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Abstract Fabrication of mesoporous ZnO nanorods
photocatalysts exploiting a facile one-pot regime of zinc
methoxide and F127 triblock copolymer as a surfactant
was conducted. The impact of decoration with platinum
on the photocatalytic efficacy, crystallinity, morpholo-
gy, and physical aspects of mesoporous Pt@ZnO nano-
rods accommodating various proportions of Pt was in-
terrogated. TEM micrographs affirmed that the fabricat-
ed mesoporous ZnO nanorods displayed nanorods ar-
chitecture and platinum was doped on the surface of
mesoporous ZnO nanorods as dots. The measured lat-
tice spacing of the (002) plane of ZnO was found to be
about 0.270 nm, affirming the development of the ZnO
lattice architecture. On the other hand, the consistent
lattice spacing of the (111) plane of Pt was 0.220 nm,
endorsing the progression of the metallic platinum lat-
tice architecture. Evidently, the surface area possessed
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by the fabricated mesoporous ZnO nanorods was
200 m*/g; up to our knowledge, this large surface area
wasn’t attained previously. Furthermore, the average
pore diameter and the total pore volume possessed by
the fabricated mesoporous ZnO nanorods photocatalyst
were 6.90 nm and 0.140 cm®/ g, respectively. Ciproflox-
acin (CIP) was photocatalytically degraded adopting
mesoporous ZnO nanorods photocatalyst with a perfor-
mance of 10%, whereas the photocatalytic performance
toward CIP destruction was enhanced up to 100% upon
doping ZnO nanorods photocatalyst with 0.6 wt.% Pt.
Also, doping of the mesoporous ZnO nanorods
photocatalyst with 0.6 wt.% Pt enhanced the photocat-
alytic degradation rate by 14 times compared with that
of mesoporous ZnO nanorods photocatalyst. This con-
clusion could be attributed to the development of a high
concentration of hydroxyl radicals, the accelerated
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dissipation of ciprofloxacin molecules to the active cen-
ters of the developed photocatalyst in addition to the
reduced light scattering owing to the large surface area
and high pore volume of the photocatalyst.

Keywords Triblock copolymer - Mesoporous ZnO -
Nanorods - Photocatalytic performance - Environmental
and health effects

Introduction

It is well-known that CIP, a fluoroquinolone antibiotic,
could dissipate easily to the environment owing to its weak
degradation via metabolism beyond utilization by humans.
Numerous investigations affirmed the detection of CIP
with pronounced quantities in the environment (Antonin
et al. 2015; An et al. 2010). Diverse methods have been
developed for degradation of CIP like membrane (Elhalil
et al. 2016), Fenton (Sacco et al. 2018), adsorption
(Mahjoubi et al. 2016), biological (Bonakdarpour et al.
2011), and coagulation/flocculation (Freitas et al. 2015)
treatments. Nevertheless, the trials to get rid of CIP via
these conventional regimens from wastewater were not
effective for complete degradation (Taheran et al. 2016;
Daughton and Ternes 1999; Bolong et al. 2009;
Chakraborty et al. 2017). Accordingly, many attempts
have emerged for pharmaceutical pollutants remediation
from wastewater via adequate, efficient, and eco-friendly
regimes. Owing to its great efficacy, photocatalysis has
been emerged as one of the most adequate regimes to
remediate CIP from the aquatic environment (Li et al.
2003; Ravelli et al. 2009; Yuan et al. 2016; Mohamed
et al. 2017; Mohamed 2009; Mohamed and Aazam 2013;
Mohamed et al. 2012; Mohamed and Salam 2014; Ismail
et al. 2006). Furthermore, photocatalyses are distinct by
their capability to remove very low doses of pollutants
from the aquatic environment in an efficient manner
(Abdennouri et al. 2015). Photocatalytic processes could
be accomplished by adopting numerous semiconductors
(Sohabi et al. 2017; Sobahi et al. 2018; Baoum et al. 2018;
Baoum et al. 2020; Sobahi and Amin 2020). Owing to its
efficient and powerful photocatalytic features, zinc oxide
(ZnO) has been emerged to the area of photocatalysis as an
adequate semiconductor (Vaiano et al. 2017; Ullah and
Dutta 2008; Suryavanshi et al. 2018) in comparison with
TiO, (Daneshvar et al. 2004; Kansal et al. 2007; Hariharan
2006). The most important advantage that characterizes
ZnO is its capability to absorb a greater fraction of solar
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spectra compared with that of titania (Miyauchi et al.
2002). Nevertheless, ZnO possesses a large band gap value
(3.3 eV) and so it displays fast reconsolidation amid the
photo-generated charge carriers (Djurisi¢c and Leung
2006). Accordingly, ZnO displays hindered photocatalytic
performance owing to the inefficient utilization of sunlight
(Sardar et al. 2017). It is well-known that the Vis light
fraction of the solar spectrum is about 40% and so, the
attempts of scientists are concerned with customization of
the ZnO catalyst to be applied beneath Vis light (Wang
et al. 2013; Kochuveedu et al. 2013). Many attempts have
been achieved to improve the application of ZnO catalyst
beneath Vis light through diminishing the reconsolidation
amid the photo-generated charge carriers like metal depo-
sition (Vaiano et al. 2018; Jaramillo-Paez et al. 2018;
Ligiang et al. 2006), hybridization with carbon materials
(Mu et al. 2011), combination with another semiconductor
(Yuetal. 2013; Ma et al. 2014), and decoration with metal
or non-metal elements (Vaiano et al. 2017; Qiu et al. 2008;
Sudrajat and Babel 2017; Bousslama et al. 2017). One of
the successful regimes to extend the life time of the gen-
erated charge carriers without combination (Sardar et al.
2017) is the noble metal deposition on the photocatalyst
which may be adopted via deposition of Au (Sarkar et al.
2011; Pirhashemi et al. 2018; Shekofteh-Gohari et al.
2018), Pt (Shekofteh-Gohari et al. 2018; Akhundi et al.
2019), Ag (Sudrajat and Babel 2017; Vijayan et al. 2020;
Wang et al. 2016; Wang et al. 2015; Georgekutty et al.
2008), and Pd (Wang et al. 1992). Furthermore, one of the
advantages that characterize noble metals is their great
capability to absorb light spectrum in the Vis light zone
owing to the presence of surface plasmon resonance
(Truong et al. 2013). Hence, deposition of noble metal
on ZnO semiconductor encourages the later to be applied
beneath Vis light region. In this situation, the adopted
semiconductors are acknowledged as plasmonic
photocatalysts (Tanaka and Kominami 2016; Wang et al.
2012). Evidently, excited electrons possess sufficient ener-
gy that makes them able to transfer to the conduction band
(CB) of the photocatalyst. Numerous investigations were
performed on the improvement of photocatalytic efficacy
of titania or ZnO via noble metal deposition (Liu et al.
2018; Cai et al. 2018; Zhang et al. 2016; Lin et al. 2009).
Furthermore, remediation of some pollutants was investi-
gated adopting the upgraded titania after noble metal de-
position (Plodinec et al. 2014; Jodat and Jodat 2014).

Up to our knowledge, there are insufficient examina-
tions about photocatalytic destruction of pharmaceutical
compounds beneath Vis light illumination adopting
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upgraded ZnO after modification with diverse noble
metals. Our work aims to examine the photocatalytic
destruction of CIP beneath Vis light irradiation adopting
upgraded ZnO after Pt deposition. Photocatalytic per-
formance of 0, 0.2, 0.4, 0.6, and 0.8 wt.% Pt@ZnO
nanorods photocatalysts was evaluated beneath Vis light
illumination. Besides, the effect of the fabricated nano-
rods photocatalysts dosage on the photocatalytic perfor-
mance toward CIP destruction was also examined.

Experimental
Chemicals and reagents

All chemicals and reagents in this inspection were appro-
priated without any treatment as acquired from Sigma-
Aldrich. The adopted chemicals were H,PtClg:6H,O and
Zinc methoxide, whereas absolute ethyl alcohol, acetic
acid (CH;COOH), and hydrochloric acid (HCI) were han-
dled as reagents. On the other hand, the F-127 surfactant
was appropriated as a block copolymer.

Fabrication of mesoporous ZnO nanorods photocatalyst

F-127 surfactant was endorsed as a template to fabricate
mesoporous ZnO nanorods photocatalyst supporting a
facile regime. ZnO, F-127 surfactant, ethyl alcohol,
hydrochloric acid, and acetic acid were appropriated
with the molar ratio of 1: 0.02: 50: 2.25: 3.75. Typically,
F-127 surfactant (1.6 g) was combined to 30 mL of
absolute ethyl alcohol and the mixture was agitated
magnetically for 1 h. After that, 3.5, 2.3, and 0.74 mL
of Zinc methoxide, CH;COOH, and HCI, respectively,
were introduced to the previous mixture. The attained
mixture was left to dry for 12 h in a relative humidity of
50-70% and a temperature of 40 °C to activate the
polymerization of both F-127 surfactant and zinc ions.
The resultant sample was left to dry for 12 h at a
temperature of 65 °C. The ultimate yield was fired for
4 h at 450 °C to attain mesoporous ZnO nanorods
(ZNO) photocatalyst.

Fabrication of Pt@ZnO nanorods photocatalysts

Deionized water (100 mL) was appropriated to disperse
the previously fabricated ZNO (100 mg). By dissolving
computed quantities of H,PtClg'6H,O in the prior dis-
persion, 0.2, 0.4, 0.6, and 0.8 wt.% Pt@ZnO nanorods

photocatalysts were attained. After that, the Xe arc lamp
(500 W) was applied for 1 day to irradiate the formerly
realized mixture. The product was then washed with
deionized water and ethanol three times, and subse-
quently, it was centrifuged at 10000 rpm. The attained
powder was heated for 2 h at 100 °C. The accessed
specimens were designated as 0.2 Pt@ZNO, 0.4
Pt@ZNO, 0.6 Pt@ZNO, and 0.8 Pt@ZNO.

Identification of the fabricated nanorods photocatalysts

Diverse tools were exploited to identify the fabricated
nanorods photocatalysts. X-ray diffraction (XRD) investi-
gation was achieved to inspect phase architecture of the
developed photocatalysts accommodating diverse propor-
tions of Pt. It was performed via the utilization of Cu Ko
radiation (A = 0.154 nm), whereas Thermo Scientific spec-
trometer (K-ALPHA) was endorsed to present the X-ray
photoelectron spectroscopy (XPS) evaluations. Micro-
structure and morphology of the fabricated nano-
specimens were explored via covering a transmission elec-
tron microscope (TEM) of JEOL kind. Chromatech device
of Nova series was appropriated to achieve adsorption-
desorption isotherms at 77 K using nitrogen gas. Such
analysis was adopted to attain surface area and surface
texture of the fabricated nanorods. Before adsorption ex-
periments, specimens were outgassed for2 hat 100 °C ina
vacuum. On the other hand, the UV-VIS-NIR spectropho-
tometer of the Jasco model was appropriated to inspect the
light absorption spectra. UV-Vis diffuse reflectance spectra
(DRS) were adopted to evaluate binding energy (E,) for all
fabricated nanorods photocatalysts. Furthermore,
photoluminescence emission spectra (PL) of the fabricated
nanorods photocatalysts were deliberated via covering the
fluorescence spectrophotometer of the Shimadzu model.
Finally, electrochemical workstation (Zahner Zennium)
was administered to appraise photocurrent intensity of
the fabricated nanorods photocatalysts.

Photocatalytic performance examination

Vis light (A>420 nm) illumination was practiced to
estimate the photocatalytic destruction of 10 ppm cipro-
floxacin (CIP) in aquatic solution over the fabricated
Pt@ZnO nanorods photocatalysts accommodating di-
verse proportions of Pt metal. To attain only spectra
with A >420 nm, a cut-off filter was exploited to erad-
icate spectra of A <420 nm. Xenon lamp (300 W) was
practiced on the upper part of the reactor containing the
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reaction mixture to accomplish the photocatalytic deg-
radation process. The lamp was afforded with a cooling
tube via water circulation to avoid heating. Photocata-
lytic degradation reaction was implemented in a 50-mL
special quartz reactor. Evidently, the computed quantity
of the fabricated nanorods photocatalyst was suspended
in the photo-reactor to inspect the photocatalytic de-
struction of the pharmaceutical compound (CIP). Air
was pumped to the suspension solution throughout the
photocatalytic reaction to supply oxygen in addition to
attain the required stirring. After certain intervals from
the beginning of the Vis light illumination, specimens
were withdrawn from the illuminated suspension. The
nanorods photocatalyst were detached from the illumi-
nated suspension via filtration. After that, UV—vis spec-
trophotometer was practiced to inspect the photocatalyt-
ic destruction performance (\yax of CIP =277 nm). The
photocatalytic performance (PP, %) was evaluated
adopting the following equation:

PP (%) = (Cy—C)/Co x 100

where C, is the initial concentration of CIP and C is
the remaining concentration of CIP after each time
interval of illumination.

Results and discussion

Phase architecture, microstructure, and morphology
of the formulated nanorods photocatalysts

Figure 1 presents XRD diffractograms of the fabricated
Pt@ZnO nanorods photocatalysts accommodating var-
ious proportions of Pt. Development of the ZnO phase
within the various specimens was confirmed through the
companionship of the peaks characterizing ZnO phase
(JCPDS-89-0510). Furthermore, diffractograms of the
doped nanorods photocatalysts emphasize that doping
of mesoporous ZnO with Pt metal does not modify the
crystalline phase of the fabricated ZnO. Nonetheless,
doping ZnO nanorods photocatalyst with Pt is detected
to shift the peak corresponding to (100) plane to a
reduced angle. Although this finding affirms that Pt
affects the position of the peak correlated to (100) plane,
but at the same time, the detected shift is so small that
impregnation of Pt into the ZnO matrix could not be
confirmed. Table 1 exhibits the predicted crystallite size
(D) adopting Scherrer relation in addition to the (100)
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peak shift magnitudes of the diverse fabricated nanorods
photocatalysts. It is obvious from the data of Table 1 that
pure ZnO nanorods photocatalyst possesses a crystallite
size of 5.0 nm, and this value is boosted to 7.0 and
6.0 nm upon doping ZnO nanorods photocatalysts with
0.6 and 0.8 wt.% Pt, respectively.

Figure 2 depicts the XPS measurements of the fabricat-
ed ZnO nanorods photocatalyst accommodating 0.6 wt.%
Pt. Figure 2 a presents two observable peaks at 1044.7 and
1021.6 eV that is characterized to Zn2p;, and Zn2ps,
respectively. This observation affirms the presence of >t
ions within the fabricated nanorods photocatalyst. Also,
there is a distinct peak realized at 530.1 eV which could be
correlated to Ols (Fig.2b). This observation endorses the
presence of an oxide lattice phase within the fabricated
nanorods photocatalyst. On the other hand, there are two
distinct peaks at 71.0 eV and 74.4 eV that characterize
Ptdf;, and PH4f ,5, respectively (Fig.2c). This inspection
confirms the existence of Pt metal within the fabricated
doped specimen.

Figure 3 presents HRTEM inspection of the various
fabricated ZnO nanorods photocatalysts accommodat-
ing 0 and 0.6 wt.% Pt. Figure 3a clarifies the nanorods
architecture of the fabricated mesoporous ZnO nano-
specimen. On the other hand, the HRTEM image of
the ZnO nanorods photocatalyst accommodating
0.6 wt.% Pt exhibits district dots with a particle size of
4.2-4.6 nm on the surface of the nanorods (Fig. 3b). The
observed dots are correlated to Pt metal particles that are
highly dispersed on the surface of ZnO nanorods. It is
clear that the inclusion of Pt metal dopant to ZnO
nanorods does not alter their architecture. Furthermore,
Fig. 3¢ exhibits the lattice-resolution micrograph of the
fabricated ZNO accommodating 0.6 wt.% Pt. Figure 3¢
depicts the appearance of dots on the surface of the
nanorods confirming the dispersion of dopant metal
atoms (Pt) as dots on ZnO nanorods. Development of
the ZnO lattice arrangement is affirmed by the appear-
ance of the lattice spacing of about 0.270 nm that
characterizes the lattice spacing of the ZnO plane
(002), whereas the development of the metallic Pt lattice
arrangement is corroborated by distinguishing the lattice
spacing of about 0.220 nm that characterizes the lattice
spacing of the Pt plane (111).

Table 1 exhibits the surface characteristics of the fabri-
cated ZnO nanorods photocatalysts accommodating di-
verse proportions of Pt. Table 1 illustrates that the specific
surface area possessed by ZnO nanorods photocatalyst
accommodating 0 wt.% Pt is 200 m%/g, whereas the
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Fig.1 XRD patterns of ZNO and
Pt@ZNO samples
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specific surface area of the fabricated ZnO nanorods
photocatalyst accommodating 0.8 wt.% Pt is 225 m*/g.
The data of Table 1 clarifies that the inclusion of metallic
Pt metal as dopant increases the specific surface areas of
the various ZnO nanorods photocatalysts and the enlarge-
ment in the surface areas is boosted by increasing the Pt
dopant percentage. Obviously, Table 1 depicts that the
average pore volume of the fabricated nanorods
photocatalysts increases with the enlargement of the Pt
metal dopant proportions. The parallel correlation between
average pore volume and specific surface area of the
fabricated nanorods photocatalysts could be correlated to
the pore widening of the various nanorods photocatalysts
as the result of metallic Pt inclusion.

Figure 4 exhibits adsorption-desorption isotherm of
the ZnO nanorods photocatalysts accommodating 0 and

Table 1 Textural properties of ZNO and Pt@ZNO samples

Sample Sger Vp Dp D
(n12/g) (cm3/g) (nm) (nm)
ZNO 200 0.140 6.90 5.0
0.2 Pt@ZNO 210 0.156 7.20 5.5
0.4 Pt@ZNO 215 0.170 725 6.2
0.6 Pt@ZNO 220 0.184 7.28 7.0
0.8 Pt@ZNO 225 0.198 7.29 6.0

Sper surface area, Vp pore volume, Dp pore diameter, and D
Crystallite Size

20

30 40 50 60 70
2-theta, degree

80

0.6 wt. It is obvious from the data of Fig. 4 that undoped
and doped nanorods photocatalysts possess isotherms of
type IV. The displayed isotherms are characterized by
adsorption of multilayer and subsequent capillary con-
densation. Furthermore, the mesoporous architecture of
the investigated nanorods photocatalysts is affirmed by
the appearance of hysteresis at higher relative pressure.
The data of Fig. 4 clarifies also that the average pore
diameter and the pore volume of the fabricated ZnO
nanorods photocatalyst accommodating 0.8 wt.% Pt
are 7.29 nm and 0.198 cm’g "', respectively. Evidently,
the surface area possessed by the fabricated mesoporous
ZnO nanorods photocatalyst is 200 m*/g which is seven
times greater than that of bulk ZnO; up to our knowl-
edge, this large surface area wasn’t attained previously.
It could be concluded that some sort of pore widening,
pore volume enlargement, and surface area growth
might occur for the doped ZnO nanorods photocatalysts
as the result of metallic Pt inclusion and the estimated
gap increases by boosting of the Pt dopant proportions.

Optical and optoelectronic properties of ZNO
and Pt@ZNO nanorods photocatalysts

It is well known that the optical features of the fabricated
nanocomposites affect greatly their photocatalytic per-
formance. Absorption spectra of the fabricated ZnO
nanorods photocatalysts accommodating diverse

@ Springer
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Fig. 2 High-resolution XPS spectra of 0.6 Pt@ZNO sample, where a Zn2p, b Ols, and ¢ Pt4f

proportions of metallic Pt are exhibited in Fig. 5. Fig- of the diverse nanorods photocatalysts. It is clear from
ure 5 depicts that the fabricated mesoporous ZnO nano- the data of Table 2 that the inclusion of 0.8 wt.% Pt to
rods photocatalyst accommodating 0 wt.% Pt exhibits mesoporous ZnO nanorods diminishes the band gap
no absorption in the Vis zone. Nevertheless, the inclu- energy from 3.20 to 2.62 eV.

sion of metallic Pt as a dopant is found to displace the The advancement of the optoelectronic features
absorption toward Vis zone (the absorption edges are of the fabricated ZnO nanorods photocatalysts
shifted to longer wavelengths). The registered absorp- could be also inspected by the PL spectra acquired
tion edges for the fabricated mesoporous ZNO nanorods by these specimens. The transformation of the

photocatalysts accommodating 0, 0.2, 0.4, 0.6, and photo-generated e’s from conduction band (CB)
0.8 wt.% Pt are 385, 440, 454, 475, and 476 nm, re- to valence band (VB) could be reflected from the
spectively. Obviously, the light absorption possessed by PL emission spectra. Figure 6 affirms that inclu-

ZnO nanorods photocatalyst accommodating 0.6 wt.% sion of metallic Pt, as dopant, to mesoporous ZnO
Pt is nearly the greatest one amid other nanorods nanorods photocatalysts enhances the PL peak
photocatalysts. Hence, the inclusion of Pt to ZnO nano- magnitudes from 386 nm (possessed by pure
rods photocatalysts boosts the light absorption toward ZnO nanorods photocatalyst) to greater emission

the Vis zone. Table 2 exhibits the band gap energies (E,) wavelengths, and at the same time, the PL peak

@ Springer
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Fig. 3 TEM images of ZnO(A) and 0.6 Pt@ZNO(B) and HRTEM image of 0.6 Pt@ZNO sample (C)

Fig. 4 Adsorption -desorption
isotherm of ZnO and 0.6
Pt@ZNO photocatalysts
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Fig. 5 UV-Vis spectra of ZNO
and Pt@ZNO samples
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magnitudes are boosted by increasing the metallic
Pt proportions. This observation demonstrates that
a mid-gap levels generated by metallic Pt inclusion
were diminished to reduced energy states. Further-
more, Fig. 6 clarifies that the mesoporous ZnO
nanorods photocatalyst accommodating 0.6 wt.%
Pt possesses nearly the minimum PL peak intensi-
ty (comparable with that of 0.8 Pt@ZnO nanorods
photocatalyst) emerged at 475 nm. It could be
concluded that inclusion of metallic Pt to ZnO
nanorods photocatalyst retards the electron-hole
recombination that attains nearly its minimal speed
by the inclusion of 0.6 wt.% Pt. Evidently, al-
though the PL peak intensity attained by 0.8
Pt@ZnO photocatalyst is the minimum, but due
to the economic reasons, we considered 0.6
Pt@ZnO photocatalyst as the preferable composi-
tion; especially, it possesses comparable value with

Table 2 Band gap energy of ZnO and Pt@ZnO samples

Sample Band gap
(eV)
ZNO 322
0.2 Pt@ZNO 2.82
0.4 Pt@ZNO 2.73
0.6 Pt@ZNO 2.63
0.8 Pt@ZNO 2.62

@ Springer

Wavelength (nm)

that of 0.8 Pt@ZnO photocatalyst. In conclusion,
incorporation of metallic Pt to ZnO nanorods
photocatalyst suppresses the electron-hole recombi-
nation speed through acting as a sink for the
photo-generated electrons that by its role, enhances
the photocatalytic performance.

Photocatalytic remediation of CIP using ZNO
and Pt@ZNO photocatalysts

Impact of doping with Pt

Photocatalytic destruction percentage of CIP vs
time of Vis light irradiation adopting the diverse
fabricated ZnO nanorods photocatalysts is exhibited
in Fig. 7. It is noticed from the data of Fig. 7 that
the photocatalytic destruction percentage of CIP is
boosted with the time of illumination for all inves-
tigated nanorods photocatalysts. Each specimen was
utilized with a dose of 0.8 g/L. It is obvious from
the data of Fig. 7 that the photocatalytic destruction
percentage of CIP over the mesoporous ZnO nano-
rods photocatalyst accommodating 0 wt.% Pt is
very small (10%), whereas the percentages of the
photocatalytic destruction of CIP over ZnO nano-
rods photocatalysts accommodating 0.2, 0.4, 0.6,
and 0.8 wt.% Pt are estimated to be 44, 75, 100,
and 100%, respectively, after 120 min of
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Fig. 6 Pl spectra of ZNO and
Pt@ZNO samples
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catalytic performance toward CIP remediation. Ev-
idently, mesoporous ZnO nanorods photocatalyst
accommodating 0.6 wt.% could photo-degrade CIP
completely after 120 min of Vis light illumination.
The enhanced photocatalytic performance of the
fabricated ZnO nanorods photocatalysts accommo-
dating diverse proportions of metallic Pt could be
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correlated to the depressed recombination amid the
photo-generated carriers, improved surface charac-
teristics, and boosted light absorption.

Impact of 0.6 Pt@ZNO doses on photocatalytic
performance and recyclability

Figure 8 demonstrates the consequence of the dose of
Pt@ZNO accommodating 0.6 wt.% Pt, as an optimum
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Fig. 8 Effect of dose of 0.6 100 -
Pt@ZNO photocatalysts on the
degradation of CIP
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construction, toward CIP destruction. This investigation
was performed utilizing 0.6 Pt@ZNO photocatalyst dose
between 0.4 to 2.0 gL', The data of Fig. 8 demonstrates
that photo-destruction of CIP is enhanced continuously up
on boosting 0.6 Pt@ZNO photocatalyst dose to 1.6 gL
Evidently, photocatalytic destruction of CIP is completed
(100%) after 75 min of Vis light illumination upon appli-
cation of 1.6 gL' of 0.6 Pt@ZNO photocatalyst, whereas
up on the application of 0.4, 0.8, and 1.2 gL' of 0.6
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Pt@ZNO photocatalyst, the photocatalytic destruction of
CIP reaches 65, 100, and 100% after 120, 120, and
105 min of Vis light illumination, respectively. This ob-
servation might be correlated to the boosted number of
active sites available to the photocatalytic reaction. Con-
trarily, adopting 2.0 gL' of 0.6 Pt@ZNO photocatalyst
diminishes the photocatalytic performance toward CIP
degradation to 90% after 120 min of Vis light illumination.
The reduced performance up on adopting a large dose of

Fig. 9 Effect of recycling of 0.6
Pt@ZNO photocatalysts on the 100 -
degradation of CIP S
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Fig. 10 Photocurrent transient
response of ZNO and Pt@ZNO
samples

Photocurrent, mA/cm?

——ZNO

——— 0.2Pt@ZNO
—— 0.4Pt@ZNO
— 0.6Pt@ZNO
—— 0.8Pt@ZNO

0.6 Pt@ZNO photocatalyst is ascribed to the accumulation
of the photocatalyst molecules that serve as a boundary to
the passage of the Vis light to photocatalyst surface. Ac-
cordingly, the number of accessible active centers is di-
minished which brings about reduced photocatalytic
performance.

Figure 9 exhibits the recycling experiment of
the utilized Pt@ZNO photocatalyst accommodating
0.6 wt.% metallic Pt. The attained measurements
of Fig. 9 indicate great performance and excellent
recyclability of the applied photocatalyst after ap-
plication many cycles. Evidently, the photocatalyt-
ic efficiency of the applied photocatalyst could
preserve about 98% of its reachable magnitude
after the 5th cycle. Hence, mesoporous Pt@ZnO

Fig. 11 The photocatalytic
mechanism of CIP oxidation by
using the Pt@ZNO photocatalyst

Degradation product «

photocatalyst accommodating 0.6 wt.% metallic Pt
exhibits pronounced reusability and could be ap-
plied as beneficial, economical, and commercial
photocatalyst for pollutant removal.

Figure 10 demonstrates the photocurrent transient
response of the mesoporous ZnO photocatalysts ac-
commodating diverse proportions of metallic Pt. The
photocurrent response for the pure mesoporous ZnO
nanorods photocatalyst and ZnO nanorods
photocatalyst accommodating 0.6 wt.% Pt is recorded
at 0.0044 and 0.023 mA cm 2, respectively. The
boosting of the photocurrent transient response as a
result of metallic Pt inclusion could be ascribed to the
improvement of charge separation in addition to the
enhancement of the electrical features.

OH

Degr adation product
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Mechanism of the photocatalytic action

Figure 11 exhibits the mechanism of the photocatalytic
destruction of CIP adopting Pt@ZnO photocatalysts
accommodating metallic Pt. Evidently, electrons and
holes are being photo-generated after Vis light illumi-
nation that is contributed to the photocatalytic action.
The photo-generated e’s in the conduction band (CB) of
ZnO can be readily transported to metallic Pt, which
functions as a sink of e’s. Accordingly, the rate of
electron-hole recombination is undoubtedly diminished.
Then, the generated charges react with adsorbed water
molecules and oxygen molecules to produce oxidized
species. Hence, CIP could be oxidized and degraded via
the generated hydroxyl radicals and oxygen molecules
to develop water and carbon dioxide molecules. The
importance of Pt inclusion is concemed in developing
intermediate-level beneath the CB of the ZnO in which
electrons and holes are being readily transferred. Fur-
thermore, the diminished E, and the enhanced surface
features contribute strongly to the improvement of the
performance of the Pt@ZnO photocatalysts.

Conclusion

The following outcomes could be driven based on our
investigation:

1- Mesoporous ZNO photocatalysts accommodating
diverse proportions of metallic Pt were successfully
fabricated via a facile one-pot regime.

2- The surface area possessed by the fabricated meso-
porous ZnO nanorods photocatalysts was 200 m?/g.

3- Inclusion of metallic Pt to ZNO nanorods
photocatalysts enhanced both surface features in
addition to the photocatalytic performance of the
doped ZNO photocatalysts.

4- Photocatalytic performance of the fabricated nano-
rods photocatalysts was tested via the degradation
of CIP as a model.

5- Complete photocatalytic destruction of CIP was
accomplished after 75 min of Vis light illumination
adopting 1.6 gL' mesoporous ZNO nanorods
photocatalyst accommodating 0.6 wt.% metallic Pt.

6- The pronounced photocatalytic performance of the
doped ZNO photocatalysts is ascribed to the sup-
pressed electron-hole recombination, diminished

@ Springer

band gap magnitudes, enlarged Vis light absorp-
tion, and improved surface features.

7- 0.6 Pt@ZNO photocatalyst exhibited great stability
accompanied by pronounced recyclability after
reusing five cycles.

8- This investigation provides an application of ZNO
photocatalysts for remediation of CIP from waste-
water adopting Vis light illumination.
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