADF-STEM,
(c) HR BF-STEM of a Ni NPs, (d) corresponding HAADF-STEM

OCH3

O O

H2

Nickel catalyst

OCH3
H

OH O

H3C
OCH3

H3C

OH O

H
+

1 2 3

Fig. 20 Hydrogenation of methyl acetoacetate (1) and formation of two enantiomers, (R)- and (S)-methyl-3-hydroxybutyrate (2 and 3,
respectively)
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general procedures and advantages, as well as some
drawbacks of these three principal methods, will be
now discussed.

Impregnation method

Impregnation is a very commonly used procedure to
synthesize nickel NPs with different sizes. This method

involves ‘wetting’ the catalyst support (here silica) with
a solution of the nickel precursor, which is commonly a
nickel salt. If the nickel precursor is dissolved into a
volume of solvent equal to the silica total pore volume, a
thick-paste like material is obtained; this point is called
‘incipient wetness point’. This technique is named as
incipient wetness impregnation (IWI) (Frey and
Hinrichsen 2012; He et al. 2015; Nakagawa et al.
2012). Then, the final material is obtained after the
evaporation of the solvent followed by a calcination
process, to transform the nickel precursor to nickel
oxide NPs (NiO). The final material can be transformed
to reduced form (Ni NPs), if required.

However, controlling the size and dispersion of NiO
NPs using this method is still challenging. The size of
the obtained NiO NPs can be affected by four principal
factors: the silica surface area, nickel loading, solvent
nature, and annealing conditions. A high surface area of
the silica and low nickel loading promote the formation
of smaller NiO NPs with high dispersion (Yao et al.
2010). In addition, high thermal treatment is required to
remove chlorine residues, (Zhao et al. 2020) which
thereafter could lead to particles agglomeration, in

Table 4 Catalytic performance of Ni NPs in hydrogenation of
methyl acetoacetate

Samples Tot. MAAa

conv. [%]c
Inst. (R)-MHBb

selec. [%]d
Final ee [%]e

Ni_5×1.5y 69 48 −3
Ni_2.5×1.5y 36 48 −3
Ni_10×1.5y 74 46 −4

aMethyl acetoacetate
bMethyl-3-hydroxybutyrate
c Conversion after 22 h of reaction
dUnless otherwise stated, selectivity at the same value (50%) of
total MAA conversion
e Positive values indicate (R)-selectivity, negative (S)-selectivity

Fig. 21 SEM pictures of NiO
microspheres prepared without
CTAB
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particular in case of high nickel loading (Spagnolo et al.
2016).

Precipitation methods

The co-precipitation is the most commonly usedmethod
for the preparation of mixed metal oxides NPs. This
method is based on a simultaneous precipitation of both
metal and support precursors, in an alkaline media, such
as aqueous solutions of NaCO3 or K2CO3. Generally,
the co-precipitation process provides strong metal/
support interactions.

The deposition–precipitation (DP) method is similar
to co-precipitation. However, DP technique involves a
controlled precipitation of highly soluble metal precur-
sor (e.g. nickel nitrate or acetate) inside the silica. The
precipitation of the metal precursor can be achieved
either by changing the solution pH or the concentration
of a complexation agent or by adding a precipitation or
reducing agent (Bianchi et al. 2005). Two main factors
have to be ensured to avoid a spontaneous precipitation
of the metal precursor in solution, namely strong metal–
support interaction and appropriate metal precursor con-
centration. In general, the silica surface acts as a

nucleation agent for the precipitation of the metal pre-
cursor. The desired catalyst is obtained after subsequent
calcination steps (Patil et al. 2012).

Colloidal methods

Colloidal methods are three-dimensional syntheses
which use stabilising agents (protective agent) to pre-
vent the metal NP aggregation via electrostatic repulsion
or steric inhibition. Different molecules can play the role
of stabilising agent, including surfactants, polymers, and
donor ligands.

These methods involve many steps: (i) prepara-
tion of a colloidal metal by dissolving the required
metal precursor (commonly a salt) in a suitable sol-
vent using a surfactant as protective agent (e.g.
cetyltrimethylammonium bromide (CTAB)), (ii) de-
position of the metal colloids into the selected sup-
port, and (iii) chemical reduction of the metal salt to
zero valent mixture metal (Mehrabadi et al. 2017).
Metal colloids can be carried out either in organic or
aqueous medium, depending on the nature of the
surfactant used.

Fig. 22 SEM pictures of NiO
microspheres prepared with
CTAB
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This method can produce very small nickel NP sizes.
The surfactant can be removed either by solvent extrac-
tion in diluted acidic conditions (e.g. HCl, 2 M in
ethanol) or by using high-temperature treatment (e.g.
calcination). It is suitable to develop an alternative route
to synthesize highly dispersed fine metal NPs without
using surfactant or any protection agents, hence decreas-
ing the level of complexity, avoiding final catalyst con-
tamination and protecting the environment.

The sol immobilisation process is an extension of
the colloidal methods and involves immobilizing the
colloidal metal into a support material by changing
the pH. The metal–support interaction can be en-
abled by reducing the pH under the isoelectric point
of the support. Actually, the properties of the metal
NPs can be tuned before their immobilisation by
changing different reaction conditions such as re-
ducing agent, metal concentration, and metal/
stabilizer ratio (Kennedy et al. 2015).

The nature of the reducing agent can affect the metal
NP properties. A panoply of reducing agents has been
used for the preparation of metal NP catalysts, such as
hydrogen, hydrazine, boron hydrides, and alcohols (Jia
and Schüth 2011).

The utilisation of polymers as protecting agents is
preferable as they are able to tailor the metal NP prop-
erties and also enhance their long-term stability during
catalysis process (Yoshida et al. 2005). Polymers can
bind selectively to specific crystal planes, leading to
NPs with controlled shape and surface site (Chen et al.
2015; Zhou et al. 2002).

Recent applications of unsupported nickel
nanoparticles in catalysis

Unsupported catalysts occupy the large section of in-
dustrial catalysis. This includes metals, metals alloys,

Fig. 23 TEM pictures of the obtained NiO nanoflakes
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metal oxides, metal sulphides, zeolites, etc. Unsupport-
ed catalysts have much lower surface areas, typically in
the range of 1 to 100 m2/g. Among the most important
metal oxides, NiO NPs have been prepared by different
methods and techniques and employed as a catalyst for
many chemical transformations.

Different approaches are intensively investigated,
and important progress has been made in the synthesis
of NiO NPs with different morphologies, sizes, shapes,
and crystalline structures. The most employed methods

for the synthesis of unsupported NiO NPs are discussed
above. The common aim of all these methods and
techniques is to obtain well-defined and reproducible
nanoparticles by employing a simple, scalable, and low-
cost process. Therefore, NiO NPs have been prepared in
different morphological structures, such as nanoflakes,
nanoflowers, nanorods, nanosheets, nanospheres,
nanoballs, nanotubes, and nanowires (Paulose et al.
2017).

Heterogeneous catalysis

Only a few articles in the literature reported the investi-
gation of Ni NPs in heterogeneous catalysis. Abboud
et al. (Abboud 2020) reported recently the synthesis of
highly ordered mesoporous flower-like NiO NPs and
their utilisation as catalyst for the epoxidation reaction
of cyclohexene to produce cyclohexene oxide. NiO NPs
were prepared by hydrothermal-assisted chemical pre-
cipitation method, using nickel acetate tetrahydrate as a
metal source, ammonium hydroxide (NH4OH) as a ba-
se, diethanolamine (DEA) as complexing agent, and
CTAB as a structure directing agent. The principal steps
involved in this synthesis are described in Fig. 4 below.

The obtained material was characterized by SEM
TEM and EDX. The SEM images (Fig. 5) clearly
showed that the prepared NiO consists of fairly flower-
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(h = hole)Fig. 24 The proposed
photocatalytic mechanism of MG
dye decolourisation over the
flower-like NiO NPs

Fig. 25 XRD patterns obtained for NiO NPs prepared with a bio-
synthesis method using the extract from Persea americana seeds
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like microspheres, similar to peony flowers, with a
uniform porous structure and size distribution, and
ripple-like pores.

Powder X-ray diffraction (XRD) was used to identify
the structure of NiO NPs (Fig. 6). The XRD pattern shows
the principal peaks observed at 2θ = 37.311, 43.411,
62.871, 75.531, and 79.461, assigned to the (111), (200),
(220), (311), and (110) planes, respectively, confirming the

formation of highly pure NiO NPs (Behnajady and
Bimeghdar 2014).

The surface structure of the nanoflakes was investi-
gated by TEM. The obtained images are presented in
Fig. 7, which show very thin and aggregated nanoflakes
in random directions (Fig. 7A), with different shapes,
and with diameters ranging from 10 to 100 nm
(Fig. 7B). The TEM images clearly illustrate the

Fig. 26 High-resolution TEM images of the biosynthesized NiO NPs annealed at 500 °C

Fig. 27 Degradation mechanism proposed for photo-oxidation of FCN on the surfaces of NiO NPs
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nanostructure inside of the nanoflakes in the form of
uniform and highly ordered channels (see the red circles
in Fig. 7A).

The prepared flower-like NiO NPs were used as a
catalyst for the epoxidation reaction of cyclohexene to
produce cyclohexene oxide. The meta-chloro
peroxybenzoic acid (m-CPBA) was used as an oxidant
and CH2Cl2/CH3CN as a solvent at ambient conditions
(Fig. 8). The obtained results shown an instant reaction
with high conversion of cyclohexene of 91%, and cyclo-
hexene oxide selectivity of 53%, compared to 65

and 58% for bulk NiO particles (prepared by calci-
nation of Ni (NO3)2 4H2O at 500 °C for 4 h),
respectively (Fig. 9). The reusability of mesoporous
flower-like NiO NPs was also studied. After four
successive runs, the conversion of cyclohexene was
decreased to 63% with almost the same selectivity
(53%). This decrease in the catalytic activity of NiO
NPs was attributed to the aggregation and partial
dissolution of NiO NPs in reaction mixture.

The flower-like NiO NP prepared with CTAB was
also used by Abboud et al. as catalyst in the epoxidation

Fig. 28 Formation ofmesoporousmaterials by structure-directing agents: (a) true liquid–crystal template mechanism, (b) cooperative liquid
crystal template mechanism (Jadhav et al. 2015)

Table 5 SBA-15 supported NiO NPs reported in the literature

Catalyst Nickel precursor Synthesis method Particle
size
(nm)

Application Ref

NiO/Al-SBA-15 Ni(NO3)2.6H2O Wet impregnation 9–10 Solvent-free deoxygenation
of palm fatty acid distillate

Baharudin
et al. 2019)

NiO/SBA-15 Ni(NO3)2.6H2O Wet impregnation 8–20 Carbon dioxide reforming
of methane

Yang
et al. 2017)

NiO/Al-SBA-15 Molecular Ni4O4

clusters
Incipient wetness

impregnation
<20 Dry reforming of methane Baktash

et al. 2015)

NiO/SBA-15 Ni(NO3)2.6H2O Direct wet impregnationa

Post synthesis impregnationb
- Conversion of producer gas Lu et al. 2014)

NiO/SBA-15 Ni(NO3)2.6H2O Sol–gel coating 5–15 Dry reforming of methane Ahmed
et al. 2012)

NiO/SBA-15 Ni(OCOCH3)2.4H2O Post-synthesis
grafting method

9±4 Carbon dioxide reforming of
methane

Liu et al.
2009)

a Nickel precursor was added during the synthesis of SBA-15
bNickel precursor was added to pre-prepared SBA-15
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reaction of styrene in ambient conditions, using m-
CPBA (1.5 eq) as an oxidant and in the similar condi-
tions used for the epoxidation of cyclohexene (Fig. 10)
(Sahlabji et al. 2020). NiO NP catalyst also showed an
immediate (less 1 min) reaction with high conversion of
87% and selectivity of 65% (Fig. 11), with high turnover
frequency (TOF) of 243/s. Moreover, this catalyst is
easily separable and recyclable up to four runs with
slight decrease in the catalytic activity.

Unsupported NiO NPs were prepared and used
by Nasseri and co-workers as green, inexpensive,
and efficient heterogeneous nanocatalyst for the
synthesized of diindolyloxindole (Fig. 12) and
spirooxindoles (Fig. 13) derivatives in water,
which are an important class of potentially bioac-
tive compounds (Nasseri et al. 2015a, 2015b). The
desired products were obtained with high yields in

Table 6 Characterisation and test results of the Ni4/SBA-15 and
Ni/SBA-15 catalysts

Samples Nia Activityb [molCH4/molNi/min]

[wt%] 500 °C 550 °C 600 °C

1-Ni4/SBA-15 0.52 3.2 6.0 13.9

2-Ni4/SBA-15 0.81 3.5 5.5 9.7

5-Ni4/SBA-15 1.67 3.1 3.8 5.3

1-Ni/SBA-15 0.51 3.9 3.9 -

2-Ni/SBA-15 0.97 3.0 5.0 8.3

5-Ni/SBA-15 2.53 1.4 2.6 3.4

aMetal content from ICP measurement
b Reaction rate based onmole CH4 converted per mole Ni per time
on stream

Fig. 29 Wide-angle XRD of Ni/SBA-15
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mild conditions compared to other catalysts such
as other transition metal oxides including bulk
NiO particles.

The obtained NiO NPs in this work were prepared by
chemical reduction method in water, using urea as a
reducing agent. The structure of the prepared material

Fig. 30 TEM images of Ni/SBA-15. a, b) 1-Ni4/SBA-15, c, d) 2-Ni4/SBA-15, and e, f) 5-Ni4/ SBA-15 (Baktash et al. 2015)
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was confirmed by XRD (Fig. 14). XRD patterns of the
products were obtained after the calcination of the pre-
cursor at 400 °C.

The obtained material was investigated by TEM. The
average size of the obtained particles was around 11 nm
(Fig. 15).

Recently, Arrigo et al. (Arrigo et al. 2020) have
investigated the influence of the preparation condition
on the structure of Ni NPs, using hot injection colloidal
method, with different amounts of oleylamine (OAm)
and trioctylphosphine (TOP), which were used as re-
ducing and protective agents, respectively (Fig. 16). It
was found that changing the amount of OAm and TOP
affected both the size of the NPs and the Ni electronic
structure (Table 3).

The successful formation of metallic Ni NPs was
confirmed by XRD (Fig. 17).

The obtained Ni_5 × 1.5y NPs were characterized
by high-resolution high angle annular dark field scan-
ning transmission electron microscopy (HA-HAADF-
STEM) (Fig. 18a and b). This figure shows oval NPs
with a twinned cuboctahedron (Fig. 18a) formed by
many parallel twin lamellae. Ni NPs are embedded in
an organic shell (Fig. 18b). Figure 19 shows the core–
shell form of Ni_2.5 × 1.5y.

The catalytic activity of the obtained material was
evaluated in selective asymmetric hydrogenation of
methyl acetoacetate (MAA) to chiral methyl-3-
hydroxy butyrate (Fig. 20). It was found that (R)-selec-
tivity was higher on the oxidized surface of Ni NPs and
at low conversion, without any impact of unsupported
NP size on the selectivity (Table 4).

Fig. 31 TEM images of the spent catalysts. 5Ni-SBA-15 prepared by post-synthesis grafting, 5Ni/SBA-15 prepared by impregnation (Liu
et al. 2009)

Fig. 32 XRD patterns of spent catalysts
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Heterogeneous photocatalysis

Abboud et al. (Abboud et al. 2020) reported recently the
synthesis of highly orderedmesoporous flower-like NiO
NPs and their utilisation as a heterogeneous
photocatalyst for the decolourisation of methyl green
(MG) dye, under UV light in aqueous solution. NiO
NPs were prepared by hydrothermal-assisted chemical
precipitation method, using nickel acetate tetrahydrate
as a metal source, ammonium hydroxide (NH4OH) as a
base, diethanolamine (DEA) as complexing agent, and
cetyltrimethylammonium bromide (CTAB) as a struc-
ture directing agent. Ni(OH)2 precursor was synthesized

with and without CTAB to investigate its effect on Ni
NPs shape and size.

Figures 21 and 22 show the SEM micrographs of
flower-like NiO NPs obtained with and without CTAB,
respectively. The characterisation results revealed that
both CTAB and DEA were involved in the synthesis
process. The flower size of the obtained NiO micro-
spheres with CTAB was ~ 2 μm with nanoflakes size
~ 10–100 nm. The size of flower-like NiOmicrospheres
prepared without CTAB was increased to ~ 5 μmwith-
out any significant change in nanoflakes size.

The structure and the high purity of NiO NPs were
confirmed by powder X-ray diffraction (see Fig. 6

Fig. 33 Structure of MCM-41 (Schumacher et al. 2000)
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above). The investigation of these flower-like NiO NPs
in nanoscale using TEM revealed the high order and
uniform 2D nanostructure of the NiO nanoflakes
(Fig. 23). In addition, BET results indicated the
mesoporosity of the obtained material with a surface
area of 21 m2/g and pore diameter of ~ 6 nm.

The photocatalytic activity of the prepared mesopo-
rous flower-like NiO NPs was evaluated in the
decolourisation of methyl green (MG) dye in water

under UV light illumination (Fig. 24). This nanocatalyst
exhibited an excellent dispersion in the dye’s solution,
and a good photocatalytic degradation of MG, with a
rate constant about 10 times higher than that of the bulk
NiO counterpart.

Bashir et al. recently prepared NiO NPs with cubic-
type structure, using nickel nitrate hexahydrate, as a
nickel precursor, dissolved in an extract ofPersea amer-
icana seeds as an ecofriendly biosynthesis method

Fig. 35 Schematic diagram of the formation mechanism of the NiO@MCM-41 nanocomposite (Roosta et al. 2018)

Fig. 34 TEM images of the spent catalysts. 5Ni-MCM-41 prepared by post-synthesis grafting, 5Ni/MCM-41 prepared by impregnation
(Liu et al. 2009)
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(Bashir et al. 2019). The NiO NP type structure was
confirmed by XRD (Fig. 25).

TEM images showed rhombohedral and spherical
shapes of NiONPs with low agglomeration, and particle
size around 11 nm (Fig. 26). The obtained NiO NPs
were used as a catalyst for the photodegradation of free
cyanide (Fig. 27). The obtained material exhibited a
good photocatalytic activity with a maximum photocat-
alytic oxidation efficiency of 84% after 30 min.

However, unsupported Ni NPs still suffer from dif-
ferent drawbacks such as deactivation by aggregation,
low durability, low dispersibility, and electron and hole
recombination. Characteristics such as optical and cata-
lytic activity may be lost if the dispersion of unsupport-
ed Ni NPs is not adequately modulated.

Mesoporous silica–supported nickel nanoparticles

Introduction

Several efforts have been deployed to overcome the
unwanted effects of unsupported Ni NPs by either in
situ synthesis or incorporating them into a solid matrix,
like silica, carbon, or polymers. Among the different
solid supports that have been used to encapsulate, these
NP catalysts are the porous silica materials. They have
been considered as excellent transparent solid supports,

because of their high surface area, thermal stability,
chemical inertia, transmittance to radiation, high absorp-
tion capacity, and facilitating the interface reaction with
organic compounds for photocatalytic degradation
(Barhoum et al. 2017). Therefore, a porous silica frame-
work facilitates the use of Ni NPs for the desired pur-
poses while avoiding the drawbacks mentioned above.

Since Mobil Oil Corporation scientists discovered
the Mobil Crystalline Materials (MCMs), such as
MCM-41 and SBA-15 in 1992 and 1998, respectively,
these mesoporous silica materials (MSMs) have
attracted much attention in a wide variety of applications
including catalysis, adsorption, separation, drug deliv-
ery, and sensing (Amin 2020). The importance of these
materials is due to their important intrinsic properties
such as tunable porosity and morphology, large internal
surface area, narrow and highly uniform pore size dis-
tribution, and three-dimensional space required to real-
ize the doping and confinement of different functional
components, in addition to their high thermal and
chemical stability. MSM also shows a high adsorp-
tion capacity and an ordered porous 3-D network
that make them have a high diffusion of substrates
and reaction products. All these properties open up
a high application potential of those materials in
the field of catalysis (Amin 2020; Weiping and
Lide 1997; Lai 2013; Dixit et al. 2013; Luque
et al. 2012).

Fig. 36 TEM images of NiO@MCM-41 nanocrystals, (a) zoomed out, (b) zoomed in; (c) image (b) was enlarged, cropped, and
recombined, and the hexagonal order of pores was made distinguishable via red polygons. (Colour figure online) (Roosta et al. 2018)
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The successful incorporation of Ni NPs in mesopo-
rous silica with stable and quantified NP size will in-
crease the surface area to volume ratio and consequently
increase the number of active sites of Ni NPs per area
unit, inhibit the particles aggregation, improve the reus-
ability of the obtained nanocatalyst, and consequently
improve its catalytic performance.

Here we are going to discuss some recent applica-
tions in heterogeneous catalysis of Ni NPs supported on
different types of MSMs, such as SBA-15, MCM-41,
MCM-48, TUD-1, and other MSMs.

Nickel NPs supported into SBA-15

SAB-15 is one of the most used MSMs as a support in
heterogeneous catalysis. SAB-15 is characterized by
high specific surface area (400–900 m2/g), tunable uni-
form hexagonal pore-network that have high hydrother-
mal and mechanical stability, with narrow pore size

distribution, pore diameter ranges from 5 to 15 nm, pore
volume up to 1.1 cm3/g, and relatively thick walls that
range between 3.1 and 6.4 nm, with a circular pore
shape.

SAB-15 has been prepared in acidic medium, using
the triblock copolymer (EO20PO70EO20) Pluronic 123
(P123) as a structure directing agent, and tetraethyl
orthosilicate (TEOS) as a silica source, following the
mechanism described in Fig. 28 below (Jadhav et al.
2015).

Ni NPs have been incorporated in SBA-15 using
different methods and applied as catalysts for various
chemical transformations. The most techniques
used to incorporate Ni NPs into SBA-15 are wet
impregnation using nickel nitrate hexahydrate as
nickel precursor (Table 5). The nickel particle size
of the obtained materials was between 5 and
20 nm. The most Ni@SBA-15 catalysts prepared
are used for reforming of methane.

Fig. 37 Wide-angle X-ray diffraction pattern of the nanocomposite and the used catalyst. Diffraction data of inset figure were recorded in a
different analysis
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Thomas et al. (Baktash et al. 2015) used incipient
wetness impregnation method to prepare NiO NPs sup-
ported on SBA-15 using molecular Ni4O4 clusters as
nickel precursor.

The XRD patterns of Ni/SBA-15 samples after cal-
cination (before reduction) are presented in Fig. 29. The
characteristic reflexes for NiO at 2θ = 37.2, 43.1, and
62.88, corresponding to the (111), (200), and (220)
planes of cubic NiO, respectively, were not observed
for all Ni/SBA-15 samples. The observed reflexes are
very weak and broad, which points to the formation of
very small and highly dispersed Ni species.

The presence of nickel and the actual metal contents
of the samples were determined after the calcination step
by inductively coupled plasma (ICP), and the obtained
results are presented in Table 6.

The TEM images revealed the formation of NiO NPs
with particle size < 20 nm (Fig. 30). Authors claimed
that the utilisation of these clusters may have a signifi-
cant effect on the dispersion of NiO NPs through the
SBA-15 framework compared to other traditional pre-
cursors such as nickel nitrate. The obtained nanocatalyst
was reduced to Ni(0) and used for dry reforming of
methane.

Liu and co-workers (Liu et al. 2009) reported the
synthesis of SBA-15 supported Ni catalysts using a
post-synthesis grafting method and nickel acetylaceto-
nate as nickel precursor. In this method, the appropriate
amount of nickel acetylacetonate complex was added
dropwise to a suspension of SBA-15 in toluene. After
refluxing the mixture overnight, filtration, and washing,
the obtained SBA-15 grafted nickel acetylacetonate

Fig. 38 Structure of MCM-48 (Schumacher et al. 2000)
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powder was calcined at 540 °C to obtain the desired
catalyst. The Ni particle size of the material obtained by
post-synthesis grafting method was 9 ± 4 nm compared
to 31 ± 12 nm for the material prepared by conventional
impregnation method (Fig. 31). The existence of nickel
particles with large size, especially for the catalysts
prepared via impregnation, could be attributed to a
remarkable sintering of Ni particles occurring during
the stability test.

The catalytic activity of the obtained catalysts was
evaluated in CO2 reforming of methane. The highest
catalytic performance and stability and high Ni NP
dispersion through silica matrix were observed over a
5-wt% Ni loading prepared by post-synthesis grafting
method.

The structure of fresh Ni NPs in these materials was
not confirmed by XRD or EDX. Only low-angle XRD
was performed to demonstrate that the structural

Fig. 39 The synthesis of mesoporous TUD-1 and M-TUD-1 is straightforward (Telalović et al. 2010)
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integrity was retained after the incorporation of Ni and
the calcination process. However, XRD was performed
to the spent catalysts to determine its crystalline phases
after reaction. As shown in Fig. 32, the diffraction peaks
of Ni particles can be seen over all the spent catalysts.

Nickel NPs supported in MCM-41

MCM-41 is one of the most widely investigated ordered
mesoporous silica materials due to its valuable physical
properties. MCM-41 is characterized by highly ordered
hexagonal one-dimensional and unidirectional pores
system (Fig. 33) (Schumacher et al. 2000) and narrow
pore size distribution, with pore size that ranges from 3
to 7 nm, pore volume nearly 1.0 cm3/g, and high surface
area up to 1000 m2/g, with wall thickness up to 1.8 nm.
In addition, MCM-41 presents good thermal and chem-
ical stability, uniform channels 2–10 nm in diameter,
and no toxicity of both template and silicon source.

MCM-14 materials have been synthesized in an al-
kaline condition using cetyltrimethylammonium

bromide (CTAB) as structure directing agent, and TEOS
as silica source, following the same mechanism de-
scribed for the synthesis of SBA-15 (Fig. 28). The main
differences between the structure ofMCM-41 and SBA-
15 are primarily in pore geometry, pore shape, and the
wall thicknesses.

However, only few publications reported the incor-
poration of Ni NPs in MCM-41 and the obtained
nanocatalysts mainly applied for CO2 reforming of
methane.

Liu et al. (Liu et al. 2009) also reported the prepara-
tion of Ni-MCM-41 catalyst and its evaluation in CO2

reforming of methane. This material was prepared using
the same method described for Ni-SBA-15 which is the
post-synthesis grafting method, using nickel acetylace-
tonate as nickel precursor. The Ni NP size of Ni-MCM-
41 was 7.6 ± 1.8 nm, compared to 12.1 ± 3.2 nm for
Ni/MCM-41 which was prepared using conventional
impregnation technique. The Ni NP size obtained with
MCM-41 was smaller than that observed in SBA-15
(Fig. 34). However, Ni-SBA-15 obtained by grafting

Fig. 40 TEM results for spent catalysts: (1) TEM images for (a) spent Ni-DHT, (b) spent Ni-GRF, and (c) spent Ni-IMP, respectively; (2)
nickel particle size distributions for (d) spent Ni-DHT, (e) spent Ni-GRF, and (f) spent Ni-IMP, respectively (Quek et al. 2010)
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method exhibited an excellent catalytic activity and high
stability over Ni-MCM-41, due to its high inhibition on
nickel sintering and carbon formation.

As mentioned above for SBA-15, only low-angle
XRD was performed to demonstrate the preservation
of the mesoporosity of the material after the incorpora-
tion of Ni and the calcination process. Wide-angle XRD
was performed only to the spent catalysts to determine
its crystalline phases. The average sizes of Ni particles

calculated by Scherrer equation revealed the following
sequence: 5Ni-MCM-41 (7.3 nm) < 5Ni-SBA-15
(8.4 nm) < 5Ni/ MCM-41 (14.0 nm) < 5Ni/SBA-15
(19.4 nm).

In another work, Roosta et al. reported the synthesis
of NiO@MCM-41 catalyst in the form of core–shell
nanocomposite and its catalytic evaluation in CO2

reforming of methane (Roosta et al . 2018).
NiO@MCM-41 nanocomposite was prepared by two-

Fig. 41 High-angle XRD patterns of Ni-containing TUD-1 catalysts
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step soft templated nanocasting method, using vesicles
as soft template (Fig. 35). First, stable vesicles were
formed by a mixture of two surfactants, CTAB and
SDBS, with a ratio of CTAB/SDBS 1:2. Then, nickel
nitrate was inserted inside the vesicles. The obtained
Ni@vesicles were covered by MCM-41 gel. After the
calcination step, the NiO@MCM-41 core–shell nano-
composite was obtained.

The TEM images (Fig. 36) of the obtained core–shell
nanocomposite showed a particle’s average diameter of
70–80 nm, with a spherical shape. CO2 reforming of
methane conversion over the prepared core–shell
nanocatalyst led to CO2 and H2 conversion of 48%
and 42%, respectively.

XRD analyses were performed before and after the
reaction to evaluate the present crystalline phases in the
catalyst (Fig. 37). NiO lattice reflection appeared at 2θ

= 38, 43.8, 63.2, 76.2, and 79.8 (Zhang et al. 2017), and
FCC Ni lattice reflection appeared at 2θ = 45, 52.2, and
76.7 (Zhang and Li 2015). The absence and presence of
reflection attributed to the metallic nickel (Ni) in the
spent catalyst confirmed the reduction of NiO to Ni in
the core of NPs. The presence of distinct reflections of
Ni lattice of spent catalyst indicated the stable condition
of the metallic phase of the core region of NPs after the
reaction.

Nickel supported in MCM-48

MCM-48 is an important member of the M41S family
(e.g. MCM-41, MCM-48, MCM-50). (Kresge et al.
1992). It is characterized by 3-D cubic structure, with
two non-intersecting gyroidal pores (Fig. 38)
(Schumacher et al. 2000). MCM-48 is characterized by

Fig. 42 Powder XRD patterns of Ni/SiO2 catalysts
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Fig. 43 TEM images and the corresponding particle size distribution of 5% Ni/SiO2, 30% Ni/SiO2, and 40% Ni/SiO2 catalysts (Mallesham
et al. 2018)
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a high surface area up to 1000 m2/g, pore size ranges
from 2 to 4 nm, and pore volume up to 0.8, with wall
thickness around 1.5 nm. Compared to MCM-41,
MCM-48 is more resistant to pore blocking because it
provides fast diffusion of molecules through its 3-D
pore network, which is very suitable in catalysis. Al-
though MCM-48 has, doubtlessly, a high potential as a
catalytic support and selective adsorbent, it has not
received enough attention compared to MCM-41. This
is probably due to the difficulty of synthesising it.

Indeed, the classic structure directing agents (SDAs)
that have been used in the preparation of the M41S
family are the alkyltrimethylammonium halides. These
surfactants form preferentially a hexagonal or lamellar
structure in solution, which makes the preparation of
MCM-48 (cubic structure) with high quality is very
sensitive to a narrow margin of error, with very poor
reproducibility. The synthesis of MCM-41 can be

affected by different synthesis parameters, such as the
type of surfactant, temperature, solution composition,
even stirring speed, and type of washing solvent (Mokri
et al. 2019).

Only a few publications reported the incorporation of
nickel particles into MCM-48 for utilisation in catalysis.
Shaban et al. reported recently the preparation ofMCM-
48 supported NiO NPs by wet impregnation method,
using nickel chloride hexahydrate as metal precursor in
water, withMCM-48/nickel precursor ratio of 1:1 (w/w)
(Shaban et al. 2020). Unfortunately, the NiO particle
size and their dispersion in the MCM-48 framework
were not investigated in this work, using neither TEM
nor XRD. Authors claim that the incorporation of NiO
inMCM-48 led to a considerable reduction in NiO band
gap energy to 2.4 eV. The obtained material was used as
a catalyst for the photodegradation of Congo red dye. It
has been reported that the adsorption capacity and the

Fig. 44 Conversion of levulinic acid to γ-valerolactone over Ni/SiO2 (Mallesham et al. 2018)
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photocatalytic activity were enhanced in the com-
posite NiO/MCM-48 compared to that in both NiO
and MCM-48.

In another work, Hinrichsen and co-workers reported
the synthesis of MCM-48 and its functionalisation with
nickel and aluminium, using two different methods,
which are incipient wetness impregnation (IWI) and
template ion exchange (TIE) (Frey and Hinrichsen
2012). The characterisation results showed that the
structure of MCM-48 was preserved after the function-
alisation step using the IWI method, whereas the MCM-
48 was partly affected by the TIE method. Here, also,
the NiO particle size and their dispersion in MCM-48
were not studied using TEM and/or XRD.

The obtained materials were used to catalyse the
conversion of ethene to propene. The highest

conversion and selectivity obtained with the optimal
nickel and aluminium loadings, prepared by both
methods, were 40% and 56%, respectively.

Ni nickel supported in TUD-1

TUD-1 is a mesoporous silicate material, first prepared
by Jansen et al. in 2001 at Technische Universiteit Delft
(TUD) (Jansen et al. 2001). Unlike most other mesopo-
rous silica materials, TUD-1 is relatively simple to syn-
thesize (Telalović et al. 2010). It has three-dimensional
and irregular sponge-like porous structure, with high
surface area (> 1200 m2/g), pores of varying diameter
(2.5–20 nm), and wall thickness ranges from 2.5 to
4 nm. These properties allow fast diffusion through

Fig. 45 TEM images of (a) reduced 3NiSN and (b) deactivated 3NiSN, and histogram of the particle size distribution obtained from
sampling of nanoparticles from TEM data (c) for reduced 3NiSN and (d) for deactivated 3NiSN (He et al. 2015)
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TUD-1 pore network, making it an efficient and prom-
ising catalyst support in heterogeneous catalysis.

The synthesis of TUD-1 is based on the sol–gel
process, using TEOS as silicon source. Unlike the

Fig. 46 XRD patterns of 3NiSN before and after reduction in H2 for 4 h
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synthesis of many other mesoporous silica materials, no
surfactant is needed to build the TUD-1 regular pore
system. Instead, either tetraethylene glycol (TEG) or
triethanolamine (TEAH3) is used to chelate the silica
and to obtain a porous structure. This synthesis method
can be modified to introduce another metal (M) to the
TUD-1 framework, to obtain a modified material (M-
TUD-1) with different catalytic activities. Figure 39 illus-
trates the synthesis of TUD-1 and M-TUD-1 (M: metal).

Combination of two different metals into TUD-1 can
induce a synergy between Brønsted and Lewis in the
obtained catalyst. In addition to efficient applications in

acid, photocatalysis, and redox, TUD-1 demonstrated to
be an outstanding carrier for many catalysts (Telalović
et al. 2010; Gorsd et al. 2018; Tanglumlert et al. 2011).

However, only fewer publications reported the syn-
thesis and catalytic activity evaluation of TUD-1 sup-
ported nickel NPs.

Yang et al. reported the synthesis of nickel containing
TUD-1 nanocatalyst using three different methods, di-
rect synthesis (Ni-DHT), grafting (Ni-GRF), and im-
pregnation (Ni-IMP) method, and the obtainedmaterials
were used to catalyse CO2 reforming of methane. (Quek
et al. 2010).

Fig. 47 TPR profiles of Ni(NO3)2/SiO2. (1–3): without calcination and (4) after calcination at 773 K. Conditions: heating rate = 10 K/min,
5% H2/Ar atmosphere
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Results showed that a small amount of aggregates
was formed in the materials prepared by Ni-DHT and
Ni-GRF, with high dispersion, compared to that pre-
pared by Ni-IMP (Fig. 40). The smallest particle size
was obtained by Ni-DHT. Although the catalyst pre-
pared by the later method exhibited the highest catalytic
activity. However, the grafted catalyst showed high
stability and long-term activity. This is probably due to
more easily accessible Ni-active sites in the grafted
catalyst. Hence, the Ni-TUD-1 catalyst prepared by
grafting method can be nominated as a better candidate
for CO2 reforming of methane.

The formation of crystalline NiO after calcination
was confirmed by normal angle XRD (Fig. 41). Weak
peak intensity was attributed to the high dispersion of
NiO particles through the TUD-1 framework. The nick-
el content in all samples was measured by ICP test.

Nickel nanoparticles supported in other types of silica

Several works reported the incorporation of nickel NPs
in other silica materials and their application in catalysis.

Reddy et al. (Mallesham et al. 2018) reported the prep-
aration of silica-supported Ni NPs with different Ni
loadings (5, 10, 20, 30, and 40%), using impregnation
method. This catalyst was prepared by dispersing a
colloidal SiO2 in water followed by the addition of an
aqueous solution of Ni(NO3)2·6H2O. The obtained ma-
terials were calcined under air at 500 °C for 5 h.

The structure of NiO particles in all Ni/SiO2 catalysts
(with different Ni loading, from 5 to 40%) was con-
firmed by XRD (Fig. 42).

TEM images revealed the formation of uniformly dis-
persed NiO NPs on SiO2 matrix (Fig. 43). The average
particle size was around 9 nm for all samples with loadings
up to 30%. However, the particle size was drastically
increased to more than 21 nm at 40% Ni loading.

The high dispersion of NiO NPs has improved a
synergistic metal–silica interaction, in particular for the
30% Ni loading sample, leading to enhanced acidic and
redox properties. The prepared 30% Ni/SiO2 material
exhibited the best catalytic performance, with 98% se-
lectivity to γ-valerolactone at total conversion of
levulinic acid for 2 h (Fig. 44).

Fig. 48 XRD patterns of the catalysts under air. (A) Ni/SiO2-cal-773, (B) Ni/ SiO2-873, (C) Ni/SiO2-773, and (D) Ni/SiO2-673
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Fig. 49 TEM images of the reduced catalysts at (A) 773 K and (B) 873 K (Nakagawa et al. 2012)
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Luo et al. (He et al. 2015) reported the preparation of
silica-supported NiO NPs using incipient wetness im-
pregnation (IWI) method, with a commercial silica
(SBET = 498.8 m2/g, Nanjing Tianyi Inorganic Chemi-
cal Factory) and nickel nitrate as a precursor. The as-
made material was calcined at 380 °C then NiO reduced
to Ni after treatment by H2 at 700 °C. The Ni/SiO2

catalyst was designated as 3NiSN. Ni NPs were highly
dispersed in the silica framework, with particle size
around 38 nm (Fig. 45). However, Ni NPs were weakly
interacted with the support, with obvious particles
sintering problems. Consequently, a rapid deactivation
of the catalyst was observed during the combination
process of CO2 reforming and partial oxidation of meth-
ane (CRPOM) to produce syngas.

XRD analyses were carried out to understand the
crystalline structure of 3NiSN catalysts, and the results

are presented in Fig. 46. The results showed only the
FCC NiO phase, with typical reflections of the
(111), (200), and (220) planes at 2θ = 37°, 43°,
and 63°, respectively. After reduction under H2 for
4 h, the peaks attributed to NiO disappeared, and
three other peaks around 2θ = 44°, 52°, and 76°
for Ni (111), Ni (200), and Ni (220) planes, re-
spectively, were observed, indicating the successful
transformation of NiO to metallic Ni.

Tomishige et al. (Nakagawa et al. 2012) report-
ed the synthesis of silica-supported Ni NPs by
reduction of nickel nitrate using H2 (Eq. 1). The
nickel nitrate in water was first impregnated in a
commercial silica (Fuji Silysia G-6; BET surface
area 523 m2/g) using incipient wetness impregna-
tion (IWI) method; then, the obtained as-made
material was reduced to Ni NPs after treatment

Fig. 50 Reaction pathways for the hydrogenation or hydrogenolysis of furfural (Nakagawa et al. 2012)
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by flowing H2 at different temperatures (670–
870 K) (Fig. 47) in glass tube reactor.

Ni NO3ð Þ2 þ H2 ! NiOþ 2NO2 þ H2O ð1Þ

The structure of Ni species in the reduced catalysts
was identified by powder XRD, and the obtained results
are shown in Fig. 48.

For the samples reduced at high temperature, Ni/
SiO2-873 (Fig. 47—curve 1 and Fig. 48B) and Ni/
SiO2-cal-773 (Fig. 47—curve 4 and Fig. 48A), only
peaks attributed to Ni metal were present. Howev-
er, in the case of Ni/SiO2-773 (Fig. 47—curve 2
and Fig. 48C) and Ni/SiO2-673 (Fig. 47—curve 3
and Fig. 48D), both Ni metal and NiO particles
were present.

The obtained Ni NP size was less than 4 nmwith low
dispersion as shown in TEM images (Fig. 49). The cata-
lytic activity of the prepared catalyst was evaluated in the
hydrogenation of furfural to 2-methyltetrahydrofuran
(Fig. 50). The product was obtainedwith amaximumyield
of 94%. It was found that low turnover frequency (TOF)
was obtained with large Ni particle size.

In another work, Shi and Liu (Shi and Liu 2009)
reported the synthesis of 10 wt% NiO NPs supported
on silica, by conventional incipient impregnation meth-
od, using commercial SiO2 powder, and nickel nitrate
hexahydrate as precursor in water at room temperature.
After stirring (12 h) and drying (100 °C/12 h), the
obtained material was treated with a glow discharge
plasma for 1 h and denoted by Ni/SiO2-P. Another part
of the sample was calcined at 500 °C without plasma

Fig. 51 TEM images of samples after reduction at 500 °C for 2 h. (a, c) Ni/SiO2-C without treatment with plasma; (b, d) Ni/SiO2-P treated
with plasma (Shi and Liu 2009)

Page 39 of 52     21J Nanopart Res (2022) 24: 21



treatment. This thermal treated sample was denoted by
Ni/SiO2-C.

After calcination (500 °C/4 h) and reduction process
(H2, 500 C°/2 h), the obtained silica-supported Ni NPs

Fig. 52 Size distributions after reduction at 500 °C for 2 h. (a) Ni/SiO2-C without treatment with plasma; (b) Ni/SiO2-P treated with plasma
(Shi and Liu 2009)

Fig. 53 XRD patterns of fresh samples after reduction at 500 °C for 2 h. Ni/SiO2-P: plasma treated sample. Ni/SiO2-C: thermal treated sample
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were highly dispersedwith smaller particle size and narrow
size distribution at around 9.7 nm, compared to 17.5 nm
for the material prepared without plasma treatment, with
wide particle size distribution (Figs. 51 and 52).

The prepared material was analysed by XRD to
identify the chemical structure of the nickel particles,

and to calculate their size. XRD patterns of fresh sam-
ples are presented in Fig. 53. Two peaks assigned to Ni
(111) at 52.2° and Ni (200) at 61.1°, respectively, ap-
peared on the XRD patterns confirming the metallic
nature of nickel particles. The average particle size
calculated from Scherrer formula was about 14 nm for

Fig. 54 TEM images of nickel particles of Ni/SiO2-P after reaction at 350 °C for 4 h (a, b, c) with EDX of image c (d) and size distribution (e)

Page 41 of 52     21J Nanopart Res (2022) 24: 21



Ni/SiO2-C and around 10 nm for Ni/SiO2-P, which is in
agreement with the results observed in TEM. The XRD
and TEM analyses confirmed that smaller metal parti-
cles were obtained in the plasma treated sample.

The obtained catalysts were evaluated in the metha-
nation reaction of carbon monoxide. The catalyst exhib-
ited high conversion of carbon monoxide and hydrogen
with less carbon deposition.

As shown in TEM images of Ni/SiO2-P and Ni/SiO2-
C samples (Figs. 54 and 55, respectively), the plasma
treated catalyst showed enhanced nickel–silica interac-
tion with good dispersion after reaction. While aggrega-
tion of nickel was observed on Ni/SiO2-C after reaction,
with broad partition distribution of nickel particles (from
7.7 to 57.4 nm, with an average of 21.8 nm). In addition,
nickel particles on Ni/SiO2-C were covered by carbon
species, with no visible carbon species found on Ni/
SiO2-P.

A new method to prepare ultra fine nickel NPs
in mesoporous silica, called templating assemble
method, was reported by Yang et al. (Yang et al.
2017). This process is based on the complexation
of the nickel sources (precursor) by the amine
groups attached to the surfactant followed by ad-
dition of TEOS then calcination (Fig. 56). In this
process, dodecyl amine was used as a neutral
structure directing agent for silica and as a
complexing agent to capture the nickel ions which
were added with different loadings (1, 2, 3 and
4 mmol for 10.73 mL of TEOS). The samples
corresponding to different nickel amounts were
labeled as H-xNi (x = 1, 2, 3, and 4), in which
x stands for the nickel amount (number of moles
of Ni(NO3)2·6H2O mmol) of different samples.

After the calcination step, highly dispersed and fine
NiO NPs were observed in TEM images (Fig. 57).

Fig. 55 TEM images of nickel particles of Ni/SiO2-C after reaction at 350 °C for 4 h (a, b, c) and size distribution (d)
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TEM images showed a sponge-like framework
mesoporous structure with wormhole pore for the pre-
pared samples. In addition, these images demonstrated
the presence of fine Ni NPs (2–5 nm) with high disper-
sion in mesoporous silica. However, some Ni aggre-
gates have been observed in high Ni loading material.
As expected, the surface area, pore size, and pore vol-
ume were decreased by increasing the Ni loading.

Because nickel oxide nanoparticles prepared by the
templating route (H-xNi series) were mono-dispersed in
the silica framework, only broad peaks were observed in
XRD patterns (Fig. 58). In this work, the loadings of

nickel in catalysts were measured using the inductively
coupled plasma spectrometer (ICP).

The obtained nanocatalyst exhibited a good catalytic
activity for the epoxidation reaction of styrene. The
maximum conversion of styrene (67%) and high styrene
oxide selectivity (94%) were obtained using the catalyst
with high Ni loading (4 mmol of nickel nitrate) which
was named H-4Ni.

However, using functionalized surfactant to interact
with the metal sources can affect the silica structure and
its porosity. In addition, this method is limited by the use
of some specific and expensive surfactants which carry

Fig. 56 Preparation of mesoporous silica–supported NiO NPs using a templating assembly route (Yang et al. 2017)

Fig. 57 TEM images of sample of H-4Ni and size distribution of NiO NPs (inset) (Yang et al. 2017)
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amine groups; thus, the access to commercial mesopo-
rous silica such as SBA-15 andMCM-41 is not possible.

Nickel-based bimetallic NPs incorporated in mesopo-
rous silica material have been also prepared and used in
catalysis. Recently, Pandey et al. (Pandey et al. 2021)
reported the synthesis of Pd–Ni bimetallic NPs incorpo-
rated in mesoporous silica and the utilisation of the ob-
tained material as an efficient and cheaper photocatalyst
for the degradation of anionic and cationic dyes.

Mesoporous silica nanoparticles (MSNPs) supported
Pd–Ni NPs were prepared in situ using an organo
trialkoxysilane as a template and stabilizer for efficient
reduction. Briefly, in the first step, silica-supported palla-
dium NPs were prepared by impregnation of
tetrachloropalladate in MSNPs using ethylene glycol.

The obtained palladium cations dispersed MSNPs were
suspended in a solution of 3-aminopropyltrimethoxysilane
(template) in ethylene glycol. After addition of formalde-
hyde and microwave treatment, PdNP-inserted MSNPs
was obtained. A similar method was used to prepare
mesoporous silica-supported PdNPs. In the second step,
PdNP-inserted MSNPs was suspended in an aqueous so-
lution of nickel sulphate containing 1% PVP under stirring
followed by the addition ofNaBH4 aqueous solution under
stirring resulting the formation of Pd–Ni NP–inserted
MSNPs and collected by centrifugation.

In this method, 3-aminopropyltrimethoxysilane had an
active role in efficient reduction of palladium cations along
with in situ providing a template for efficient reduction and
stabilisation of Pd–Ni nanocrystallite. In addition, this

Fig. 58 High-angle patterns of the series samples of H-xNi (samples prepared by templating route), S–H-4Ni (sample prepared via a single-
step procedure), and W–H-4Ni (sample prepared by wetness impregnation)
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organotrialkoxysilane enabled controlled insertion of bi-

metallic Pd–Ni nanocrystallite within mesoporous silica
support.

Pd–Ni particle size and structure of the prepared

material were investigated by TEM and selected area
electron diffraction pattern (SAED) (Fig. 59). The TEM

Fig. 59 (a, b) TEM images of Pd–Ni NP–inserted MSNPs; (c) selected area diffraction pattern; (d) particle size distribution curve

Fig. 60 UV–Vis absorption spectra of the real textile sample in
the absence and the presence of Pd–Ni NPs-1 inserted MSPs, (a)
for Congo red and (b) for Rh B. The samples were collected from

the washout of stencil used in fabric printing using dye embedded
with binder and thinner
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images of Pd–Ni NP inserted MSNPs are shown in
Fig. 59a and b. SAED as shown in Fig. 59c confirms
the presence of 111, 311 planes assigned to nickel,
whereas 220, 420 planes are assigned the presence of
palladium nanocatalyst. Figure 59d shows the average
size of Pd–Ni NPs nanocrystallite to the order of 8 nm.

Compared to Pd–Ni bimetallic nanocatalyst (made at
Pd:Ni ratio of 1:1), the use of Pd–Ni NP–inserted
MSNPs yielded faster degradation of both Rh B and
Congo red dyes to the order of 50 s and 150 s, respec-
tively (Fig. 60), justifying potent catalytic behaviour for
real-time degradation of toxic industrial dye. In addition,
this nanocatalytic system showed high stability and
excellent reusability.

Conclusion

Throughout this review, the most commonly used tech-
niques to prepare unsupported Ni NPs and their recent
applications in heterogeneous catalysis, including
photocatalysis, have been discussed.

Despite the importance of Ni NPs as efficient eco-
nomic and eco-friendly nanocatalysts, characteristics
such as optical and catalytic activity may be lost if the
dispersion of these particles is not adequately modulat-
ed. Several efforts have been deployed to overcome
their aggregation problem, low durability, low
dispersibility, and electrons and holes recombination
by incorporating them into solid matrices such as porous
silica materials.

In this review, we have discussed the most common-
ly used methods to incorporate Ni NPs into different
types of porous silica materials (e.g. SBA-15, MCM-41,
MCM-48, TUD-1, and other silica) and their applica-
tions in heterogeneous catalysis. The most used tech-
nique to prepare Ni NPs@silica is the impregnation,
with nickel nitrate as nickel precursor, and reforming
of methane as the most used application.

However, the use of different approaches to prepare
Ni NPs@silica is still limited by the Ni NP size and
aggregation, particles sintering, low dispersion, Ni load-
ing, and the complicated, expensive, and time-
consuming techniques.

The synthesis of stable Ni NPs@silica with quantized
size and high dispersion tended to be difficult. This
explains why the investigation of Ni NP catalytic activ-
ity is relatively scarce compared with other transition

metal NPs. Hence, the development of more efficient
approaches remains a fecund area of research.
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