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Abstract Maghemite (γ-Fe2O3) nanoparticles (NPs)
emerging as an artificial enzymes have demonstrated
an excellent peroxidase-like activity and thus gained
much attention in various biological and medical appli-
cations. But naked γ-Fe2O3 NPs are aqueously instable
and prone to aggregation in biological solutions such as
blood plasma. Surface coating for γ-Fe2O3 NPs is thus
necessitated to achieve better stability and biocompati-
bility. In this work, three typical coating layers including
poly(lactic-co-glycolic acid) (PLGA), carboxymethyl
chitosan (CMCS), and human serum albumin (HSA)

were utilized as modifiers to decorate γ-Fe2O3 NPs
and fabricate compound NPs including NPPLGA,
NPCMCS, and NPHSA, respectively, and subsequently,
the peroxidase-like activity of these NPs was evaluated
with colorimetric analysis of cholesterol detection. The
results showed that the surface coating barely affected
peroxidase-like activity of NPs but could remarkably
amend stability in the determined pH and temperature
ranges. As evidenced with kinetic parameters, the enzy-
matic catalysis of NPs accorded well with Michaelis–
Menten kinetics. Moreover, the catalytic assay demon-
strated that the fabricatedNPPLGA, NPCMCS, and NPHSA

showed a capable catalytic activity using cholesterol as
substrate, and especially, the NPPLGA showed a higher
peroxidase-like activity compared with the NPCMCS and
NPHSA. In conclusion, herein we obtained a coating
layer-modulated peroxidase-like activity of γ-Fe2O3

NPs for a visualized analysis of cholesterol, which could
be extended for cholesterol detection in biomedical
analyses in the future.
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Introduction

Magnetic iron oxide nanoparticles (IONPs), mostly
magnetite (Fe3O4) and maghemite (γ-Fe2O3), have been
widely used in biomedical applications including
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magnetic targeting and gene/drug delivery (Mahmoudi
et al. 2009; Alexiou et al. 2000; Kurczewska et al. 2018),
tumor therapy (Chung et al. 2011; Zhu et al. 2017), mag-
netic resonance imaging (Soares et al. 2016; Hemalatha
et al. 2018), cell labeling and tracking (Olsvik et al. 1994;
Gupta andCurtis 2004;Deda et al. 2017), bio-isolation and
analysis (Min et al. 2012; Pérez et al. 2015), and magnetic
hyperthermia (Ebrahimisadr et al. 2018; Kalidasan et al.
2016). Recently, IONPs, found with an artificial peroxi-
dase activity, have attracted enormous interest due to their
roles in biomedical diagnostics and therapeutics (Liang
et al. 2013; Yang et al. 2017; Cormode et al. 2017; Gao
et al. 2017). However, Fe3O4NP ferrous ionsmay raise the
toxic risk in biomedical applications (Chen et al. 2012),
and thus, the oxidized γ-Fe2O3 NPs could be a superior
candidate for a long-term bioassay.

Compared with naturally occurring peroxidase en-
zymes, IONPs are generally used as an artificial perox-
idase with low cost and high chemical stability (Wang
et al. 2017). IONPs possess an almost unchanged cata-
lytic activity over a wide range of temperature and pH,
and can be easily synthesized and purified (Lin et al.
2014). With these properties, IONPs have more appli-
cations, such as biosensing and detection (Hasanzadeh
et al. 2013), immunoassays (Chen et al. 2018; Peterson
et al. 2015), antibacterial agents (Situ and Samia 2014),
and cancer diagnostics and therapy (Guimaraes et al.
2018; Zhu et al. 2017). However, the naked IONPs
without surface coating or modification are erratic and
can readily aggregate and precipitate in aqueous solu-
tions and blood plasma, which seriously hinders their
applications either as artificial enzymes in vitro or
in vivo (Wang et al. 2018). To provide IONPs with such
characteristics including better water-solubility, stabili-
ty, low cytotoxicity, and excellent biocompatibility, ex-
tensive efforts were devoted to fabricate nanoparticles
with coating layers, such as polymers (Ishihara et al.
2010), dendrimers (Boni et al. 2013), albumins (Chen
et al. 2015; Kim et al. 2017), and polysaccharides
(Bertholon et al. 2006; Wan et al. 2017).

Surface coating may have effects on peroxidase-like
activity of Fe3O4 NPs in biomedical applications (Liu
and Yu 2011). For instance, the polyethylene glycol
(PEG) coating of Fe3O4 NPs resulted in a decrease in
intrinsic peroxidase-like activity and led to a change in
activity (Vallabani et al. 2017). However, compared
with Fe3O4 NPs, limited information is available about
the coating effects on peroxidase-like activity of γ-
Fe2O3 NPs as peroxidase mimics.

In this work, γ-Fe2O3 NPs were coated with three
typical molecules including poly(lactic-co-glycolic ac-
id) (PLGA), carboxymethyl chitosan (CMCS), and hu-
man serum albumin (HSA) to fabricate complex γ-
Fe2O3 NPs, i.e., NPPLGA, NPCMCS, NPHSA, and then,
the peroxidase-like activity of these fabricated NPs was
investigated using cholesterol as a substrate via a chro-
mogenic reaction of 3,3′,5,5′-tetramethylbenzidine
(TMB) through reduction of hydrogen peroxide
(H2O2) to H2O. In general, in the present work, we
attempted to develop a surface-modified γ-Fe2O3 NP
with modulated catalytic activity more suitable for bio-
medical applications in the future.

Experimental section

Materials

Superparamagnetic γ-Fe2O3 NPs utilized in this study
were prepared from magnetite (Fe3O4) according to
methods proposed elsewhere (Qu et al. 1999; Sun et al.
2004). HSA, PLGA (MW = 7000–17,000), CMCS,
3,3′,5,5′-tetramethylbenzidine (TMB), hydrogen
peroxide(H2O2), sodium tripolyphosphate (TPP), and Tri-
ton X-100 were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Cholesterol, cholesterol oxidase (CHOx,
1KU) and cholesterol esterase (1KU)were purchased from
Aladdin Industrial Corporation (Shanghai, China). Perox-
idase (POD, ≥ 250 U/mg), glucose, glycerin, and phenol
were obtained from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China). Other reagents and chemicalswere
purchased from local commercial suppliers and were of
analytical reagent grade, unless otherwise stated. Deion-
ized (DI) water (Milli-Q, Millipore, Bedford, MA) was
used to prepare aqueous solutions.

Preparation of γ-Fe2O3 NPs and PLGA, CMCS,
and HSA modification

In the present study, the magnetic γ-Fe2O3 NPs were
firstly synthesized as superparamagnetic core
nanocarriers through chemical co-precipitation method
as previously described (Qu et al. 1999; Sun et al. 2004),
and more information about synthesis of γ-Fe2O3 NPs
are provided in the Supplementary Information (SI).

The solvent evaporation method was used to prepare
the PLGA-modified magnetic nanoparticles (NPPLGA) as
previously described elsewhere (Varshosaz and Soheili
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2008; Zhao et al. 2013). In brief, 100 mg PLGA was
dissolved in 2 mL dichloromethane and added with
30mgγ-Fe2O3NPs to obtain an organic dispersion, which
was subsequently poured into 20mL3%polyvinyl alcohol
(PVA) solution to form a stable emulsion by a constant
sonication. The formed NPPLGAwere firstly washed three
times under magnetic field using DI water, then lyophi-
lized, and stored at 4 °C until use.

The CMCS-modified magnetic nanoparticles
(NPCMCS) were synthesized through TPP cross-linking.
Briefly, 50 mL of TPP (1 mg/mL) was mixed with γ-
Fe2O3 (10 mg/mL) and vigorously stirred for 30 min at
60 °C. The mixture was kept for 12 h at room temperature
(RT) and washed three times with DI water to obtain
TPP@γ-Fe2O3. Ten milliliters of CMCS solution (1%
w/v, dissolved in acetic acid) was added into the TPP@γ-
Fe2O3 and allowed to react for 30 min in ultrasonic emul-
sifier. The preparedNPCMCSwere washed three times with
DI water and stored at 4 °C for further use.

The preparation of magnetic HSA-modified nanopar-
ticles (NPHSA) was followed with previously reported
protocol with minor modifications (Wang et al. 2009).
More information was provided in the Supplementary
information (SI).

Stability analysis of the prepared NPPLGA, NPCMCS,
and NPHSA

The stability of the prepared NPPLGA, NPCMCS, and
NPHSA in DI water was analyzed according to a previ-
ously described protocol (Wang et al. 2009). The com-
posites including NPPLGA, NPCMCS, and NPHSA

(100 μg/mL) were ultrasonically dispersed in DI water
at RT. Subsequently, the stability of various composites
was detected by measuring the optical absorbance of the
dispersions at predetermined time points at 480 nm by
using a UV-Vis spectrophotometer.

Measurement of peroxidase-like activity
of the composites

The peroxidase-like activity of the prepared NPPLGA,
NPCMCS, and NPHSA was investigated in 1.5-mL tubes
with the concentration ranging from 5 to 200 μg/mL.
Then, 25 ng POD was used as a positive control in 200
μL reaction buffer (0.2MNaAc, pH 3.6) in the presence
of 12.8 μL of H2O2 (30%) for γ-Fe2O3 NPs, NPPLGA,
NPCMCS, and NPHSA. Afterwards, 0.2 μL of 100 μM
TMB was added as the substrate. Color reactions were

immediately observed. After incubation at 37 °C for
15 min in the dark, photographs were taken and the
supernatant was measured by the UV-Vis spectropho-
tometer and the maximal absorbance of oxidized TMB
(oxTMB) was recorded at 652 nm 6 h later; the reactions
were stopped by adding 50 μL of 0.5 M sulfuric acid
(H2SO4).

To analyze the reaction kinetics, steady-state kinetics
assays of NPPLGA, NPCMCS, and NPHSA (50 μg/mL)
toward TMB oxidation were carried out with varied
concentrations of the substrate TMB or H2O2 at 37 °C.
The absorbance of the reaction solution was monitored
in time-scan mode at 652 nm (Josephy et al. 1982). The
kinetic parameters of the catalytic reaction were deter-
mined on the basis of the Lineweaver–Burk plots of the
double reciprocal of the Michaelis–Menten equation:

1

ν
¼ Km

Vm

1

S½ � þ
1

Km

� �

where v is the initial velocity of the reaction, Vmax is the
maximal rate of reaction, [S] is the substrate concentra-
tion, andKm is theMichaelis−Menten constant, which is
equivalent to the substrate concentration at which the
rate of conversion is half ofVmax and denotes the affinity
of the enzyme (Dong et al. 2012). Vmax was calculated
into molar change from UV absorbance on the basis of
the equation of A = εlc (where A is the absorbance, ε is
the absorbance coefficient, l is the path length, and c is
the molar concentration) with ε = 3.9 × 104 M−1cm−1

and l = 10 mm (Singh 2016).
In addition, 0.2 M NaAc (pH 3.0–5.5) was used to

study the influence of reaction buffer pH on the relative
activity of the prepared NPPLGA, NPCMCS, and NPHSA,
and the varying incubation temperature (from 30 to
55 °C) was also examined to reveal the influence on
the relative catalytic activity of the prepared nanoparti-
cles under identical conditions.

Colorimetric analysis of cholesterol

Cholesterol detection was performed as follows: (i)
10 μL of CHOx (100 UN/mL) was mixed with
100 μL of cholesterol with different concentrations in
Triton X-100 solution (0.3%) and added with 90 μL
PBS buffer (0.5 mM, pH 7.0), followed by incubation at
37 °C for 30 min. (ii) 1.96 μL of 0.6 mM TMB; 100 μL
of γ-Fe2O3, together with NPPLGA, NPCMCS, or NPHSA

(250μg/mL); and 200μL ofNaAc (0.2M, pH 3.6) were
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Scheme 1 Schematic illustration for catalysis detection of the peroxidase-like activity of NPPLGA, NPCMCS, and NPHSA in the TMB−H2O2

system.

Fig. 1 TEM images of γ-Fe2O3 NPs (a), NPCMCS (b), NPPLGA
(c), and SEM image of NPHSA (d). The γ-Fe2O3 NPs, NPCMCS,
NPPLGA, and NPHSA response to an external magnetic field in DI

water (e), and the magnetic-responsiveness numbered 1, 2, 3, and
4 was corresponding to γ-Fe2O3 NPs, NPCMCS, NPPLGA, and
NPHSA, respectively
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added into the above solution and then incubated at
37 °C for 10 min. (iii) The absorbance of the obtained
solution was measured at 652 nm.

Total cholesterol detection in fetal bovine serum

Ten microliters of the diluted serum was incubated with
50 μL of cholesterol esterase (0.05 U/mL) for 15 min at
37 °C in the dark, and then, 40 μL PBS buffer solution
was added up to 100 μL solution. The cholesterol de-
tection was performed as mentioned above.

Image acquisition and analysis

Bright-field images were acquired using an inverted
microscope (Eclipse TE 2000-U) equipped with a

CCD camera (CV-S3200). Software Image-Pro Plus®
6.0 (Media Cyternetics) and SPSS 17.0 (SPSS Inc.)
were used to perform image analysis and statistical data
analysis, respectively. The quantitative data were pre-
sented as means ± standard deviation (SD) for each
experiment. All experiments were performed with three
replicates, and the results presented were from represen-
tative experiments.

Results and discussion

In the present work, we attempted to construct the layer-
coating nanoparticles, i.e., NPPLGA, NPCMCS, and
NPHSA, and evaluate whether the surface modification
would modulate the catalytic activity of γ-Fe2O3 NPs.

Fig. 2 XRD pattern of γ-Fe2O3 NPs (a). The FT-IR spectra of the γ-Fe2O3 NPs, NPPLGA (b), NPCMCS (c), and NPHSA (d)
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The detection mechanism is illustrated in Scheme 1
(Gao et al. 2017). With the catalysis activity of the
prepared NPPLGA, NPCMCS, and NPHSA, TMB was ox-
idized by H2O2 to form oxTMB showing an obvious
blue color change in solutions. The absorbance of
oxTMB at 652 nm was used to monitor the concentra-
tion of H2O2 (Josephy et al. 1982). Cholesterol used as a
model analyte was under detection, since H2O2 is the
oxidative product of cholesterol in the presence of
ChOx; cholesterol can be indirectly detected.

The morphology and structure of γ-Fe2O3 NPs,
NPPLGA, NPCMCS, and NPHSA were characterized with
the transmission electron microscope (TEM) and scan-
ning electron microscope (SEM), Fourier-transform

infrared spectrum (FT-IR), and X-ray diffractometer
(XRD). As shown in Fig.1, the prepared γ-Fe2O3 NPs
were morphologically uniform, and the diameter ranged
from 10 to 15 nm (Fig. 1a), and the finalized NPCMCS

and NPPLGA also displayed a mono-dispersed sphere
with a uniform size of approximately 40–60 nm
(Fig. 1b, c). Figure 1d shows the SEM image of the
prepared NPHSA, which indicated that the NPHSA were
uniform and round with an average diameter of 1 μm
and well-distributed, even when dried. In addition, the
analysis of the magnetic responsiveness of the prepared
nanoparticles showed that the satisfactory magnetic-
responsive properties were obtained in DI water with
external magnetic fields (Fig. 1e).

Fig. 3 a Peroxidase-like activity analysis of surface-modified
magnetic nanoparticles, including γ-Fe2O3 NPs, NPPLGA,
NPCMCS, and NPHSA catalyze oxidation of peroxidase substrates
TMB in the presence of H2O2 to produce blue-color reactions.
Typical reactions are shown (a) γ-Fe2O3 + TMB + H2O2, (b)
NPPLGA + TMB + H2O2, (c) NPCMCS + TMB + H2O2, (d) NPHSA
+ TMB + H

2
O2, (e) negative control (H2O2 + TMB), (f) positive

control (POD + TMB + H2O2), (a1–a6, b1–b6, c1–c6, d1–d6: 5, 10,
25, 50, 100, 200 μg/mL). b The peroxidase-like activity of γ-
Fe2O3 NPs, NPPLGA, NPCMCS, and NPHSA after 6 h (various

reaction systems corresponding to a). c(a1–f) and d(a1′–f′) stopped
the reactions using H2SO4 (0.5 M), corresponding to (a, a1-f) and
(b, a1′–f′), respectively. e Typical absorption spectra of TMB–
H2O2. Reaction solutions catalytically oxidized by γ-Fe2O3 NPs
(a1-a6), NPPLGA (b1-b6), NPCMCS (c1-c6), NPHSA (d6), negative
control (e), positive control (f) in the presence of 12.8 μL H2O2

and 200 μg/mL various nanoparticles. fAfter 6 h reaction, UV-Vis
spectrum of a′6, b′6, c′6, d′6, e′, and f′ correspond to a6, b6, c6, d6, e,
and f
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The X-ray powder diffraction (XRD) pattern of the
prepared nanoparticles proved its crystalline nature, and
their peaks matched well with standard γ-Fe2O3 reflec-
tions. Although the product was brown, yet the α-Fe2O3

phase was not observed (Fig. 2a). Figure 2b–d show the
FT-IR spectra of the γ-Fe2O3 NPs, NPPLGA, NPCMCS,
and NPHSA; the results confirmed that the γ-Fe2O3 NPs
were successfully coated by PLGA, CMCS, and HSA,
in which the characteristic adsorption band of Fe–Owas

observed at 584 cm−1, 586 cm−1, and 616 cm−1

respectively.
The stability of the prepared NPPLGA, NPCMCS, and

NPHSA was assayed with transmittance in DI water at
different time points. As presented in Fig. S1, the data
indicated that the NPPLGA, NPCMCS, and NPHSA could
be uniformly dispersed and remained relatively stable in
DI water.

The peroxidase-like activity of prepared γ-Fe2O3

NPs, NPPLGA, NPCMCS, and NPHSA was evaluated by
the catalytic oxidation of TMB in the presence of H2O2.
Magnetite nanoparticles could catalyze the oxidation of
the typical peroxidase substrates such as TMB in the
presence of H2O2 to produce a blue color reaction with
maximum absorbance at 652 nm. As shown in Fig. 3a,
the prepared γ-Fe2O3 NPs, NPPLGA, NPCMCS, and
NPHSA produced a blue color in the presence of H2O2

and TMB, indicating that these nanoparticles have re-
markable peroxidase-like activity and can catalyze the
TMB oxidation. The enzymatic activity was further
characterized by detecting the absorption peaks of
oxTMB at 652 nm. The corresponding absorption spec-
tra are shown in Fig. 3e, in which no absorption peak
was recorded in negative control (TMB–H2O2) solution
without a catalyst, while the other systems with different
catalysts all had absorption peaks at 652 nm. Further-
more, the reaction time has certain effect on peroxidase-
like activity. After 6 h, the blue color of the prepared γ-
Fe2O3 NPs, NPPLGA, NPCMCS, and NPHSA have

Fig. 4 Absorbance of TMB solution at different time points for
different catalytic reactions: (a) negative control (H2O2 + TMB),
(b) NPHSA + TMB + H2O2, (c) NPCMCS + TMB + H2O2, (d)
NPPLGA + TMB + H2O2, (e) γ-Fe2O3 + TMB + H2O2. (f) positive
control (25 ng POD + TMB + H2O2). Reaction condition: 0.6 M
H2O2, 100 μMTMB, 50 μg/mL γ-Fe2O3 NPs, NPPLGA, NPCMCS,
and NPHSA in 0.2 M NaAc buffer (pH 3.6), 37 °C

Fig. 5 Comparison of the stability of γ-Fe2O3 NPs, NPPLGA,
NPCMCS, NPHSA, and natural enzyme POD. Peroxidase activities
were measured at 30–55 °C (a) or pH 3.0–5.5 (b) under standard
conditions. a 25 ng POD +100 μM TMB + 0.6 M H2O2. b 50 μg/

mL γ-Fe2O3 + 100 μMTMB + 0.6 M H2O2. c 50 μg/mLNPPLGA
+ 100 μM TMB + 0.6 M H2O2. d 50 μg/mL NPCMCS + 100 μM
TMB + 0.6 MH2O2. e 50 μg/mL NPHSA + 100 μMTMB + 0.6 M
H2O2
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Fig. 6 Steady-state kinetic assays of prepared nanoparticles and
POD as catalysts for the oxidation of TMB by H2O2.The initial
reaction velocity (V) was measured under standard conditions.
Kinetic assays toward TMB. Plot of Vagainst TMB concentration,
in which H2O2 concentration was fixed at 0.6 mM (a), and positive
control POD (b). Kinetic assays toward H2O2 (c). Plot of Vagainst

H2O2 concentration, in which TMB concentration was fixed at
0.8 mM, and positive control POD (d). Double-reciprocal plot
generated from a and b (e). Double-reciprocal plot generated from
c and d (f). (a) γ-Fe2O3 NPs, (b)NPPLGA, (c) NPCMCS, (d)NPHSA,
(e) POD, respectively
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deepened, while the color in the positive control POD
has changed from dark blue to light blue (Fig. 3b). The
corresponding absorption spectra are shown in Fig. 3f in
which the absorbance of POD dropped rapidly even
closer to that of the negative control. Like enzymatic
peroxidase activity, this color reaction was quenched by
adding H2SO4 (Gao et al. 2007). As shown in Fig. 3 c
and d, the reactions were stopped by adding 50 μL of
0.5 M H2SO4. All these results confirmed that the
surface-modified NPPLGA, NPCMCS, and NPHSA exhib-
ited an intrinsic peroxidase-like activity.

Catalysis of natural enzymes or nanoenzymes was
influenced by reaction time, temperature, and pH (Wei
and Wang 2008). So the catalytic relative activity of the
prepared NPPLGA, NPCMCS, and NPHSA were

investigated under varying reaction time (from 5 to
30 min), temperature (from 30 to 55 °C) and pH (from
3 to 5.5). The effects of reaction time on peroxidase-like
activity of prepared NPPLGA, NPCMCS, and NPHSA are
shown in Fig. 4. The oxidation reaction was finished
within 10–15min, demonstrating a fast oxidation rate of
TMB catalyzed by γ-Fe2O3 NPs, NPPLGA, NPCMCS,
and NPHSA in the presence of H2O2. The absorbance
of the γ-Fe2O3 NPs–TMB–H2O2 system at 652 nm is
much higher as compared with that of the other reaction
systems. Nanoparticle enzyme activity gradually in-
creased and finally stabilized within 30 min.

As shown in Fig. 5a, the activity of γ-Fe2O3 NPs,
NPPLGA, NPCMCS, and NPHSAwas relatively stable and
significantly higher than POD enzyme activity with
temperature ranging from 40 to 55 °C, whereas the
activity of POD dramatically decreased when the tem-
perature exceeded 35 °C, implying that the catalytic
activity of these surface-modified nanoparticles was less
sensitive to temperature. In addition, the catalytic activ-
ity of NPPLGA, NPCMCS, and NPHSA could still retain a
capable catalytic activity even at 55 °C, but the catalytic
activity of γ-Fe2O3 NPs decreased when the tempera-
ture was beyond 50 °C.

As shown in Fig. 5b, the catalytic activity of γ-Fe2O3

NPs, NPPLGA, NPCMCS, and NPHSA was much higher
between pH 3.0 and pH 3.5, which indicated that acidic
buffer around with pH 3.5 might be an optimal condi-
tion to ensure a capable catalytic activity of these nano-
particles. Meanwhile, compared with natural enzyme
POD, these fabricated nanoparticles also display a less
sensitive response to pH change in a wider range.

To better understand the peroxidase-like catalytic
activity of prepared γ-Fe2O3 NPs, NPPLGA, NPCMCS,
and NPHSA, the steady-state kinetic parameters for cat-
alyzing TMB oxidation was analyzed with varying con-
centrations of TMB and H2O2 under the optimal condi-
tion. As illustrated in Fig. 6a–d, the initial catalytic
velocity was followed with the typical Michaelis–
Menten behaviors. Under the optimum conditions, a
series of initial reaction rates were calculated and ap-
plied with the double reciprocal of the Michaelis
−Menten equation (Fig. 6e, f) deduced from the
Lineweaver−Burk plots (Dong et al. 2012).

The maximum initial velocity (Vmax) and the
Michaelis−Menten constant (Km) were calculated by
using the Lineweaver–Burk plots of double reciprocal
of the Michaelis–Menten equation (Table 1). The Vmax

value is a direct measure of the enzymatic catalytic

Table 1 Comparison of the Michaelis–Menten (Km) and maxi-
mum reaction velocity (Vmax)

Catalyst Substrate Km (mM) Vmax (10
−8 M s−1)

POD TMB
H2O2

1.98
0.30

40.68
113.70

γ-Fe2O3 TMB
H2O2

1.24
21.54

13.01
66.71

NPPLGA TMB
H2O2

0.90
4.41

6.61
10.93

NPCMCS TMB
H2O2

3.63
0.66

12.60
2.40

NPHSA TMB
H2O2

0.60
8.51

2.26
7.57

Fig. 7 Absorbance of the solutions with different substances for
cholesterol detection. All measurements were performed in NaAc
buffer solution (pH 3.6) containing 0.8 mM TMB at 37 °C. The
concentration was 0.5 mM for cholesterol and 2 mM for the other
interfering substances
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activity. Km is identified as an indicator of enzyme
affinity to substrates. A lowKm represents a high affinity
(Asati et al. 2009). The kinetic analysis showed that γ-
Fe2O3 NPs (Km = 1.24),NPPLGA (Km = 0.9), and NPHSA

(Km = 0.6) demonstrated a higher affinity toward TMB
than POD (Km = 1.98) at acidic pH. However, NPCMCS

(Km = 3.63) showed a lower affinity toward TMB than
POD (Km = 1.98). In addition, the calculation also
showed that Km value of γ-Fe2O3 NPs (Km = 21.54),
NPPLGA (Km = 4.41), NPCMCS (Km = 0.66), and NPHSA

(Km = 8.51) for H2O2 was higher than POD (Km = 0.30),
suggesting that γ-Fe2O3, NPPLGA, NPCMCS, and NPHSA

require a higher concentration of H2O2 for depicting the
same peroxidase activity as POD (Gao et al. 2007).

Cholesterol could be oxidized by ChOx to produce
H2O2 in the presence of oxygen (Shen and Liu 2007).
The concentration of H2O2 monitored is indirectly re-
lated to the concentration of cholesterol. Therefore, the
color change from the converted TMB could be used to
measure the concentration of cholesterol. As shown in
Fig. 7, a visualized detection of cholesterol can be
catalyzed by the assembly of ChOx and the prepared
nanoparticles, which provided a simple protocol for the
determination of cholesterol.

To calculate the limit of detection (LOD) based on
the standard LOD = 3SD/S, where SD is the standard
deviation of the blank, and S is the slope of the sample
and calibration curve. Therefore, we could calculate the
LOD of NPPLGA, NPCMCS, and NPHSA as 118 μM,
142 μM, and 96 μM, respectively. The possible inter-
fering substances in blood samples were investigated,
and as in Fig. 8, the results showed that the absorbance
of these interfering substances was not evident when
their concentrations are four times as high as that of
cholesterol.

Furthermore, catalysis ability of these prepared nano-
particles was evaluated using cholesterol as a substrate
in fetal bovine serum. As mentioned above, the total
serum cholesterol generally included free cholesterol
and cholesterol ester. Cholesterol esterase can effective-
ly convert cholesterol ester to free cholesterol (Lu et al.
2015), and therefore, total cholesterol level was equiv-
alent to free cholesterol level after the enzyme

Fig. 8 a The standard curve for cholesterol detection and b the corresponding colored products NPPLGA (a1-a6), NPCMCS (b1-b6), NPHSA
(c1-c6)

Fig. 9 Catalytic activity of prepared nanoparticles for cholesterol
detection in fetal bovine serum. Inset: the colored products of (a)
γ-Fe2O3 NPs, (b) NPPLGA, (c) NPCMCS, and (d) NPHSA
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hydrolysis of cholesterol ester. The free cholesterol re-
sponse signals were detected readily as this bio-sensing
approach was applied to serum samples (Zhang et al.
2017). As shown in Fig. 9, a blue solution was obtained
in the serum, and the catalysis data showed that γ-Fe2O3

NPs and the modified nanoparticles can detect choles-
terol in serum, and comparatively, the peroxidase-like
activity of γ-Fe2O3 NPs was largely retained after the
modification of HSA, PLGA, and CMCS.

Conclusions

In this work, we have synthesized the distinct layer-
coating nanoparticles including NPPLGA, NPCMCS, and
NPHSA, and their peroxidase-like activity was explored
with TMB as a substrate. The naked γ-Fe2O3 NPs
exhibited a high intrinsic peroxidase-like activity, and
the fabricated nanoparticles (NPPLGA, NPCMCS, and
NPHSA) were also followed with the classical
Michaelis–Menten kinetics with much wider PH and
temperature ranges, which could be effectively used
for the visualized colorimetric cholesterol detection. In
general, we believe these modified nanoparticles
endowed with peroxidase-like activity may be widely
used in various bioassays in the future.
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