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Abstract Pyrolysis of biomass is an important pro-
cess in which renewable biological waste is con-
verted to energy products and preliminary
chemicals. Therefore, various types of catalysts,
including metal oxides, have been investigated for
more efficient and selective biomass pyrolysis. Co,
Ni, and Cu single and mixed metal oxide (SMO
and MMO) nanoparticles (NPs) of 3 to 47 nm were
synthesized, characterized, and studies for their cat-
alytic activities towards pyrolysis of sugarcane ba-
gasse (PSCB). After mixing the oxide NPs with
bagasse, thermogravimetry was performed at a
heating rate of 5 °C/min from ambient temperature
to 600 °C. Thermogravimetric analysis followed by
kinetic calculations of the activation energy through
Coats−Redfern model show that all oxide NPs of
this study exhibit catalytic activity towards cellu-
lose and hemicellulose thermal degradation during
PSCB, in the order MMO > SMO. Cu-containing
SMO and MMO NPs show exceptional catalytic

activities compared to their analogues. On the other
hand, lignin degradation kept proceeding over a
wide range of high temperature, just like that of
the plain PSCB. This is considered selective en-
hancement of the catalysis of cellulose and hemi-
cellulose thermal degradation versus lignin degra-
dation, which is promising for improving the com-
position and quality of PSCB products. Only Cu-
containing double and triple MMOs were so cata-
lytically active that they catalyzed lignin degrada-
tion along with the cellulose and hemicellulose.
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Introduction

The escalating worldwide demand for energy necessi-
tates exploration of renewable energy sources. Biomass
is a renewable, non-fossil energy source that comprises
biodegradable organic matter. Biomass is found in di-
verse forms including agriculture residues and algae
(Cen et al. 2019; Janke et al. 2019; Lopez-Rodriguez
et al. 2019; Mohapatra et al. 2019). Several thermal
conversion processes have been developed to produce
energy from biomass (Deboni et al. 2019; Ikaheimo
et al. 2019; Khiari et al. 2019; Prager et al. 2019;
Thomas et al. 2019). Pyrolysis is an important process
to convert biomass to energy products such as valuable
bio-oil (Dhanalakshmi andMadhu 2019), gases (Bedoic
et al. 2019; Dahunsi 2019), and char (Paunovic et al.
2019). Sugarcane bagasse (SCB) is one of most abun-
dant agriculture residues that can be used as an energy
renewable source. The bio-oil and char produced from
the PSCB has calorific value higher than that of the
original bagasse. SCB is mainly composed of cellulose,
hemicellulose, and lignin in addition to traces of inor-
ganic minerals and organic extracts (Said et al. 2013).
Variation in the components of SCB results in compli-
cated pyrolysis processes and variation in the biofuel
yield (Motaung and Anandjiwala 2015). Catalytic py-
rolysis has been identified as a possible way to improve
the selectivity and upgrade the desired product (Li et al.
2019; Ozbay et al. 2019; Weldekidan et al. 2019), and
the catalyst is expected to directly impact the product
yield (Elbaba and Williams 2013; Hassan et al. 2016).
Pyrolysis of hemicellulose and cellulose produces main-
ly volatile and liquid products of low and moderate
molecular weights (desired), with very little solid char
(undesired) (Shen et al. 2010). On the other hand, char is
a major product of lignin pyrolysis (Stefanidis et al.
2014). For this reason, a catalyst is sought that selec-
tively and efficiently catalyzes the pyrolysis of hemicel-
lulose and cellulose and hinders the pyrolysis of lignin
during the process of PSCB.

In the recent years, metal oxide nanocatalysts have
attracted attention due to their efficient catalytic perfor-
mance compared to their bulk analogues (Ali et al. 2018;
Li et al. 2018; Ma et al. 2019; Muthuvinothini and Stella
2019). They have unique properties including magnetic,
optical, dielectric, and redox properties, along with large
surface area, high stability and reusability, which in turn
increase the catalyst efficiency. Accordingly, they have a
broad spectrum of applications (Ali et al. 2018;

Banković-Ilić et al. 2017; Gnanasekaran et al. 2017; Li
et al. 2017; Li et al. 2018; Ma et al. 2019;
Muthuvinothini and Stella 2019). MMOs are oxides
which contain two or more different types of metal
cations. As catalysts, they are known of enhanced dura-
bility, catalytic activity, and selectivity (Gawande et al.
2012). The diversity of the metal ions inside the MMO
crystal provides various oxidation states with different
coordination capacities, giving the surface a multifunc-
tional nature (Hassan and Tammam 2018; Khan et al.
2017; Liu et al. 2013). MgO, CaO, NiO, and CuO
separately showed selective catalytic PSCB for the pro-
duction of gases and liquids (Kuan et al. 2013). MMOs
such as zeolite and its derivatives have recently been
widely studied as catalysts for the PSCB and proved to
give excellent results (Balasundram et al. 2018a, b;
Cardoso et al. 2019; Ghorbannezhad et al. 2018;
Ghorbarmezhad et al. 2018). ZSM-5 is a common type
of zeolites composed of Na, Al, and Si mixed oxides
(Kumar et al. 2015). Sometimes, ZSM-5 was used as a
bare catalyst (Cardoso et al. 2019; Ghorbannezhad et al.
2018; Ghorbarmezhad et al. 2018), and in others, it
carried a promoter (Balasundram et al. 2018a, b).

To the best of our knowledge, the spectrum ofMMOs
studied in the catalysis of PSCB is limited. The purpose
of the present study is to investigate the catalytic effi-
ciency of Cu, Co, and Ni SMO NPs and their corre-
sponding double and triple MMO NPs on the PSCB at
low heating rate. Thermogravimetric analysis and kinet-
ic study were conducted to investigate the catalytic
activity and any synergetic behavior that may occur.
The catalysts were well characterized to investigate
possible correlations between their chemical and phys-
ical status with their catalytic nature.

Experimental

Materials

Copper (II) acetate monohydrate (Cu(OAc)2·H2O) (OX-
FORD laboratory reagent, 95%). Nickel acetate
tetrahydrate (Ni(OAc)2·4H2O) (Qualikems laboratory
reagent, 98%) cobaltous acetate tetrahydrate
(Co(OAc)2·4H2O) (BDH Chemicals Ltd., Poole En-
gland, 99.5%). Sodium hydroxide pellets (NaOH)
(LOBA CHEMIE Laboratory Reagent and Fine
Chemicals, Mumbai, India). Acetic acid glacial
(CH3COOH) (LOBA CHEMIE Laboratory Reagent
and Fine Chemicals, Mumbai, India, 99%). Sugarcane
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bagasse (SCB) was supplied from a near village Qus,
Qina Governate, Upper Egypt. All the chemicals were
used without further purification and distilled water was
used throughout this study.

Sugarcane bagasse

The sugarcanes were pressed to remove excess liquid
content, and the resulting biomass was washed 10 times
with distilled water, and then dried in the oven at 50 °C
for 24 h. The resulting dry stalks were ground with a
mill into a fine powder with average particle size of
about 0.5 mm. The bagasse powder was sieved to re-
move particles larger than 1 mm (see Fig. S1 in the
supplementary information).

Synthesis and characterization of metal oxide NPs

Synthesis of Cu SMO NPs

The synthesis of Cu SMO NPs was adapted from a
previously published procedure (Zhu et al. 2011). In
a 1000 mL round-bottom flask, 24 g (0.12 mol) of
copper acetate was dissolved in 600 mL distilled
water and 2 mL glacial acetic acid. The solution
was heated to boiling with magnetic stirring, and then
30 mL of 8 M aqueous NaOH was added onto the
boiling solution. The color converted immediately
from blue to black and a black suspension was pro-
duced. The solution was refluxed for 2 h, after which
the heat was removed, and the mixture was cooled to
the room temperature. CuO precipitate was centri-
fuged and washed several times with distilled water.
CuO NPs were calcined at 450 °C for 4 h. This
procedure is based on the following sequence of
chemical reactions:

Cu2þ aqð Þ þ 2 OH− aqð Þ→Cu OHð Þ2 sð Þ ð1Þ

Cu OHð Þ2 sð Þ →
Δ

CuO sð Þ þ H2O lð Þ ð2Þ

Synthesis of other SMO and MMO NPs

The same above procedure was followed, except that
cobalt (II) acetate and nickel (II) acetate were substituted
in place of copper (II) acetate according to the masses
given in Table 1.

Characterization of the synthesized NPs

The crystal structure, composition, and average crystal
size of the prepared NPs were determined with powder
x-ray diffraction. Measurements were made on a Bruker
AXS D8 with Cu Kα radiation (λ = 1.54060 Å) over a
range of 2θ = 10°–80° using a scan speed of 2°/ min. The
morphology and particle sizes were examined by trans-
mission electron microscopy (TEM) using a JEOL 2100
TEM (Japan) with an accelerating voltage of 200 kV.
The specific surface area of the prepared nanoparticles
was determined through Brunauer–Emmett–Teller
(BET) technique on a NOVA 3200 surface area analyzer.
Quantitative elemental analysis of the metals in the
MMONPs was performed via inductively coupled plas-
ma atomic emission spectroscopy (ICP-AES) on an
Agilent ICP-OES 5100 VDV with RF power 1.2 kW,
nebulizer flow 0.7 L/min, and plasma flow 12 L/min.

Catalytic activity

Thermogravimetry was conducted to investigate the cat-
alytic activity of single, double, and triple MMONPs on
PSCB. The sample was prepared by mixing the NPs
(either SMO or MMO) with SCB so that the NPs were
10 wt% of the whole sample mass. Physical mixing was
used until homogenous color was achieved. Thermal
decomposition of SCB with different SMO and MMO
NPs was monitored using a SDT Q600 V20.9 thermo-
gravimetric analyzer. The experiment proceeded under
inert atmosphere as the sample was flushed with constant
flow of 20mL/minN2 to avoid sample oxidation and any
gaseous or condensable product to be gathered. The

Table 1 Mole fractions and weights of the metal acetates added
during the synthesis

Co(Ac)2.4H2O
(Mw 249.1)

Ni(Ac)2.4H2O
(Mw 248.8)

Cu(Ac)2.H2O
(Mw 199.7)

x wt (g) y wt (g) 1-x-y wt (g)

Co 1.0 14.9 0.0 0.0 0.0 0.0

Ni 0.0 0.0 1.0 14.9 0.0 0.0

Cu 0.0 0.0 0.0 0.0 1.0 12.0

Co-Ni 0.5 7.5 0.5 7.5 0.0 0.0

Co-Cu 0.5 7.5 0.0 0.0 0.5 6.0

Ni-Cu 0.0 0.0 0.5 7.5 0.5 6.0

Co-Ni-Cu 0.3 4.5 0.3 4.5 0.4 4.8
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sample was heated from ambient temperature to 600 °C
with heating rate of 5 °C/min. At the end of the process,
the weight loss was recorded by thermobalance.

Results and discussion

Characterizations of the prepared NPs

X-ray diffraction

XRD patterns of the NPs are shown in Fig. 1. In the case
of copper oxide NPs, all the observed peaks can be
indexed to monoclinic CuO (JCPDS no. 80–1916) with
no extra peaks from impurities such as Cu2O, Cu(OH)2
or other precursor compounds. Diffraction patterns from
nickel oxide and cobalt oxide NPs also match the stan-
dard patterns for NiO and Co3O4 single phases (JCPDS
no. 04-0835 and JCPDS no. 42-1467), respectively.

Investigating the diffraction peaks for the double and
triple MMO NPs shows that they are a mixture of their
corresponding SMOs. Comparing with the XRD patterns
of the SMOs shows slight peak shifts (Table S1 in the
supplementary information) for theMMOs, whichmeans
changes in the interplanar distances (d). These changes
result from doping and formation of phases made of more
than onemetal (mixed phases). The FWHM (full width at
half maximum) of themost intense diffraction peaks were
measured in order to estimate the average crystal domain
size (DXRD) using Debye-Scherrer equation. The ob-
served peak widths are consistent with the nanometer
scale nature of the crystals. Table 2 shows DXRD values
of the SMO and MMO NPs, where they all seem to lie
within the same range of 3 to 47 nm.

Elemental analysis

ICP-AES analysis of the double and triple MMO NPs
shows that the precipitated metal ratios are very close to
those added during the synthesis (Table 2).

TEM analysis

Figure 2 a shows that the majority of CuO NPs are
spherical while some are irregular with larger sizes.
NiO NPs (Fig. 2b) take spherical, hexagonal, and square
shapes, while Co3O4 NPs (Fig. 2c) are irregular in shape.

MMO NPs (Fig. 2d–g) varied between spherical and
irregular shapes. We assume that the relatively small

shapes are the SMO NPs owing to their resemblance
with the results of Fig. 2a–c, and the large shapes are the
MMO NPs.

A summary of the morphology and the average par-
ticles sizes calculated from TEM (DTEM) for the SMO
and MMO NPs are tabulated in Table 2. The average
particle sizes are in relative agreement with the results
calculated by Scherrer equation (in the same table).
Some NPs look slightly larger in the TEM images than
XRD calculations, which indicate that the crystal grain
size may be even smaller than the particle size.

Looking at the size ranges calculated from the TEM
images and comparing those of the SMO, doubleMMO,
and triple MMO NPs, one can see that the sizes become
smaller as the number of constituting metals in the
MMO increases. The upper limit of the size ranges
decreases from 40s, 30s, to 20 nm for SMO, double
MMO, and triple MMO NPs, respectively. This phe-
nomenon agrees with the results reported in the litera-
ture, where doping has a considerable effect on the
morphology of the synthesized NPs (Yang et al. 2010).

Surface area

As given in Table 2, the specific surface area of the metal
oxide NPs takes the following trend double MMO NPs
< SMO NPs < Triple MMO NPs. This trend does not
correlate to the sizes, which may be due to possible
aggregations that overcome the effect of the particle sizes
on their surface area. According to a previous work by
our group, aggregation of the NPs has a negative effect
on the surface area and accordingly the catalytic activity,
regardless of the crystallite size (Ismail et al. 2017).

Evaluation of the catalytic activity of SMO and MMO
NPs on the PSCB

PSCB without metal oxide NPs

The thermogravimetric (TG) curve given in Fig. 3
(dashed line) describes the thermal decomposition of
SCB without NPs in two mass-loss stages. Each peak
in the derivative thermogravimetry (DTG) curve (solid
line in Fig. 3) represents a mass-loss step in the TG
curve (Garcıa-Perez et al. 2001; Mothé and de Miranda
2009). The first stage of mass loss occurred from 33 to
76 °C (step a in the DTG curve) is due to evaporation of
the entrapped moisture and light volatile compounds.
The second stage of mass loss takes place between 177
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and 539 °C, and it corresponds to the process of
PSCB itself, where 177 °C is the initial temperature
at which pyrolysis starts (Ti) and 539 °C is the final
temperature at which thermal degradation ceases (Tf).
This stage consists of four overlapping DTG steps.
The first and second steps (b and c in the DTG curve)
almost lie between 177 and 298 °C and correspond to
hemicellulose decomposition. The third step (d in the
DTG curve) represents the major mass loss, which is
due to the decomposition of cellulose (El-Sayed and
Mostafa 2015). At the maximum of this peak, the rate
of mass loss with respect to temperature change
reaches maximum. The temperature at this maximum
is referred to as Tm, which happens to be 345 °C for
the SCB of this study. The fourth step (e in the DTG
curve) relates to lignin decomposition and seems to
take place over a wide range of high temperature
(Garcıa-Perez et al. 2001).

Lignin decomposition is very difficult because of its
polymeric complexity. Therefore, it usually occurs at
temperatures slightly interfering with degradation of
hemicellulose and cellulose decomposition and beyond.
It is the step responsible for the charring and residue
production resulting from PSCB (Mortari et al. 2010).
Presence of residual mass at 600 °C refers to incomplete
lignin pyrolysis. The very shallow slope of the DTG
curve starting from 450 °C indicates very slight lignin
decomposition, which results in the presence of the
residual mass at the end of the run.

Degradation of cellulose and hemicellulose
during PSCB in presence of the NPs

Figure 4 a shows the TG curves of PSCB in absence and
presence of the SMO and MMO NPs over the whole
temperature range of the conducted TG experiment
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Fig. 1 XRD patterns of Co, Ni,
and Cu SMO NPs and their
corresponding double and triple
MMO NPs



(room temperature to 600 °C). This relatively wide
scale does not allow the reader to observe the fine
differences between one oxide and another. There-
fore, we rather focused on the mass changes within
the range of 250–375 °C in Fig. 4b, which delivers
the majority of the thermal decomposition. In Fig.
4b, Tm of the plain SCB was marked by a dotted
vertical line passing through the whole figure to
facilitate observation of any TG shifts with respect
to temperature. Figure 4 b shows that addition of
the metal oxide NPs results in shifts of mass losses
towards lower temperatures, indicating a catalytic
effect of metal oxide NPs on the thermal degrada-
tion of cellulose and hemicellulose (Ismail et al.
2017). Several publications in the literature report
catalytic activity of various metal oxides on the
pyrolysis of cellulose, cellulose derivatives, bio-
mass, and bioproducts (Arregi et al. 2018; Chang
et al. 2018; Donar and Sinag 2016; Hernando et al.
2017; Murugappan et al. 2016; Nguyen et al.
2016). The shifts become more pronounced upon
changing from SMO to double MMO and finally to
triple MMO NPs. This behavior reveals that the
metal oxide NPs of this study have the following
relative catalytic activity on the PSCB: triple MMO
NPs > double MMO NPs > SMO NPs, as will be
discussed below.

For more details and better understanding of the TG
behavior, Figs. 5, 6, and 7 give the DTG curves in
stretched scales covering the ranges 150–225 °C, 225–
375 °C, and 375–600 °C, respectively. Figure 5 presents
the DTG data at the beginning of the PSCB, and due to
the noisy nature of this range, linear fitting was done to
estimate Ti. The linear fitting and its results are shown in
Fig. S2 and Table S2 in the supplementary information,
respectively. Absence or presence of the NPs did not
seem to affect Ti as all samples exhibited Ti between 175
and 181 °C, and no trend was observed.

Figure 6 and Table 2 show that addition of the SMO
and MMONPs caused Tm to decrease. These results are
in good agreement with the literature and indicate a
catalytic effect of the SMO and MMO NPs on the
cellulose and hemicellulose thermal decompositions
(Liu et al. 2008). The lowest Tm was within 322–
321 °C in presence of Co-Cu, Ni-Cu, and Co-Ni-Cu
MMO NPs. In other words, these three MMO NPs
represent the highest catalytic activity towards thermal
degradation of cellulose and hemicellulose during
PSCB.T
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Degradation of lignin during PSCB in presence
of the SMO and MMO NPs

Co-Cu, Ni-Cu, and Co-Ni-Cu MMO NPs notably
catalyze lignin thermal degradation so that it appears
in Fig. 7 as a DTG peak distinguishable from those of
hemicellulose and cellulose. As shown in Fig. 7 and
Table 2, lignin thermal decomposition in case of
those three MMOs ends at Tf of 575, 563, 553 °C,
respectively. The rest of SMO and MMO NPs do not
make much difference in lignin decomposition in
comparison with plain SCB, where lignin decompo-
sition spreads over a wide range of high temperature,
except that lignin decomposition kept proceeding and
did not show Tf until 600 °C. At this point, it can be
concluded that Co-Cu, Ni-Cu, and Co-Ni-Cu MMO
NPs are so catalytically active that they catalyze
thermal degradation of lignin with cellulose and
hemicellulose. On the other hand, the rest of SMO
and MMO NPs show less catalytic activity, yet they
only catalyze cellulose and hemicellulose thermal
degradation without doing so to lignin, which can
be counted as selective catalysis.

Catalytic activity of the SMO NPs

Co3O4 NPs relatively resulted in more lowering in Tm
than NiO NPs do. In other words, Co3O4 NPs are more

catalytic for cellulose and hemicellulose thermal decom-
positions than NiO NPs. The presence of Co3O4 NPs
shifted Tm from 345 °C to 336 °C, while NiO NPs
shifted it down to 340 °C only. The reason of this slight
difference could be due to the large specific surface area
of Co3O4NPs compared to NiONPs (254 and 203m2/g,
respectively, as shown in Table 2). Large surface area
provides more contact between the catalyte (SCB) and
the active sites of the catalyst (metal oxide NPs), pro-
moting the decomposition of cellulose and hemicellu-
lose to occur at lower temperature (Li et al. 2008). On
the other hand, CuO NPs gave the highest catalytic
activity (Tm 332 °C) among the three SMONPs, despite
Cu NPs having the lowest specific surface area (173 m2/
g), illustrating the compromise between the chemical
nature and the specific surface area as factors affecting
the catalytic activity.

The three SMOs are p-type semiconductors
(Ahmad et al. 2018; Jiang et al. 2018; Quang et al.
2018) and accordingly rich in holes. These holes act
as good acceptors to the electrons of the cellulose and
hemicellulose function groups, which initiates the
breakdown of the polymeric unites (Ayoman and
Hosseini 2016). Moreover, the presence of vacant
d-orbitals of the transition metal cations (3d7 in
Co2+, 3d8 in Ni2+, and 3d9 in Cu2+) play an important
role as electron receptors too (Alizadeh-Gheshlaghi
et al. 2012).
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Fig. 2 TEM images of SMO NPs of a CuO, b NiO, c Co3O4, and MMO NPs of d Co-Cu, e Ni-Co, f Ni-Cu, and g Co-Ni-Cu
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Fig. 3 TG and DTG curves of
SCB at heating rate 5 °C/min

Fig. 4 TG curves of the PSCB with and without Co, Ni, and Cu SMO and MMO NPs. a Over the whole temperature range of study. b
Temperature scale zoomed within 250–375 °C, respectively. The dashed line in b represents Tm of plain SCB



The catalysis of pyrolysis by NPs is heteroge-
neous catalysis that involves adsorption of the reac-
tant function groups at active sites of the catalyst
surface. An unpublished work of us (in process of
writing) shows how specifically CuO NPs have su-
perior adsorption affinity compared to NiO and
Co3O4 towards Congo Red dye, which is an anionic
organic molecule. The negatively charged function
groups of Congo Red mimic the electron-rich cen-
ters of cellulose and hemicellulose, which may give
an explanation of the odd catalytic activity of CuO
to our bagasse pyrolysis.

Catalytic activity of the MMO NPs

According to the DTG curves and the data shown in
Table 2, MMO NPs show more catalytic activity to-
wards PSCB than MMO. The Tm values indicate that

all MMO NPs of this study are more catalytic to cellu-
lose and hemicellulose thermal degradation than SMO
NPs, even though the overall specific surface areas of
the double MMO NPs are much smaller than those of
the SMO NPs. This can be attributed to the dual or
multiple functionality of the components constituting
the double MMO NPs, which sums up to result in
synergetic catalysis (Gawande et al. 2012; Wachs and
Routray 2012). Moreover, the unit cell of the double and
triple MMO crystallites of Co, Ni, and Cu possess two
important characteristics that induce synergism in the
catalytic activity of the MMO NPs. On one hand, it is
the blend of the vacant 3d7, 3d8, and 3d9 orbitals. On the
other hand, the crystal distortions (John-Teller
distortions) due to the mutual doping of the two/three
cations into the crystals of the double/triple MMO pro-
duces electron and hole trapping centers. Both phenom-
ena raise the ability of the crystal to deal with the
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electrons of the reactant function groups and according-
ly boost the catalytic activity (Alizadeh-Gheshlaghi
et al. 2012).

The DTG curves show that the highest catalytic
activities belong to those MMOs of the Cu content.
The Cu-containing MMO NPs not only catalyze cellu-
lose and hemicellulose thermal degradation, but also
catalyze the stubborn lignin thermal degradation, which
is not overcome by any of the other SMO orMMONPs.
As discussed above in “Catalytic activity of the SMO
NPs,” we attribute unique high activity of the Cu-
containing MMO NPs to the high affinity and adsorp-
tion capacity of Cu oxides towards electron-rich centers.
Despite this surpassing catalytic activity, Cu-containing
MMO NPs lack the advantage of selectivity towards
cellulose and hemicellulose and induce thermal degra-
dation of lignin alongside.

Kinetics of the PSCB in presence and absence
of the SMO and MMO NPs

We applied kinetic modeling to judge the catalytic ac-
tivity towards the PSCB as a whole. The kinetic param-
eters were estimated by applying Coats-Redfern model
in the form of Eqs. 3 through 5 (Ceylan and Topçu 2014;
Marini et al. 1979):

lnG αð Þ ¼ −
E
RT

þ ln
AR
βE

� �
ð3Þ

G αð Þ ¼ −
ln 1−αð Þ

T2 for n ¼ 1ð Þ ð4Þ

G αð Þ ¼ 1− 1−αð Þ1−n
1−nð ÞT2 for n≠1ð Þ ð5Þ
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where G(α) is called the integral function of Coats-
Redfern model, α is the decomposition fraction at time
t, A is the pre-exponential factor, E is activation energy,
R is the universal gas constant, and n is the order of the
reaction.

This kinetic studywas based on the data obtained from
thermogravimetric analysis where α is maintained from
0.2 to 0.8. Figure S3 (Supplementary Information) shows
the linear plots of ln[G(α)] versus 1/T for the PSCB with
and without catalysts where the slope is the activation
energy (Ea). The reaction order n = 2 gave the best fit with
the highest linear regression factor (R2) for the PSCBwith
and without catalyst. Table 2 illustrates the kinetic data,
which shows the influence of the SMO and MMO NPs
on the PSCB. A considerable reduction in Ea was reached
by the addition of the metal oxide NPs. The reduction in
Ea and therefore the enhancement in the catalytic activity
took the order of SMO NPs < double MMO NPs < triple

MMO NPs. Co-Ni-Cu MMO NPs gave the largest re-
duction in Ea (highest catalytic activity). This result
agrees with the behavior of the shifts in the DTG peaks.

Conclusions

Co, Ni, and Cu SMO and MMO NPs show catalytic
activity towards PSCB as they reduce activation energy
of PSCB. More specifically, temperatures of cellulose
and hemicellulose thermal degradation descend in pres-
ence of the oxide NPs. MMO NPs show more catalytic
activity than SMO NPs for cellulose and hemicellulose
thermal degradation. Combination of more than one of
Co, Ni, and Cu in the oxide gives a blend of vacant d-
orbitals, hole-rich p-type semiconductors, and multi-
functional catalytic surface, which all result in syner-
gism in the catalytic activity. Presence of Cu in SMO
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and MMO NPs increases their catalytic activities com-
pared to their Cu-free analogues. This behavior is attrib-
uted to the exceptional adsorption capacity of CuO to
the electron-rich function groups/centers of the reactants
(studied by unpublished work). Lignin degraded over a
wide range of high temperature in absence and presence
of the oxide NPs, except NPs of Cu-containing MMOs.
This can be considered as a selective enhancement of the
catalysis of cellulose and hemicellulose thermal degra-
dation versus lignin degradation. This enhancement in-
creased from SMO to MMO NPs. On the other hand,
Cu-containing double and triple MMO NPs are so cat-
alytically active that they catalyze lignin thermal degra-
dation along with cellulose and hemicellulose. This high
catalytic activity and lack of selectivity have to be due to
the odd adsorption capacity and affinity of Cu oxides
towards electron-rich center, as referred to above.
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