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intermediate states caused by S vacancy. However, to 
eliminate the disadvantage of photocatalysis in highly 
concentrated wastewater management and expense of 
UV source, RhB is degraded by sonocatalysis, and 
70% of dye is removed within 100  min in the pres-
ence of ZnS nanopowder. Therefore, the efficient 
catalytic dye degradations are achieved employing the 
minimum amount of ZnS powder.

Keywords ZnS · Photocatalysis · Sonocatalysis · 
Dye Sensitization · Sulfur vacancy · Nanostructures

Introduction

Since the last decade, environmental pollution is 
keeping a potentially harmful impact on human life as 
well as wildlife (Gupta 2009). The textile and allied 
industries release environmentally harmful effluents 
which pollute water acutely (Sharma et  al. 2012). It 
has an adverse effect not only on the human being but 
also on the animal planet. The organic dyes which 
are not biodegradable are one of the major residues 
(Rai et  al. 2005). Hence, organic dye degradation is 
one of the important fields of research, nowadays. 
Different conventional methods for dye removals 
such as precipitation, liquid–liquid extraction, fil-
tration, and precipitations are limited by their own 
constraints (Sharma et  al. 2012; Miretzky and Cire-
lli 2009; Huang et  al. 2015; Hameed et  al. 2007). 
Heterogeneous photocatalytic dye degradation is one 
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of the modern and convenient ways to eliminate the 
pollutants from aqueous and gaseous medium (Vieira 
et al. 2020; Zhang et al. 2021). In this field, the wide 
bandgap semiconductors have attracted the attention 
of the researcher due to its interesting optical proper-
ties (Ghosh et al. 2017). In this perspective, few oxide 
materials, such as  TiO2 and ZnO, are conventional 
wide bandgap semiconductors since the discovery 
of photocatalytic dye degradation process (Lakshmi 
et  al. 1995; Sakthivel et  al. 2003). Usually, they get 
activated by the light having UV wavelength. There 
have been numerous reports on the designing of semi-
conductor catalysts which get excited under visible 
light by creating defect states, doping, and composite 
or hybrid formation (Wu et al. 2020a, 2018, 2020b).

Zinc sulfide is a well-known n-type II-VI wide 
bandgap semiconductor in the field of photocataly-
sis since it can generate electron–hole pairs under 
UV photoexcitation (Lee and Wu 2017). It is one of 
the most popular photocatalysts for its substantially 
negative potential for excited electrons, low toxic-
ity, and rapid generation of charge carriers (Fang 
et  al. 2015). Apart from this, the intrinsic mate-
rial properties like defect states, crystalline phases, 
and exposed facets are important factors to ana-
lyze the contribution of the catalyst in dye degra-
dation (Fang et  al. 2015; Wang et  al. 2015; Kong 
et  al. 2011; Pei et  al. 2013; Zhang et  al. 2008a). 
These factors can enhance the photocatlytic activ-
ity by the light-harvesting process (Zhang et  al. 
2008b). In addition, it can produce new adsorption 
sites preventing recombination of electron–hole 
pairs. However, optimum level of defects is benefi-
cial because excessive defects can cause high rate of 
recombination degrading the photocatalytic activity 
(Wang et al. 2012; Lv et al. 2013). In the photocata-
lytic dye degradation process, vacancy defect modi-
fies the electronic structure creating a new energy 
level in the forbidden region, which influences 
the properties of photo-generated charge carriers. 
ZnS is extensively studied including its Zn and S 
vacancy which have high impact on photocatalysis. 
S vacancies can cause the decrement of bandgap, 
whereas Zn vacancy leads to enlargement of band-
gap (Chen et  al. 2010; McCloy et  al. 2013). Gang 
Wang reported controlled sulfur vacancy in the ZnS 
sphere which influenced the photocatalytic  H2 evo-
lution under visible light (Wang et  al. 2015). Hao 
et al. reported intrinsically Zn-deficient ZnS which 

had shown enhanced photocatalytic  H2 evolution 
under visible light irradiation (Hao et  al. 2018). 
Intrinsically created sulfur vacancy and wurtzite-
sphalerite phase junction in ZnS instigated the 
visible light activated  H2 evolution as reported by 
Zhibin Fang (Fang et al. 2015). Fran Kurnia intro-
duced defects in the forbidden region of ZnS nan-
oparticles in a controlled manner by which visible 
light absorption was achieved (Kurnia et al. 2016). 
T. Mahvelati-Shamsabadi et  al. produced defect-
induced ZnS by ultrasonication, and it showed out-
standing performance in dye degradation under UV 
and sunlight irradiation (Mahvelati-Shamsabadi and 
Goharshadi 2017). Jaewon Lee prepared S vacancy 
controlled, porous, and hollow nanoplates of ZnS 
which had improved the UV-assisted photocatalytic 
activity than commercial material (Lee et al. 2018).

In UV-assisted photocatalytic dye degradation 
process, UV source is the major limitation for prac-
tical implementation due to its high cost and harm-
ful effect. Apart from this, photocatalysis itself has a 
drawback of light penetration through highly concen-
trated and non-transparent dye wastewater (Farhadi 
and Siadatnasab 2016). Therefore, there are require-
ments to welcome new and innovative technologies 
and catalysts for highly concentrated dye removal. In 
this perspective, semiconductor-assisted sonocatalytic 
dye degradation can eliminate the drawback of pho-
tocatalysis by its strong penetration capacity through 
any water medium (Min et al. 2012). The process is 
based on hotspot theory and sonoluminescence (Zhou 
et al. 2015; Khataee et al. 2018).

In this work, PVP-capped ZnS is synthesized 
hydrothermally. It contains sulfur vacancy intrinsi-
cally as obtained from PL spectra and theoretical 
analysis. Although such vacancy is not able to acti-
vate ZnS under visible light spectra, a different UV 
light-assisted photocatalytic RhB degradation is 
observed with low concentration of ZnS. Besides, 
there is a limitation in practical implementation of 
expensive and harmful UV sources of light. There 
are different ways to eliminate the UV photocatalysis. 
One process is to modify the catalyst, and another is 
to apply different catalytic processes. In addition, it is 
difficult to degrade highly concentrated wastewater 
by photocatalysis process. Here, simple sonocatalytic 
dye degradation is performed in presence of ZnS. It 
also exhibits impressive catalytic dye degradation 
within 100 min as a first time report.
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Experimental

Synthesis

All the reagents are of analytical grade and used with-
out further purification. In this synthesis, 4 mmol zinc 
acetate dihydrate (Zn(CH3COO)2,2H2O) and 6 mmol 
of thiourea are dissolved in 80 mL of ethylene glycol, 
and 0.320 g of polyvinyl pyrrolidone (PVP) is added 
into the solution. After stirring for 30 min, the final 
precursor solution is transferred into a 100 mL Teflon 
lined stainless steel autoclave. The system is put in a 
preheated oven at 180°C for 24 h. The precipitates are 
centrifuged with deionized water and ethanol alter-
nately. Then, the last contains are dried in a vacuum 
oven.

Computational details

Our density functional theory-based first-principles 
calculations are carried out using CASTEP code 
(Segall et  al. 2002) which implements a supercell 
approach to density functional theory. Generalized 
gradient approximation, namely the Perdew Burke 
Ernzerhof (PBE) functional (Perdew et  al. 1996), is 
used to describe the exchange and correlation terms. 
Vanderbilt ultrasoft pseudo-potentials (Vanderbilt 
1990) are used to represent the ion cores of zinc, cad-
mium, and sulfur atoms, and plane waves up to energy 
cut off 290  eV are considered in the calculations. 
Brillouin zone integrations are carried out within the 
Monkhorst–Pack scheme (Monkhorst and Pack 1976) 
using a k-point mesh having effective separation of 
0.071/Å in all directions. For geometrical optimiza-
tion, both the atoms and cell dimensions are allowed 
to fully relax using BFGS (Broyden-Fletcher-Gold-
farb-Shanno) scheme (Pfrommer et  al. 1997) until 
the total energy converged to less than 2 ×  10−5  eV/
atom, the maximum force converged to lower than 
0.05 eV/Å, and the maximum displacement is 0.002 Å. All 
calculations are performed in spin unrestricted man-
ner; however no spin polarization is observed in any 
of the considered models.

In the current work, a 2 × 2 × 2 supercell of ZnS 
(F-43 M, IT#: 216) containing 32 Zn and 32 S atoms 
is used. Optimized lattice parameters of all considered 
systems are listed below in Table 1.

Table  1 lists the optimized lattice parameters as 
obtained from DFT analysis.

Catalytic dye degradation

Photocatalytic activity of ZnS is studied under visible 
and UV light irradiation in the laboratory set up. UV 
light source is the tube of 40 W with maximum emis-
sion of 256.4 nm. The visible light source is mercury 
lamp with the specification of HPL-N 400 W/542 E40 
HG 1SL PHILIPS with luminous flux of 22,000  lm. 
Sonocatalytic dye degradation is investigated using 
probe sonicator (frequency = 20  kHz advanced probe 
sonicator PKS-750F with 13mm titanium probe, maxi-
mum output power = 750 W, 15% of maximum output 
amplitude is used) as a source of ultrasound by which 
RhB dye is degraded within 100 min.

Typically, 10  mg of ZnS is mixed in 60  mL of 
 10−5 mol  L−1 RhB solution and stirred in the dark for 
1  h to reach the adsorption–desorption equilibrium. 
Then, the system is placed under ultrasonic probe/vis-
ible/UV irradiation. For every experimental process, 
5 mL of reaction solution is taken as specimen at regu-
lar time intervals, and then, it is centrifuged and filtered 
to get rid of the existing catalyst sample. The absorb-
ance spectra of the collected specimens are examined 
by UV–Vis absorption spectroscopy. The experimental 
vessel is double walled with a continuous flow of cold 
water within the walls to sustain uniform temperature.

Degradation efficiency

The degradation efficiency is analyzed by  Ct/C0 vs. 
time plot, where  C0 is the initial concentration of dye 
and  Ct is the concentration of dye at time t in the pro-
cess of degradation. It also gives a perception about the 
percentage degradation of RhB dye in the presence of 
catalyst under ultrasound/visible/UV irradiation with 
respect to initial concentration of RhB. The equation is 
presented in Eq. (1) (Samanta et al. 2018).

Table 1  Optimized lattice parameters for ZnS

System A (Å) B (Å) C (Å)

ZnS 10.916 10.916 10.916
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Pseudo-first-order model

To define the reaction rate of catalytic dye degrada-
tion, a pseudo-first-order model is applied. As per 
condition, if  C0 is small enough, the reaction is called 
pseudo-first-order with a constant rate coefficient 
(Samanta et al. 2018):

where kapp is the apparent reaction coefficient.

Characterizations

The as-synthesized ZnS is characterized by X-ray 
diffraction (XRD Bruker, D8 Advance) operating 
at 40  kV and 40  mA in the 2Ɵ range of 20°–80° 
for assuring its phase. The structural analysis of the 
sample is done by a field emission scanning elec-
tron microscope (FESEM, Hitachi, S-4800) operated 
at an accelerating voltage of 5  kV. High-resolution 
transmission electron microscopy is also carried 
out to understand its morphology and crystallinity 
(HRTEM, JEOL-JEM) more accurately. The band-
gap from reflectance spectra and quantification of 
removal efficiency have been estimated by UV–Vis 
spectroscopy (Shimadzu, UV-3600). Photolumines-
cence study is performed using Edinburgh FLS980 
PL spectrometer.

(1)Degradation (%) =
C0 − Ct

C0

× 100

ln
C0

Ct

= kappt

Results and discussion

The solvothermally synthesized white powder is 
characterized by XRD in Fig. 1a. It shows the prime 
XRD peak positions at 28.8º, 47.86º, and 56.66º, 
which completely agree with the JCPDS card num-
ber 06–0566. Therefore, it confirms the formation 
of the zinc blende phase of ZnS with high purity. In 
addition, there is a visible broadening in XRD peaks 
which indicates the formation of small crystallites in 
the particles. The detailed study is discussed in our 
previous reports (Ghosh et al. 2017).

The FESEM image of ZnS presented in Fig.  1b 
defines the agglomerated ZnS nanoparticles with 
diameters 80 to 120 nm. Since PVP acts as a capping 
agent, the structure of ZnS is not exactly spherical in 
nature. Furthermore, the structural analysis of ZnS is 
carried out using TEM, and it is displayed in Fig. 2a. 
It is reassuring about the formation of ZnS nanopar-
ticles with diameter around 100 nm. Although exact 
spherical structure is not observed, ZnS comprises 
almost equal sized nearly spherical particles through-
out the distribution. To reassure the observation, the 
histogram has been presented in the inset of Fig. 2a 
on the basis of TEM image of ZnS. It exhibits that 
the diameter of ZnS nanoparticles lies between 75 to 
120 nm with the maximum number of nanoparticles 
containing the diameter of 100 ± 10 nm. It is depicted 
from the histogram that the mean diameter of ZnS 
nanoparticle is 100 nm with the standard deviation of 
11 nm.

To determine the exact Zn to S ratio in the sol-
vothermally synthesized ZnS nanopowder, the EDS 
analysis is carried out and shown in Fig.  2b–e. It 
is observed from Fig.  2b that there is no impurity 
in ZnS in the focused region. It is evident from the 

Fig. 1  (a) XRD pattern and 
(b) FESEM of solvother-
mally synthesized ZnS 
nanopowder
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spatial distribution of zinc and sulfur in Fig. 2c and d, 
respectively, that Zn and S are homogeneously spread 
throughout the region. Figure 2e confirms the actual 
stoichiometry of zinc and sulfur in ZnS in terms of 
atomic % which is almost 1:1 with an acceptable 
error bar.

To obtain the bandgap of ZnS, UV–Vis diffuse 
reflectance spectroscopy (DRS) is performed and 
shown in Fig. 3a. ZnS has high reflectivity of 80 to 
95% in the visible region. There is a sharp fall of 
reflectance curve at 355 nm. The bandgap  (Eg) is cal-
culated to be 3.73  eV from Kubelka–Munk formula 
considering ZnS a direct bandgap semiconductor 

(Lee and Wu 2017). Thus, such wide bandgap semi-
conductors can be activated by UV light irradiation 
only. The RAMAN spectra of ZnS show highly fluo-
rescent property in Fig. 3b. Hence, no characteristic 
peak shifting is obtained.

To verify the photoluminescence (PL) prop-
erty of ZnS (cf. Figure  3c), it is excited at 467  nm 
of wavelength equivalent to approximate energy of 
2.65 eV. The excitation results in a broad and strong 
green emission at 524  nm equivalent to around 
2.36 eV which was already presented in our previ-
ous report (Ghosh et  al. 2017). It is actually defin-
ing the luminescence in the green region of visible 

Fig. 2  (a) TEM with particle size distribution of ZnS, (b) EDS analysis, (c) Zn and (d) S mapping, (e) elemental distribution of ZnS 
nanopowder

Fig. 3  (a) Reflectance, bandgap (inset), (b) RAMAN spectra, and (c) photoluminescence spectra of ZnS nanopowder
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light wavelength as obtained from the chromaticity 
diagram. Therefore, since the exciting and emitting 
both energies are lower than the bandgap energy of 
3.73 eV, the intermediate states situated in the forbid-
den region are responsible for the photoluminescence 
property. To analyze such phenomenon, a schematic 
has been represented in Fig. 4a. It illustrates that in the 
forbidden region, there are intermediate states near 
the conduction band edges. By excitation of 467 nm 
of light, the electron gets excited from valance  
band (VB) to the intermediate states situated at 
2.65  eV from VB. Consecutively, by non-radiative 
intra-band transition, the electron positions at the 
intermediate state of 2.36 eV, and then, it transfers to 
the VB by radiative emission of 524 nm and recom-
bines with the hole in VB. Thus, the electron transfer 
process can be proposed in PL. Generally, two types 
of emissions are observed during the room tempera-
ture PL in II-VI semiconducting materials. One is 
intrinsic near band edge emission for bandgap prop-
erty, and another is extrinsic deep level emission due 
to the presence of defect or modification of electronic 
structure. Denzer et al. proposed that different lattice 
defects caused luminescence with broad spectrum in 
lower energy region compared to the bandgap energy 
(Denzler et  al. 1998). Such defects include intersti-
tials and vacancies of Zn and S in ZnS lattices. The 
vacancy and interstitial of Zn can act as localized 
acceptor and donor level, while the vacancy and 
interstitial of S can be treated as localized donor and 
acceptor states, respectively (Bhattacharjee and Lu 
2006). Hence, it can be assumed that such interesting 
PL property is primarily due to the experimentally 
induced lattice defects in ZnS.

For the convenience of calculation, vacancy of Zn 
and S in ZnS has been taken under considered. To 
find out the source of intermediate states in the for-
bidden region, first-principles computations of den-
sity of states (DOS) are conducted for pure ZnS and 
defect-induced ZnS with sulfur and zinc vacancy. 
Figure 4b describes that pure ZnS and ZnS with Zn 
vacancy have almost similar TDOS (Total DOS) 
with the same position of conduction band minima 
and valence band maxima. Sulfur vacancy in ZnS 
causes generation of new states near conduction band 
edge. Therefore, from this theoretical point of view, 
it can be said that the intermediate defect states are 
induced due to the sulfur vacancy near the zinc atom 
in ZnS. To elucidate the exact contribution of the 
orbital, PDOS (projected density of states) is calcu-
lated for Zn near S vacancy of ZnS. It elaborates that 
3s and 4p orbitals of Zn atom near sulfur vacancy 
have high impact in the formation of intermediate 
states, whereas d orbital has no participation in it (cf. 
Figure 4c).

To investigate the catalytic activity of synthesized 
ZnS nanopowder, the RhB organic dye is employed as 
pollutant in water, and 10 mg of ZnS is used as cata-
lyst under different types of irradiations. At first, pho-
tocatalytic RhB dye degradation is performed under 
two different light illuminations: (1) visible range and 
(2) UV range light. Figure 5a shows the absorbance 
spectra of RhB in presence of ZnS under visible light 
irradiation. Here, after certain adsorption of RhB on 
the catalyst surface after 1  h of dark stirring, ZnS 
exhibits poor catalytic degradation even after 100 min 
of illumination. Besides, Fig.  5b explores the UV-
illuminated photocatalysis and dye sensitization with 

Fig. 4  (a) Schematic representation of PL from ZnS, (b) TDOS of ZnS, and sulfur, zinc vacancy contained ZnS (c) PDOS of sulfur 
vacancy near Zn atom in ZnS
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efficient dye removal ability of ZnS. Here, the degrad-
ing absorbance spectra and disappearance of char-
acteristic peak of RhB after 100 min give the infor-
mation about complete dye degradation under UV 
irradiation. There is a visible blue shift of absorbance 
spectra which may indicate N-de-ethylation of RhB 
(Barras et al. 2012; Wu et al. 1998). Since UV light 
source is highly expensive and harmful, ultrasound-
assisted dye degradation is conducted here in the 
presence of ZnS as sonocatalyst, and corresponding 
absorbance spectra of RhB under ultrasound-assisted 
catalysis is presented in Fig. 5c. As it is observed that 
the absorbance peak of RhB is not totally disappeared 
even after 100 min of ultrasound irradiation, thus this 
pathway of catalysis in the presence of ZnS can be 
termed as moderate. It is not as efficient as UV light-
assisted catalysis but also not as poor as visible light-
driven photocatalysis. Additionally, it is environment-
friendly and also cuts the expense of UV source as 
well as eliminates the necessity of any external light 
source. Moreover, it is efficient in the removal of 
highly concentrated organic dyes.

To investigate the rate of reaction in dye degrada-
tion under different conditions, degradation profile 
of RhB  (Ct/C0 vs. time) is plotted at different time 
intervals in Fig.  5d. It exhibits that ZnS achieves 

adsorption–desorption equilibrium after 1  h of dark 
stirring and at t = 0 in Fig. 5d indicates the degrada-
tion of RhB in dark due to adsorption on the surface 
of ZnS. Here,  Ct and  C0 are the concentration of dye 
at time t and t = 0, respectively. The highest rate of 
degradation is observed under UV light illumination 
in the presence of ZnS photocatalyst, and poor deg-
radation of RhB is achieved under visible light keep-
ing the rest conditions unchanged, whereas sonication 
gives moderate rate of reaction in the same scenario.

The degradation percentage of RhB with time is 
plotted in Fig. 6a under different sources of activa-
tion. It shows that almost 30% of RhB is degraded 
by the adsorption on the ZnS surface during dark 
stirring. Rest 70% of dye is removed by different 
catalytic activities of ZnS under different con-
ditions. From the analysis, it can be understood 
that 95% of RhB is degraded under UV light irra-
diation in the presence of ZnS, whereas the deg-
radation percentage is 50% under visible light 
and 70% under ultrasound sonication in the same 
environmental condition. It can be assumed that 
the photocatalytic activity of ZnS is almost static 
under visible light irradiation since the degrada-
tion is only 20% under illuminating conditions. 
It is even quite obvious due to the wide bandgap 

Fig. 5  UV–Vis absorption 
spectra of RhB in different 
time intervals under (a) UV 
(b) visible light irradiation 
and (c) sonication employ-
ing ZnS as catalyst. (d) 
Degradation profile of RhB 
under different conditions 
in the presence of ZnS
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nature of ZnS. The impressive UV light activated 
photocatalysis can be attributed to the wide band-
gap of ZnS (Lee and Wu 2017; Fang et  al. 2011) 
and dye sensitization which is also very rare under 
such conditions. Sonocatalysis pursues a com-
pletely different phenomenon which is able to acti-
vate ZnS in degrading the RhB dye. To investigate 
the reaction kinetics rate of RhB in the presence 
of ZnS under UV light and sonication, pseudo-
first-order model is analyzed in Fig.  6b and c, 
respectively. The degradation rate of RhB (k) is 
2.43 ×  10−2   min−1 under UV radiation which is 
higher than k = 7.91 ×  10−3  min−1 under ultrasound 
in presence of ZnS as catalyst.

Mechanism

UV-irradiated photocatalytic RhB degradation is the 
most efficient among all the above-mentioned pro-
cedures in the presence of ZnS. It is quite common 
and vastly reported that ZnS is ideal as a UV catalyst 
due to its wide bandgap nature which is true in this 
case also. In addition, hypochromic shift in absorb-
ance spectra of RhB is observed under UV illumi-
nation which is not common. From the absorbance 
curve, it can be said that the degradation is not pure 
photocatalytic degradation, but there is a contribution 
of dye sensitization. RhB is well-reported to be sensi-
tized under visible light, but the phenomenon is quite 
different here. To explain such a process, a schematic 
is proposed in Fig.  7 for elaborating the mechanism 

Fig. 6  (a) Degradation percentage of RhB with time in the presence of ZnS as catalyst, pseudo-first-order reaction kinetics for (b) 
UV light (c) ultrasound irradiation

Fig. 7  Reaction mechanism 
of dye degradation under 
UV excitation in the pres-
ence of ZnS photocatalyst
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of RhB degradation using ZnS as photocatalyst. Fig-
ure  7 exhibits that ZnS gets excited by a UV light 
source creating electron–hole pair. It is already dis-
cussed that ZnS contains intermediate states which 
can act as trap states for excited electrons. After that, 
the electrons present in intermediate states recom-
bine with the holes in the VB emitting visible light 
in the green wavelength which may excite the RhB to 
perform the N-de-ethylation by its own (Barras et al. 
2012). The electrons excited in RhB due to intrinsic 
activation from catalyst are injected to the conduc-
tion band of ZnS. Then, RhB starts to be degraded by 
different ethylation reactions which are triethylrhoda-
mine, die-thylrhodamine, ethylrhodamine, and rhoda-
mine with different λmax at 539 nm, 522 nm, 510 nm, 
and 498  nm, respectively (Barras et  al. 2012; Wu 
et  al. 1998; Akir et  al. 2016). Thus, a visible shift-
ing in absorbance spectra of RhB is observed even 
under UV illumination, and RhB gets mineralized. 
The excited electrons participate in a reaction with 
molecular oxygen by forming superoxide radicals 
which initiate the complete degradation of RhB. The 
generated holes produce hydroxyl ions reacting with 
water molecules and degrade the organic dye produc-
ing  CO2 and water.

When the material ZnS is concerned, the sono-
catalytic dye removal is new to it. By ultrasonic irra-
diation, RhB is degraded using ZnS as sonocatalyst. 
There is a mechanism in Fig. 8 by which dye degra-
dation phenomenon has occurred (Farhadi and Sia-
datnasab 2016; Min et  al. 2012; Zhou et  al. 2015). 
Generally, acoustic cavitation bubbles are formed 
under ultrasound, and they tend to be bigger attaining 
a critical size. After that, they start to collapse, and 
a high pressure is generated within the bubbles. By 
focusing toward the center of the bubbles, a shock-
wave directs and creates high pressure (1000 atm) and 
temperature (5000 K) at the core (Farhadi and Siadat-
nasab 2016; Zhou et al. 2015). This is called a hotspot 
which participates in the pyrolysis of water forming 
hydroxyl ions. In addition, the temperature gener-
ated in hotspot produces plasma when it collapses. 
It causes emission of light covering a wide spectral 
region. This phenomenon is termed as sonolumines-
cence which excites the electron of ZnS from valence 
band to conduction band and generated intermediate 
states. After that, the excited electrons react with oxy-
gen resulting in superoxide radical which produces 
OH radicals. Additionally, the generated holes cause 

the creation of .OH. These radicals participate in the 
dye degradation procedure and transform the organic 
pollutant into  CO2 and water.

Conclusion

Hence, it can be concluded that sulfur vacant defect 
enriched zinc sulfide nanopowder is synthesized suc-
cessfully via one-step solvothermal process. Though 
it is not an efficient photocatalyst in visible light due 
to its wide bandgap, it is a very efficient photocata-
lyst under UV light which is not only for its bandgap 
but also the generated intermediate states. It is proved 
that such defects are induced by sulfur vacancy in 
ZnS. These states participate in sensitization of RhB 
under UV illumination by generating visible range 
photoemission. As it is well-known that UV light 
is expensive and hazardous to human health, ultra-
sound-assisted catalysis is introduced using ZnS as a 
catalyst. Although the removal rate of toxicity is not 
as fast as UV, it is efficient enough in degradation of 
RhB. Above all, the experiments are conducted with 
very low concentration of samples such as 0.16 g/L. 
Therefore, it is advantageous to separate the catalyst 

Fig. 8  Reaction mechanism of dye degradation under ultra-
sound irradiation in the presence of ZnS sonocatalyst
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from the water. In future, the sonocatalytic activity of 
ZnS can be improved by developing new composites.
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